[1] |
J.M. Llovet, R.K. Kelley, A. Villanueva, A.G. Singal, E. Pikarsky, S. Roayaie, et al. Hepatocellular carcinoma. Nat Rev Dis Primers, 7 (1) ( 2021), p. 6.
|
[2] |
R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal. Cancer statistics, 2022. CA Cancer J Clin, 72 (1) ( 2022), pp. 7-33
|
[3] |
V. Mazzaferro, E. Regalia, R. Doci, S. Andreola, A. Pulvirenti, F. Bozzetti, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med, 334 (11) ( 1996), pp. 693-699
|
[4] |
D.I. Tsilimigras, F. Bagante, D. Moris, K. Merath, A.Z. Paredes, K. Sahara, et al. Defining the chance of cure after resection for hepatocellular carcinoma within and beyond the Barcelona Clinic Liver Cancer guidelines: a multi-institutional analysis of 1,010 patients. Surgery, 166 (6) ( 2019), pp. 967-974
|
[5] |
D.F. Mirza. Systematic review of outcome of downstaging hepatocellular cancer before liver transplantation in patients outside the Milan criteria (Br J Surg 2011; 98: 1201-1208). Br J Surg, 98 (9) ( 2011), p. 1209
|
[6] |
X. Xu, D. Lu, Q. Ling, X. Wei, J. Wu, L. Zhou, et al. Liver transplantation for hepatocellular carcinoma beyond the Milan criteria. Gut, 65 (6) ( 2016), pp. 1035-1041
|
[7] |
T. Hibi, M. Shinoda, O. Itano, Y. Kitagawa. Current status of the organ replacement approach for malignancies and an overture for organ bioengineering and regenerative medicine. Organogenesis, 10 (2) ( 2014), pp. 241-249
|
[8] |
T. Hibi, O. Itano, M. Shinoda, Y. Kitagawa. Liver transplantation for hepatobiliary malignancies: a new era of “Transplant Oncology” has begun. Surg Today, 47 (4) ( 2017), pp. 403-415
|
[9] |
N. Mehta, P. Bhangui, F.Y. Yao, V. Mazzaferro, C. Toso, N. Akamatsu, et al. Liver transplantation for hepatocellular carcinoma. Working group report from the ILTS Transplant Oncology Consensus Conference. Transplantation, 104 (6) ( 2020), pp. 1136-1142
1[ 10] B.O. Schroeder, F. B?ckhed. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med, 22 (10) ( 2016), pp. 1079-1089
|
[11] |
N. Kazemian, M. Mahmoudi, F. Halperin, J.C. Wu, S. Pakpour. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 8 (1) ( 2020), p. 36
|
[12] |
P.C. Konturek, I.A. Harsch, K. Konturek, M. Schink, T. Konturek, M.F. Neurath, et al. Gut-liver axis: how do gut bacteria influence the liver?. Med Sci, 6 (3) ( 2018), p. 79
|
[13] |
X. Yang, D. Lu, J. Zhuo, Z. Lin, M. Yang, X. Xu. The gut-liver axis in immune remodeling: new insight into liver diseases. Int J Biol Sci, 16 (13) ( 2020), pp. 2357-2366
|
[14] |
M. Deng, F. Qu, L. Chen, C. Liu, M. Zhang, F. Ren, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD. J Endocrinol, 245 (3) ( 2020), pp. 425-437
|
[15] |
C. Ma, M. Han, B. Heinrich, Q. Fu, Q. Zhang, M. Sandhu, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 360(6391):eaan5931 ( 2018)
|
[16] |
N. Ohtani, E. Hara. Gut-liver axis-mediated mechanism of liver cancer: a special focus on the role of gut microbiota. Cancer Sci, 112 (11) ( 2021), pp. 4433-4443
|
[17] |
Z. Ren, A. Li, J. Jiang, L. Zhou, Z. Yu, H. Lu, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut, 68 (6) ( 2019), pp. 1014-1023
|
[18] |
H. Huang, Z. Ren, X. Gao, X. Hu, Y. Zhou, J. Jiang, et al. Integrated analysis of microbiome and host transcriptome reveals correlations between gut microbiota and clinical outcomes in HBV-related hepatocellular carcinoma. Genome Med, 12 (1) ( 2020), p. 102
|
[19] |
E. Thursby, N. Juge. Introduction to the human gut microbiota. Biochem J, 474 (11) ( 2017), pp. 1823-1836
|
[20] |
X. Tian, Z. Yang, F. Luo, S. Zheng. Gut microbial balance and liver transplantation: alteration, management, and prediction. Front Med, 12 (2) ( 2018), pp. 123-129
|
[21] |
B. Zhu, X. Wang, L. Li. Human gut microbiome: the second genome of human body. Protein Cell, 1 (8) ( 2010), pp. 718-725
|
[22] |
A. Almeida, S. Nayfach, M. Boland, F. Strozzi, M. Beracochea, Z.J. Shi, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol, 39 (1) ( 2021), pp. 105-114
|
[23] |
C.A. Lozupone, J.I. Stombaugh, J.I. Gordon, J.K. Jansson, R. Knight. Diversity, stability and resilience of the human gut microbiota. Nature, 489 (7415) ( 2012), pp. 220-230
|
[24] |
A. Adak, M.R. Khan. An insight into gut microbiota and its functionalities. Cell Mol Life Sci, 76 (3) ( 2019), pp. 473-493
|
[25] |
F. Zhang, D. Aschenbrenner, J.Y. Yoo, T. Zuo. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe, 3 (12) ( 2022), pp. e969-e983
|
[26] |
O.O. Coker, W.K.K. Wu, S.H. Wong, J.J. Sung, J. Yu. Altered gut archaea composition and interaction with bacteria are associated with colorectal cancer. Gastroenterology, 159 (4) ( 2020)
|
[27] |
M. Gurung, Z. Li, H. You, R. Rodrigues, D.B. Jump, A. Morgun, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 51 ( 2020), Article 102590
|
[28] |
B.J.H. Verhaar, A. Prodan, M. Nieuwdorp, M. Muller. Gut microbiota in hypertension and atherosclerosis: a review. Nutrients, 12 (10) ( 2020), p. 2982
|
[29] |
K. Sugihara, N. Kamada. Diet-microbiota interactions in inflammatory bowel disease. Nutrients, 13 (5) ( 2021), p. 1533
|
[30] |
E.Y. Hsiao, S.W. McBride, S. Hsien, G. Sharon, E.R. Hyde, T. McCue, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155 (7) ( 2013), pp. 1451-1463
|
[31] |
C. Xia, X. Dong, H. Li, M. Cao, D. Sun, S. He, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J, 135 (5) ( 2022), pp. 584-590
|
[32] |
S. Temraz, F. Nassar, F. Kreidieh, D. Mukherji, A. Shamseddine, R. Nasr. Hepatocellular carcinoma immunotherapy and the potential influence of gut microbiome. Int J Mol Sci, 22 (15) ( 2021), p. 7800
|
[33] |
S. Ling, Q. Shan, Q. Zhan, Q. Ye, P. Liu, S. Xu, et al. USP22 promotes hypoxia-induced hepatocellular carcinoma stemness by a HIF1α/USP22 positive feedback loop upon TP53 inactivation. Gut, 69 (7) ( 2020), pp. 1322-1334
|
[34] |
W.F. Doe. The intestinal immune system. Gut, 30 (12) ( 1989), pp. 1679-1685
|
[35] |
R. Ahmad, M.F. Sorrell, S.K. Batra, P. Dhawan, A.B. Singh. Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunol, 10 (2) ( 2017), pp. 307-317
|
[36] |
O. Takeuchi, S. Akira. Pattern recognition receptors and inflammation. Cell, 140 (6) ( 2010), pp. 805-820
|
[37] |
L. Wang, C. Llorente, P. Hartmann, A.M. Yang, P. Chen, B. Schnabl. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods, 421 ( 2015), pp. 44-53
|
[38] |
M. Venkatesh, S. Mukherjee, H. Wang, H. Li, K. Sun, A.P. Benechet, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity, 41 (2) ( 2014), pp. 296-310
|
[39] |
W.T. Liu, Y.Y. Jing, G.F. Yu, Z.P. Han, D.D. Yu, Q.M. Fan, et al. Toll like receptor 4 facilitates invasion and migration as a cancer stem cell marker in hepatocellular carcinoma. Cancer Lett, 358 (2) ( 2015), pp. 136-143
|
[40] |
D.H. Dapito, A. Mencin, G.Y. Gwak, J.P. Pradere, M.K. Jang, I. Mederacke, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell, 21 (4) ( 2012), pp. 504-516
|
[41] |
R.M. Ayling, K. Kok. Fecal calprotectin. Adv Clin Chem, 87 ( 2018), pp. 161-190
|
[42] |
F.R. Ponziani, S. Bhoori, C. Castelli, L. Putignani, L. Rivoltini, F. Del Chierico, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology, 69 (1) ( 2019), pp. 107-120
|
[43] |
C. Bi, G. Xiao, C. Liu, J. Yan, J. Chen, W. Si, et al. Molecular immune mechanism of intestinal microbiota and their metabolites in the occurrence and development of liver cancer. Front Cell Dev Biol, 9 ( 2021), Article 702414
|
[44] |
A. Visekruna, M. Luu. The role of short-chain fatty acids and bile acids in intestinal and liver function, inflammation, and carcinogenesis. Front Cell Dev Biol, 9 ( 2021), Article 703218
|
[45] |
M. Luu, S. Pautz, V. Kohl, R. Singh, R. Romero, S. Lucas, et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun, 10 (1) ( 2019), p. 760
|
[46] |
N. McBrearty, A. Arzumanyan, E. Bichenkov, S. Merali, C. Merali, M. Feitelson. Short chain fatty acids delay the development of hepatocellular carcinoma in HBx transgenic mice. Neoplasia, 23 (5) ( 2021), pp. 529-538
|
[47] |
C Hu, B Xu, X Wang, WH Wan, J Lu, D Kong, et al. Gut microbiota-derived short-chain fatty acids regulate group 3 innate lymphoid cells in HCC. Hepatology, 77 (1) ( 2023), pp. 48-64
|
[48] |
V. Singh, B. San Yeoh, B. Chassaing, X. Xiao, P. Saha, R.A. Olvera, et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell, 175 (3) ( 2018). 679 94.e22
|
[49] |
R. Mirzaei, A. Afaghi, S. Babakhani, M.R. Sohrabi, S.R. Hosseini-Fard, K. Babolhavaeji, et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother, 139 ( 2021), Article 111619
|
[50] |
M.V. Liberti, J.W. Locasale. The Warburg effect: how does it benefit cancer cells?. Trends Biochem Sci, 41 (3) ( 2016), pp. 211-218
|
[51] |
K.G. De la Cruz-López, L.J. Castro-Mu?oz, D.O. Reyes-Hernández, A. García-Carrancá, J. Manzo-Merino. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol, 9 ( 2019), p. 1143
|
[52] |
W. Zhang, Z. Chen, C. Xue, Y. Zhang, L. Wu, J. Zhu, et al. The applicability of ADA, AFU, and LAC in the early diagnosis and disease risk assessment of hepatitis B-associated liver cirrhosis and hepatocellular carcinoma. Front Med, 8 ( 2021), Article 740029
|
[53] |
Y. Gu, F. Ji, N. Liu, Y. Zhao, X. Wei, S. Hu, et al. Loss of miR-192-5p initiates a hyperglycolysis and stemness positive feedback in hepatocellular carcinoma. J Exp Clin Cancer Res, 39 (1) ( 2020), p. 268
|
[54] |
W. Cao, H. Kayama, M.L. Chen, A. Delmas, A. Sun, S.Y. Kim, et al. The xenobiotic transporter Mdr 1 enforces T cell homeostasis in the presence of intestinal bile acids. Immunity, 47 (6) ( 2017). 1182-96.e10
|
[55] |
L. Conde de la Rosa, C. Garcia-Ruiz, C. Vallejo, A. Baulies, S. Nu?ez, M.J. Monte, et al. STARD 1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway. J Hepatol, 74 (6) ( 2021), pp. 1429-1441
|
[56] |
R. Sun, Z. Zhang, R. Bao, X. Guo, Y. Gu, W. Yang, et al. Loss of SIRT 5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. J Hepatol, 77 (2) ( 2022), pp. 453-466
|
[57] |
S. Yoshimoto, T.M. Loo, K. Atarashi, H. Kanda, S. Sato, S. Oyadomari, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 499 (7456) ( 2013), pp. 97-101
|
[58] |
J. Bruix, M. Sherman. the American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology, 53 (3) ( 2011), pp. 1020-1022
|
[59] |
H.B. El-Serag. Hepatocellular carcinoma. N Engl J Med, 365 (12) ( 2011), pp. 1118-1127
|
[60] |
B. Liu, Z. Zhou, Y. Jin, J. Lu, D. Feng, R. Peng, et al. Hepatic stellate cell activation and senescence induced by intrahepatic microbiota disturbances drive progression of liver cirrhosis toward hepatocellular carcinoma. J Immunother Cancer, 10 (1) ( 2022), p. e003069
|
[61] |
S. Li, W. Han, Q. He, W. Zhang, Y. Zhang. Relationship between intestinal microflora and hepatocellular cancer based on gut-liver axis theory. Contrast Media Mol Imaging, 2022 ( 2022), p. 6533628
|
[62] |
B. Wang, X. Jiang, M. Cao, J. Ge, Q. Bao, L. Tang, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep, 6 (1) ( 2016), p. 32002
|
[63] |
H. Leung, X. Long, Y. Ni, L. Qian, E. Nychas, S.L. Siliceo, et al. Risk assessment with gut microbiome and metabolite markers in NAFLD development. Sci Transl Med ( 2022; 14(648):eabk0855.)
|
[64] |
R. Loomba, V. Seguritan, W. Li, T. Long, N. Klitgord, A. Bhatt, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab, 25 (5) ( 2017). 1054-62.e5
|
[65] |
J.S. Yu, G.S. Youn, J. Choi, C.H. Kim, B.Y. Kim, S.J. Yang, et al. Lactobacillus lactis and Pediococcus pentosaceus-driven reprogramming of gut microbiome and metabolome ameliorates the progression of non-alcoholic fatty liver disease. Clin Transl Med, 11 (12) ( 2021), p. e634
|
[66] |
B. Bj? rkholm, C.M. Bok, A. Lundin, J. Rafter, M.L. Hibberd, S. Pettersson. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One, 4 (9) ( 2009), p. e6958
|
[67] |
I. Bergheim, S. Weber, M. Vos, S. Kr?mer, V. Volynets, S. Kaserouni, et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol, 48 (6) ( 2008), pp. 983-992
|
[68] |
S. Thuy, R. Ladurner, V. Volynets, S. Wagner, S. Strahl, A. K? nigsrainer, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr, 138 (8) ( 2008), pp. 1452-1455
|
[69] |
F. B? ckhed, J.K. Manchester, C.F. Semenkovich, J.I. Gordon. Mechanisms underlying the resistance to diet-induced obesity in Germ-free mice. Proc Natl Acad Sci USA, 104 (3) ( 2007), pp. 979-984
|
[70] |
L. Bull-Otterson, W. Feng, I. Kirpich, Y. Wang, X. Qin, Y. Liu, et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One, 8 (1) ( 2013), p. e53028
|
[71] |
M. Llopis, A.M. Cassard, L. Wrzosek, L. Boschat, A. Bruneau, G. Ferrere, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut, 65 (5) ( 2016), pp. 830-839
|
[72] |
K. Brandl, P. Hartmann, L.J. Jih, D.P. Pizzo, J. Argemi, M. Ventura-Cots, et al. Dysregulation of serum bile acids and FGF 19 in alcoholic hepatitis. J Hepatol, 69 (2) ( 2018), pp. 396-405
|
[73] |
L. Jiang, S. Lang, Y. Duan, X. Zhang, B. Gao, J. Chopyk, et al. Intestinal virome in patients with alcoholic hepatitis. Hepatology, 72 (6) ( 2020), pp. 2182-2196
|
[74] |
C.L. Hsu, X. Zhang, L. Jiang, S. Lang, P. Hartmann, D. Pride, et al. Intestinal virome in patients with alcohol use disorder and after abstinence. Hepatol Commun, 6 (8) ( 2022), pp. 2058-2069
|
[75] |
A.W. Yan, D.E. Fouts, J. Brandl, P. St?rkel, M. Torralba, E. Schott, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology, 53 (1) ( 2011), pp. 96-105
|
[76] |
C. Bode, V. Kugler, J.C. Bode. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol, 4 (1) ( 1987), pp. 8-14
|
[77] |
C. Llorente, P. Jepsen, T. Inamine, L. Wang, S. Bluemel, H.J. Wang, et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat Commun, 8 (1) ( 2017), p. 837
|
[78] |
Y. Duan, C. Llorente, S. Lang, K. Brandl, H. Chu, L. Jiang, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature, 575 (7783) ( 2019), pp. 505-511
|
[79] |
A. Everard, C. Belzer, L. Geurts, J.P. Ouwerkerk, C. Druart, L.B. Bindels, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA, 110 (22) ( 2013), pp. 9066-9071
|
[80] |
C. Grander, T.E. Adolph, V. Wieser, P. Lowe, L. Wrzosek, B. Gyongyosi, et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut, 67 (5) ( 2018), pp. 891-901
|
[81] |
Q. Liu, F. Li, Y. Zhuang, J. Xu, J. Wang, X. Mao, et al. Alteration in gut microbiota associated with hepatitis B and non-hepatitis virus related hepatocellular carcinoma. Gut Pathog, 11 (1) ( 2019), p. 1
|
[82] |
X. Wang, M.M. Li, Y. Niu, X. Zhang, J.B. Yin, C.J. Zhao, et al. Serum zonulin in HBV-associated chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Dis Markers, 2019 ( 2019), p. 5945721
|
[83] |
S. Sultan, M. El-Mowafy, A. Elgaml, M. El-Mesery, A. El Shabrawi, M. Elegezy, et al. Alterations of the treatment-naive gut microbiome in newly diagnosed hepatitis C virus infection. ACS Infect Dis, 7 (5) ( 2021), pp. 1059-1068
|
[84] |
P. Pérez-Matute, M. í? iguez, M.J. Villanueva-Millán, E. Recio-Fernández, A.M. Vázquez, S.C. Sánchez, et al. Short-term effects of direct-acting antiviral agents on inflammation and gut microbiota in hepatitis C-infected patients. Eur J Intern Med, 67 ( 2019), pp. 47-58
|
[85] |
B. Heidrich, M. Vital, I. Plumeier, N. D? scher, S. Kahl, J. Kirschner, et al. Intestinal microbiota in patients with chronic hepatitis C with and without cirrhosis compared with healthy controls. Liver Int, 38 (1) ( 2018), pp. 50-58
|
[86] |
E.J. Drenick, J. Fisler, D. Johnson. Hepatic steatosis after intestinal bypass—prevention and reversal by metronidazole, irrespective of protein-calorie malnutrition. Gastroenterology, 82 (3) ( 1982), pp. 535-548
|
[87] |
J. Rehm, A.V. Samokhvalov, K.D. Shield. Global burden of alcoholic liver diseases. J Hepatol, 59 (1) ( 2013), pp. 160-168
|
[88] |
M. Meroni, M. Longo, P. Dongiovanni. Alcohol or gut microbiota: who is the guilty?. Int J Mol Sci, 20 (18) ( 2019), p. 4568
|
[89] |
G.A. Cresci, B. Glueck, M.R. McMullen, W. Xin, D. Allende, L.E. Nagy. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. J Gastroenterol Hepatol, 32 (9) ( 2017), pp. 1587-1597
|
[90] |
Y. Chen, Z. Tian. HBV-induced immune imbalance in the development of HCC. Front Immunol, 10 ( 2019), p. 2048
|
[91] |
P. Axley, Z. Ahmed, S. Ravi, A.K. Singal. Hepatitis C virus and hepatocellular carcinoma: a narrative review. J Clin Transl Hepatol, 6 (1) ( 2018), pp. 79-84
|
[92] |
D.R. McGivern, S.M. Lemon. Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene, 30 (17) ( 2011), pp. 1969-1983
|
[93] |
N. Fujiwara, S.L. Friedman, N. Goossens, Y. Hoshida. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol, 68 (3) ( 2018), pp. 526-549
|
[94] |
T. Deng, J. Li, B. He, B. Chen, F. Liu, Z. Chen, et al. Gut microbiome alteration as a diagnostic tool and associated with inflammatory response marker in primary liver cancer. Hepatol Int, 16 (1) ( 2022), pp. 99-111
|
[95] |
S. Albhaisi, A. Shamsaddini, A. Fagan, S. McGeorge, M. Sikaroodi, E. Gavis, et al. Gut microbial signature of hepatocellular cancer in men with cirrhosis. Liver Transpl, 27 (5) ( 2021), pp. 629-640
|
[96] |
R. Huang, T. Li, J. Ni, X. Bai, Y. Gao, Y. Li, et al. Different sex-based responses of gut microbiota during the development of hepatocellular carcinoma in liver-specific Tsc1-knockout mice. Front Microbiol, 9 ( 2018), p. 1008
|
[97] |
Z. Liu, Y. Li, C. Li, G. Lei, L. Zhou, X. Chen, et al. Intestinal Candida albicans promotes hepatocarcinogenesis by up-regulating NLRP6. Front Microbiol, 13 ( 2022), Article 812771
|
[98] |
A.X. Zhu, R.S. Finn, J. Edeline, S. Cattan, S. Ogasawara, D. Palmer, et al. the KEYNOTE-224 investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol, 19 (7) ( 2018), pp. 940-952
|
[99] |
L. Li, J. Ye. Characterization of gut microbiota in patients with primary hepatocellular carcinoma received immune checkpoint inhibitors: a Chinese population-based study. Medicine, 99 (37) ( 2020), p. e21788
|
[100] |
Y. Zheng, T. Wang, X. Tu, Y. Huang, H. Zhang, D. Tan, et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer, 7 (1) ( 2019), p. 193
|
[101] |
M. Lobanovska, G. Pilla. Focus: drug development: penicillin’s discovery and antibiotic resistance: lessons for the future?. Yale J Biol Med, 90 (1) ( 2017), pp. 135-145
|
[102] |
T.M. Loo, F. Kamachi, Y. Watanabe, S. Yoshimoto, H. Kanda, Y. Arai, et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov, 7 (5) ( 2017), pp. 522-538
|
[103] |
V. Singh, B.S. Yeoh, A.A. Abokor, R.M. Golonka, Y. Tian, A.D. Patterson, et al. Vancomycin prevents fermentable fiber-induced liver cancer in mice with dysbiotic gut microbiota. Gut Microbes, 11 (4) ( 2020), pp. 1077-1091
|
[104] |
P. Ginés, A. Rimola, R. Planas, V. Vargas, F. Marco, M. Almela, et al. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatology, 12 (4 Pt 1) ( 1990), pp. 716-724
|
[105] |
P. Tandon, A. Delisle, J.E. Topal, G. Garcia-Tsao. High prevalence of antibiotic-resistant bacterial infections among patients with cirrhosis at a US liver center. Clin Gastroenterol Hepatol, 10 (11) ( 2012), pp. 1291-1298
|
[106] |
Y. Fujinaga, H. Kawaratani, D. Kaya, Y. Tsuji, T. Ozutsumi, M. Furukawa, et al. Effective combination therapy of angiotensin-II receptor blocker and rifaximin for hepatic fibrosis in rat model of nonalcoholic steatohepatitis. Int J Mol Sci, 21 (15) ( 2020), p. 5589
|
[107] |
L.X. Yu, R.F. Schwabe. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol, 14 (9) ( 2017), pp. 527-539
|
[108] |
R.K. Dhiman, B. Rana, S. Agrawal, A. Garg, M. Chopra, K.K. Thumburu, et al. Probiotic VSL# 3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology, 147 (6) ( 2014). 1327-37.e3
|
[109] |
J. Li, C.Y.J. Sung, N. Lee, Y. Ni, J. Pihlajam?ki, G. Panagiotou, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci USA, 113 (9) ( 2016), pp. E1306-E1315
|
[110] |
Z. Heydari, M. Rahaie, A.M. Alizadeh. Different anti-inflammatory effects of Lactobacillus acidophilus and Bifidobactrum bifidioum in hepatocellular carcinoma cancer mouse through impact on microRNAs and their target genes. J Nutr Intermed Metab, 16 ( 2019), p. 16100096
|
[111] |
M. Mihailovi?, M. ?ivkovi? J. A. Jovanovi?, M. Tolina?ki, M. Sinadinovi?, J. Raji?, et al. Oral administration of probiotic Lactobacillus paraplantarum BGCG 11 attenuates diabetes-induced liver and kidney damage in rats. J Funct Foods, 38 ( 2017), pp. 38427-38437
|
[112] |
H.L. Zhang, L.X. Yu, W. Yang, L. Tang, Y. Lin, H. Wu, et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol, 57 (4) ( 2012), pp. 803-812
|
[113] |
A.M. Elshaer, O.A. El-Kharashi, G.G. Hamam, E.S. Nabih, Y.M. Magdy, A.A. Abd El Samad. Involvement of TLR4/ CXCL9/ PREX-2 pathway in the development of hepatocellular carcinoma (HCC) and the promising role of early administration of lactobacillus plantarum in Wistar rats. Tissue Cell, 60 ( 2019), pp. 38-47
|
[114] |
G.A. Nanis, L.S. Mohamed, E. Hassan, M.N. Maii. Lactobacillus acidophilus and Bifidobacteria spp having antibacterial and antiviral effects on chronic HCV infection. Afr J Microbiol Res, 13 (5) ( 2019), pp. 77-90
|
[115] |
D.K. Lee, J.Y. Kang, H.S. Shin, I.H. Park, N.J. Ha. Antiviral activity of Bifidobacterium adolescentis SPM0212 against Hepatitis B virus. Arch Pharm Res, 36 (12) ( 2013), pp. 1525-1532
|
[116] |
S.L. Gorbach, M. Barza, M. Giuliano, N.V. Jacobus. Colonization resistance of the human intestinal microflora: testing the hypothesis in normal volunteers. Eur J Clin Microbiol Infect Dis, 7 (1) ( 1988), pp. 98-102
|
[117] |
D. Zhou, Q. Pan, F. Shen, H.X. Cao, W.J. Ding, Y.W. Chen, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep, 7 (1) ( 2017), p. 1529
|
[118] |
W.W. Wang, Y. Zhang, X.B. Huang, N. You, L. Zheng, J. Li. Fecal microbiota transplantation prevents hepatic encephalopathy in rats with carbon tetrachloride-induced acute hepatic dysfunction. World J Gastroenterol, 23 (38) ( 2017), pp. 6983-6994
|
[119] |
C.R. Kelly, C. Ihunnah, M. Fischer, A. Khoruts, C. Surawicz, A. Afzali, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol, 109 (7) ( 2014), pp. 1065-1071
|
[120] |
A.K. Singal, P. Guturu, B. Hmoud, Y.F. Kuo, H. Salameh, R.H. Wiesner. Evolving frequency and outcomes of liver transplantation based on etiology of liver disease. Transplantation, 95 (5) ( 2013), pp. 755-760
|
[121] |
S. Ling, Q. Zhan, G. Jiang, Q. Shan, L. Yin, R. Wang, et al. E2F 7 promotes mammalian target of rapamycin inhibitor resistance in hepatocellular carcinoma after liver transplantation. Am J Transplant, 22 (10) ( 2022), pp. 2323-2336
|
[122] |
Z.W. Wu, Z.X. Ling, H.F. Lu, J. Zuo, J.F. Sheng, S.S. Zheng, et al. Changes of gut bacteria and immune parameters in liver transplant recipients. Hepatobiliary Pancreat Dis Int, 11 (1) ( 2012), pp. 40-50
|
[123] |
M.H. Yu, X.L. Yu, C.L. Chen, L.H. Gao, W.L. Mao, D. Yan, et al. The change of intestinal microecology in rats after orthotopic liver transplantation. Chin J Surg, 46 (15) ( 2008), pp. 1139-1142. Chinese
|
[124] |
J.S. Bajaj, G. Kakiyama, I.J. Cox, H. Nittono, H. Takei, M. White, et al. Alterations in gut microbial function following liver transplant. Liver Transpl, 24 (6) ( 2018), pp. 752-761
|
[125] |
H.C. Xing, L.J. Li, K.J. Xu, T. Shen, Y.B. Chen, J.F. Sheng, et al. Intestinal microflora in rats with ischemia/reperfusion liver injury. J Zhejiang Univ Sci B, 6 (1) ( 2005), pp. 14-21
|
[126] |
J. Yu, Z. Liu, C. Li, Q. Wei, S. Zheng, K. Saeb-Parsy, et al. Regulatory T cell therapy following liver transplantation. Liver Transpl, 27 (2) ( 2021), pp. 264-280
|
[127] |
J. Zhou, J. Chen, Q. Wei, K. Saeb-Parsy, X. Xu. The role of ischemia/reperfusion injury in early hepatic allograft dysfunction. Liver Transpl, 26 (8) ( 2020), pp. 1034-1048
|
[128] |
M.M. Wegorzewska, R.W.P. Glowacki, S.A. Hsieh, D.L. Donermeyer, C.A. Hickey, S.C. Horvath, et al. Diet modulates colonic T cell responses by regulating the expression of a Bacteroides thetaiotaomicron antigen. Sci Immunol, 4(32):eaau9079 ( 2019)
|
[129] |
S.J. Aujla, P.J. Dubin, J.K. Kolls. Th 17 cells and mucosal host defense. Semin Immunol, 19 (6) ( 2007), pp. 377-382
|
[130] |
I.I. Ivanov, K. Atarashi, N. Manel, E.L. Brodie, T. Shima, U. Karaoz, et al. Induction of intestinal Th 17 cells by segmented filamentous bacteria. Cell, 139 (3) ( 2009), pp. 485-498
|
[131] |
D. Paik, L. Yao, Y. Zhang, S. Bae, G.D. D’Agostino, M. Zhang, et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature, 603 (7903) ( 2022), pp. 907-912
|
[132] |
N. Corbitt, S. Kimura, K. Isse, S. Specht, L. Chedwick, B.R. Rosborough, et al. Gut bacteria drive Kupffer cell expansion via MAMP-mediated ICAM-1 induction on sinusoidal endothelium and influence preservation-reperfusion injury after orthotopic liver transplantation. Am J Pathol, 182 (1) ( 2013), pp. 180-191
|
[133] |
G. Kolios, V. Valatas, E. Kouroumalis. Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol, 12 (46) ( 2006), pp. 7413-7420
|
[134] |
K. Nakamura, S. Kageyama, T. Ito, H. Hirao, K. Kadono, A. Aziz, et al. Antibiotic pretreatment alleviates liver transplant damage in mice and humans. J Clin Invest, 129 (8) ( 2019), pp. 3420-3434
|
[135] |
K. Atarashi, T. Tanoue, K. Oshima, W. Suda, Y. Nagano, H. Nishikawa, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, 500 (7461) ( 2013), pp. 232-236
|
[136] |
S.J. Han, M. Kim, E. Novitsky, V. D’Agati, H.T. Lee. Intestinal TLR9 deficiency exacerbates hepatic IR injury via altered intestinal inflammation and short-chain fatty acid synthesis. FASEB J, 34 (9) ( 2020), pp. 12083-12099
|
[137] |
A.W. Thomson, J. Vionnet, A. Sanchez-Fueyo. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside. Nat Rev Gastroenterol Hepatol, 17 (12) ( 2020), pp. 719-739
|
[138] |
S.N. Sehgal. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc, 35 (3 Suppl) ( 2003), pp. 7S-14S
|
[139] |
Y. Han, L. Wu, Q. Ling, P. Wu, C. Zhang, L. Jia, et al. Intestinal dysbiosis correlates with sirolimus-induced metabolic disorders in mice. Transplantation, 105 (5) ( 2021), pp. 1017-1029
|
[140] |
J. Tourret, B.P. Willing, S. Dion, J. MacPherson, E. Denamur, B.B. Finlay. Immunosuppressive treatment alters secretion of ileal antimicrobial peptides and gut microbiota, and favors subsequent colonization by uropathogenic Escherichia coli. Transplantation, 101 (1) ( 2017), pp. 74-82
|
[141] |
J.C. Swarte, Y. Li, S. Hu, J.R. Bj?rk, R. Gacesa, A. Vich Vila, et al. Gut microbiome dysbiosis is associated with increased mortality after solid organ transplantation. Sci Transl Med, 14(660):eabn7566 ( 2022)
|
[142] |
C.Z. Han, Q. Wei, M.F. Yang, L. Zhuang, X. Xu. The critical role of therapeutic plasma exchange in ABO-incompatible liver transplantation. Hepatobiliary Pancreat Dis Int, 21 (6) ( 2022), pp. 538-542
|
[143] |
R.L. Wei, G.H. Fan, C.Z. Zhang, K.C. Chen, W.H. Zhang, C.B. Li, et al. Prognostic implication of early posttransplant hypercholesterolemia in liver transplantation for patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int, S1499- 3872 (22) ( 2022), p. 00123
|
[144] |
S.N. Lichtman, J. Keku, R.L. Clark, J.H. Schwab, R.B. Sartor. Biliary tract disease in rats with experimental small bowel bacterial overgrowth. Hepatology, 13 (4) ( 1991), pp. 766-772
|
[145] |
R. Little, E. Wine, B.M. Kamath, A.M. Griffiths, A. Ricciuto. Gut microbiome in primary sclerosing cholangitis: a review. World J Gastroenterol, 26 (21) ( 2020), pp. 2768-2780
|
[146] |
S. Lemoinne, A. Kemgang, K. Ben Belkacem, M. Straube, S. Jegou, C. Corpechot, et al. Fungi participate in the dysbiosis of gut microbiota in patients with primary sclerosing cholangitis. Gut, 69 (1) ( 2020), pp. 92-102
|
[147] |
R. Tang, Y. Wei, Y. Li, W. Chen, H. Chen, Q. Wang, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut, 67 (3) ( 2018), pp. 534-541
|
[148] |
Y. Li, R. Tang, P.S.C. Leung, M.E. Gershwin, X. Ma. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmun Rev, 16 (9) ( 2017), pp. 885-896
|
[149] |
A. Isaacs-Ten, M. Echeandia, M. Moreno-Gonzalez, A. Brion, A. Goldson, M. Philo, et al. Intestinal microbiome-macrophage crosstalk contributes to cholestatic liver disease by promoting intestinal permeability in mice. Hepatology, 72 (6) ( 2020), pp. 2090-2108
|
[150] |
J.H. Tabibian, S.P. O’Hara, C.E. Trussoni, P.S. Tietz, P.L. Splinter, T. Mounajjed, et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology, 63 (1) ( 2016), pp. 185-196
|
[151] |
Y.C. Kim, S.J. Lee. Temporal variation in hepatotoxicity and metabolism of acetaminophen in mice. Toxicology, 128 (1) ( 1998), pp. 53-61
|
[152] |
C.A. Thaiss, D. Zeevi, M. Levy, G. Zilberman-Schapira, J. Suez, A.C. Tengeler, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell, 159 (3) ( 2014), pp. 514-529
|
[153] |
S. Gong, T. Lan, L. Zeng, H. Luo, X. Yang, N. Li, et al. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J Hepatol, 69 (1) ( 2018), pp. 51-59
|
[154] |
Y. Li, L. Lv, J. Ye, D. Fang, D. Shi, W. Wu, et al. Bifidobacterium adolescentis CGMCC 15058 alleviates liver injury, enhances the intestinal barrier and modifies the gut microbiota in D-galactosamine-treated rats. Appl Microbiol Biotechnol, 103 (1) ( 2019), pp. 375-393
|
[155] |
K. Wang, L. Lv, R. Yan, Q. Wang, H. Jiang, W. Wu, et al. Bifidobacterium longum R0175 protects rats against D-galactosamine-induced acute liver failure. MSphere, 5 (1) ( 2020)
|
[156] |
L. Yu, X.K. Zhao, M.L. Cheng, G.Z. Yang, B. Wang, H.J. Liu, et al. Saccharomyces boulardii administration changes gut microbiota and attenuates D-galactosamine-induced liver injury. Sci Rep, 7 (1) ( 2017), p. 1359
|
[157] |
J.S. Bajaj, H.E. Vargas, K.R. Reddy, J.C. Lai, J.G. O’Leary, P. Tandon, et al. Association between intestinal microbiota collected at hospital admission and outcomes of patients with cirrhosis. Clin Gastroenterol Hepatol, 17 (4) ( 2019). 756-65.e3
|
[158] |
Y. Chen, J. Guo, G. Qian, D. Fang, D. Shi, L. Guo, et al. Gut dysbiosis in acute-on-chronic liver failure and its predictive value for mortality. J Gastroenterol Hepatol, 30 (9) ( 2015), pp. 1429-1437
|
[159] |
R. Moreau, J. Clària, F. Aguilar, F. Fenaille, J.J. Lozano, C. Junot, et al. the CANONIC Study Investigators of the EASL Clif Consortium, the Grifols Chair, and the European Foundation for the Study of Chronic Liver Failure (EF Clif). Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF. J Hepatol, 72 (4) ( 2020), pp. 688-701
|
[160] |
R. Moreau, R. Jalan, P. Gines, M. Pavesi, P. Angeli, J. Cordoba, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology, 144 (7) ( 2013), pp. 1426-1437. 1437.e1-9
|
[161] |
S.J. Ott, N.E. El Mokhtari, M. Musfeldt, S. Hellmig, S. Freitag, A. Rehman, et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation, 113 (7) ( 2006), pp. 929-937
|
[162] |
S. Mitra, D.I. Drautz-Moses, M. Alhede, M.T. Maw, Y. Liu, R.W. Purbojati, et al. In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome, 3 (1) ( 2015), p. 38
|
[163] |
B.J. Bennett, T.Q. de Aguiar Vallim, Z. Wang, D.M. Shih, Y. Meng, J. Gregory, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab, 17 (1) ( 2013), pp. 49-60
|
[164] |
R. Carnevale, C. Nocella, V. Petrozza, V. Cammisotto, L. Pacini, V. Sorrentino, et al. Localization of lipopolysaccharide from Escherichia coli into human atherosclerotic plaque. Sci Rep, 8 (1) ( 2018), p. 3598
|
[165] |
W. Zhu, J.C. Gregory, E. Org, J.A. Buffa, N. Gupta, Z. Wang, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 165 (1) ( 2016), pp. 111-124
|
[166] |
D. Duerschmied, M. Canault, D. Lievens, A. Brill, S.M. Cifuni, M. Bader, et al. Serotonin stimulates platelet receptor shedding by tumor necrosis factor-alpha-converting enzyme (ADAM17). J Thromb Haemost, 7 (7) ( 2009), pp. 1163-1171
|
[167] |
S. J?ckel, K. Kiouptsi, M. Lillich, T. Hendrikx, A. Khandagale, B. Kollar, et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood, 130 (4) ( 2017), pp. 542-553
|
[168] |
J. Li, S. Lin, P.M. Vanhoutte, C.W. Woo, A. Xu. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/- mice. Circulation, 133 (24) ( 2016), pp. 2434-2446
|
[169] |
H. Wu, Y. Wang, Y. Zhang, F. Xu, J. Chen, L. Duan, et al. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biol, 32 ( 2020), Article 101500
|
[170] |
O.P. Mathew, K. Ranganna, S.G. Milton. Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation. Pharmaceuticals, 7 (11) ( 2014), pp. 1008-1027
|
[171] |
G. Kochhar, J.M. Parungao, I.A. Hanouneh, M.A. Parsi. Biliary complications following liver transplantation. World J Gastroenterol, 19 (19) ( 2013), pp. 2841-2846
|
[172] |
J. Trebicka, P. Bork, A. Krag, M. Arumugam. Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure. Nat Rev Gastroenterol Hepatol, 18 (3) ( 2021), pp. 167-180
|
[173] |
F. Yang, H. Chen, Y. Gao, N. An, X. Li, X. Pan, et al. Gut microbiota-derived short-chain fatty acids and hypertension: mechanism and treatment. Biomed Pharmacother, 130 ( 2020), Article 110503
|
[174] |
M. Tr?seid, G.?. Andersen, K. Broch, J.R. Hov. The gut microbiome in coronary artery disease and heart failure: current knowledge and future directions. EBioMedicine, 52 ( 2020), Article 102649
|
[175] |
O.E. Kadri, M. Surblyte, V.D. Chandran, R.S. Voronov. Is the endothelial cell responsible for the thrombus core and shell architecture?. Med Hypotheses, 129 ( 2019), Article 109244
|
[176] |
C.T. Esmon. The interactions between inflammation and coagulation. Br J Haematol, 131 (4) ( 2005), pp. 417-430.
|