[1] |
H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71 (3) ( 2021), pp. 209-249. DOI: 10.3322/caac.21660
|
[2] |
M.E. Cabanillas, D.G. McFadden, C. Durante. Thyroid cancer. Lancet, 388 (10061) (2016), pp. 2783-2795
|
[3] |
Y.E. Nikiforov, R.R. Seethala, G. Tallini, Z.W. Baloch, F. Basolo, L.D. Thompson, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol, 2 (8) ( 2016), pp. 1023-1029. DOI: 10.1001/jamaoncol.2016.0386
|
[4] |
M. Xing. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer, 13 (3) ( 2013), pp. 184-199. DOI: 10.1038/nrc3431
|
[5] |
L. Lamartina, G. Grani, C. Durante, S. Filetti, D.S. Cooper. Screening for differentiated thyroid cancer in selected populations. Lancet Diabetes Endocrinol, 8 (1) (2020), pp. 81-88
|
[6] |
L.M. Caronia, J.E. Phay, M.H. Shah. Role of BRAF in thyroid oncogenesis. Clin Cancer Res, 17 (24) (2011), pp. 7511-7517
|
[7] |
J. Feng, F. Zhao, J. Sun, B. Lin, L. Zhao, Y. Liu, et al. Alterations in the gut microbiota and metabolite profiles of thyroid carcinoma patients. Int J Cancer, 144 (11) ( 2019), pp. 2728-2745. DOI: 10.1002/ijc.32007
|
[8] |
D. Nejman, I. Livyatan, G. Fuks, N. Gavert, Y. Zwang, L.T. Geller, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science, 368 (6494) ( 2020), pp. 973-980. DOI: 10.1126/science.aay9189
|
[9] |
C.D. Link. Is there a brain microbiome?. Neurosci Insights, 16 (2021) 26331055211018709
|
[10] |
A. Gnanasekar, G. Castaneda, A. Iyangar, S. Magesh, D. Perez, J. Chakladar, et al. The intratumor microbiome predicts prognosis across gender and subtypes in papillary thyroid carcinoma. Comput Struct Biotechnol J, 19 (2021), pp. 1986-1997
|
[11] |
D. Dai, Y. Yang, Y. Yang, T. Dang, J. Xiao, W. Wang, et al. Alterations of thyroid microbiota across different thyroid microhabitats in patients with thyroid carcinoma. J Transl Med, 19 (1) (2021), p. 488
|
[12] |
C.J. Liu, S.Q. Chen, S.Y. Zhang, J.L. Wang, X.D. Tang, K.X. Yang, et al. The comparison of microbial communities in thyroid tissues from thyroid carcinoma patients. J Microbiol, 59 (11) ( 2021), pp. 988-1001. DOI: 10.1007/s12275-021-1271-9
|
[13] |
L. Yuan, P. Yang, G. Wei, X. Hu, S. Chen, J. Lu, et al. Tumor microbiome diversity influences papillary thyroid cancer invasion. Commun Biol, 5 (1) (2022), p. 864
|
[14] |
P. Caturegli, A. de Remigis, N.R. Rose. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev, 13 (4-5) (2014), pp. 391-397
|
[15] |
S. Andrews. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge (2010)
|
[16] |
E. Bolyen, J.R. Rideout, M.R. Dillon, N.A. Bokulich, C.C. Abnet, G.A. Al-Ghalith, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 37 (8) ( 2019), pp. 852-857. DOI: 10.1038/s41587-019-0209-9
|
[17] |
D. Risso, J. Ngai, T.P. Speed, S. Dudoit. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol, 32 (9) ( 2014), pp. 896-902. DOI: 10.1038/nbt.2931
|
[18] |
M.I. Love, W. Huber, S. Anders. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 15 (12) (2014), p. 550
|
[19] |
J. Friedman, E.J. Alm. Inferring correlation networks from genomic survey data. PLOS Comput Biol, 8 (9) ( 2012), p. e1002687. DOI: 10.1371/journal.pcbi.1002687
|
[20] |
P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13 (11) ( 2003), pp. 2498-2504. DOI: 10.1101/gr.1239303
|
[21] |
G.M. Douglas, V.J. Maffei, J.R. Zaneveld, S.N. Yurgel, J.R. Brown, C.M. Taylor, et al. PICRUSt 2 for prediction of metagenome functions. Nat Biotechnol, 38 (6) ( 2020), pp. 685-688. DOI: 10.1038/s41587-020-0548-6
|
[22] |
R. Caspi, R. Billington, I.M. Keseler, A. Kothari, M. Krummenacker, P.E. Midford, et al. The MetaCyc database of metabolic pathways and enzymes—a 2019 update. Nucleic Acids Res, 48 (D1) ( 2020), pp. D445-D453. DOI: 10.1093/nar/gkz862
|
[23] |
A. Kechin, U. Boyarskikh, A. Kel, M. Filipenko. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J Comput Biol, 24 (11) ( 2017), pp. 1138-1143. DOI: 10.1089/cmb.2017.0096
|
[24] |
H. Li, R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25 (14) ( 2009), pp. 1754-1760. DOI: 10.1093/bioinformatics/btp324
|
[25] |
Y. Liao, G.K. Smyth, W. Shi. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30 (7) ( 2014), pp. 923-930. DOI: 10.1093/bioinformatics/btt656
|
[26] |
Z. Gu, R. Eils, M. Schlesner. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 32 (18) ( 2016), pp. 2847-2849. DOI: 10.1093/bioinformatics/btw313
|
[27] |
G. Yu, L.G. Wang, Y. Han, Q.Y. He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 16 (5) ( 2012), pp. 284-287. DOI: 10.1089/omi.2011.0118
|
[28] |
W. Kühler. Bacterial cell wall. J.M. Ghuysen, R. Hakenbeck (Eds.), New comprehensive biochemistry, Elsevier Science, Amsterdam (1994)
|
[29] |
|
[30] |
R.I. Amann, B.J. Binder, R.J. Olson, S.W. Chisholm, R. Devereux, D.A. Stahl. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol, 56 (6) ( 1990), pp. 1919-1925. DOI: 10.1128/aem.56.6.1919-1925.1990
|
[31] |
G.H. Wu, H.J. Shi, M.T. Che, M.Y. Huang, Q.S. Wei, B. Feng, et al. Recovery of paralyzed limb motor function in canine with complete spinal cord injury following implantation of MSC-derived neural network tissue. Biomaterials, 181 (2018), pp. 15-34
|
[32] |
N. Segata, J. Izard, L. Waldron, D. Gevers, L. Miropolsky, W.S. Garrett, et al. Metagenomic biomarker discovery and explanation. Genome Biol, 12 (6) (2011), p. R60
|
[33] |
J.J. Farrell, L. Zhang, H. Zhou, D. Chia, D. Elashoff, D. Akin, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut, 61 (4) ( 2012), pp. 582-588. DOI: 10.1136/gutjnl-2011-300784
|
[34] |
C.N. D’Alessandro-Gabazza, C. Méndez-García, O. Hataji, S. Westergaard, F. Watanabe, T. Yasuma, et al. Identification of halophilic microbes in lung fibrotic tissue by oligotyping. Front Microbiol, 9 (2018), p. 1892
|
[35] |
O. Alexeyev, J. Bergh, I. Marklund, C. Thellenberg-Karlsson, F. Wiklund, H. Grönberg, et al. Association between the presence of bacterial 16S RNA in prostate specimens taken during transurethral resection of prostate and subsequent risk of prostate cancer (Sweden). Cancer Causes Control, 17 (9) ( 2006), pp. 1127-1133. DOI: 10.1007/s10552-006-0054-2
|
[36] |
H. Zhang, Y. Chang, Q. Zheng, R. Zhang, C. Hu, W. Jia. Altered intestinal microbiota associated with colorectal cancer. Front Med, 13 (4) ( 2019), pp. 461-470. DOI: 10.1007/s11684-019-0695-7
|
[37] |
L. Frattaruolo, M. Fiorillo, M. Brindisi, R. Curcio, V. Dolce, R. Lacret, et al. Thioalbamide, a thioamidated peptide from Amycolatopsis alba, affects tumor growth and stemness by inducing metabolic dysfunction and oxidative stress. Cells, 8 (11) ( 2019), p. 1408. DOI: 10.3390/cells8111408
|
[38] |
M.G. Langille, J. Zaneveld, J.G. Caporaso, D. McDonald, D. Knights, J.A. Reyes, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol, 31 (9) ( 2013), pp. 814-821. DOI: 10.1038/nbt.2676
|
[39] |
C. Resende de Paiva, C. Grønhøj, U. Feldt-Rasmussen, C. von Buchwald. Association between Hashimoto’s thyroiditis and thyroid cancer 64,628 in patients. Front Oncol, 7 (2017), p. 53
|
[40] |
J.U. Lee, S. Huang, M.H. Lee, S.E. Lee, M.J. Ryu, S.J. Kim, et al. Dual specificity phosphatase 6 as a predictor of invasiveness in papillary thyroid cancer. Eur J Endocrinol, 167 (1) (2012), pp. 93-101
|
[41] |
B. Ma, R. Shi, S. Yang, L. Zhou, N. Qu, T. Liao, et al. DUSP4/MKP 2 overexpression is associated with BRAF(V600E) mutation and aggressive behavior of papillary thyroid cancer. Onco Targets Ther, 9 (2016), pp. 2255-2263
|
[42] |
A.M. Gaweł, M. Ratajczak, E. Gajda, M. Grzanka, A. Paziewska, M. Cieślicka, et al. Analysis of the role of FRMD 5 in the biology of papillary thyroid carcinoma. Int J Mol Sci, 22 (13) ( 2021), p. 6726. DOI: 10.3390/ijms22136726
|
[43] |
H.Y. Jiang, S. Najmeh, G. Martel, E. MacFadden-Murphy, R. Farias, P. Savage, et al. Activation of the pattern recognition receptor NOD 1 augments colon cancer metastasis. Protein Cell, 11 (3) ( 2020), pp. 187-201. DOI: 10.1007/s13238-019-00687-5
|
[44] |
D. Deglnnocenti, C. Alberti, G. Castellano, A. Greco, C. Miranda, M.A. Pierotti, et al. Integrated ligand-receptor bioinformatic and in vitro functional analysis identifies active TGFA/EGFR signaling loop in papillary thyroid carcinomas. PLoS One, 5 (9) (2010), p. e12701
|
[45] |
Y. Hosono, T. Yamaguchi, E. Mizutani, K. Yanagisawa, C. Arima, S. Tomida, et al. MYBPH, a transcriptional target of TTF-1, inhibits ROCK1, and reduces cell motility and metastasis. EMBO J, 31 (2) ( 2012), pp. 481-493. DOI: 10.1038/emboj.2011.416
|
[46] |
T. Zhan, G. Ambrosi, A.M. Wandmacher, B. Rauscher, J. Betge, N. Rindtorff, et al. MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer. Nat Commun, 10 (1) (2019), p. 2197
|
[47] |
S. Kang, B. Kim, H.S. Kang, G. Jeong, H. Bae, H. Lee, et al. SCTR regulates cell cycle-related genes toward anti-proliferation in normal breast cells while having pro-proliferation activity in breast cancer cells. Int J Oncol, 47 (5) ( 2015), pp. 1923-1931. DOI: 10.3892/ijo.2015.3164
|
[48] |
W. Liu, X. Zhang, H. Xu, S. Li, H.C. Lau, Q. Chen, et al. Microbial community heterogeneity within colorectal neoplasia and its correlation with colorectal carcinogenesis. Gastroenterology, 160 (7) (2021), pp. 2395-2408
|
[49] |
J. Zhang, F. Zhang, C. Zhao, Q. Xu, C. Liang, Y. Yang, et al. Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated with clinical index of thyroid function. Endocrine, 64 (3) ( 2019), pp. 564-574. DOI: 10.1007/s12020-018-1831-x
|
[50] |
K. Moriyama, C. Ando, K. Tashiro, S. Kuhara, S. Okamura, S. Nakano, et al. Polymerase chain reaction detection of bacterial 16S rRNA gene in human blood. Microbiol Immunol, 52 (7) ( 2008), pp. 375-382. DOI: 10.1111/j.1348-0421.2008.00048.x
|
[51] |
X. Zhou, J. Li, J. Guo, B. Geng, W. Ji, Q. Zhao, et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome, 6 (1) (2018), p. 66
|
[52] |
A.K. Criss, H.S. Seifert. A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat Rev Microbiol, 10 (3) ( 2012), pp. 178-190. DOI: 10.1038/nrmicro2713
|
[53] |
D.M. Weinstock, A.E. Brown. Rhodococcus equi: an emerging pathogen. Clin Infect Dis, 34 (10) (2002), pp. 1379-1385
|
[54] |
E. Cekanaviciute, B.B. Yoo, T.F. Runia, J.W. Debelius, S. Singh, C.A. Nelson, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA, 114 (40) ( 2017), pp. 10713-10718. DOI: 10.1073/pnas.1711235114
|
[55] |
A. Sałkowska, K. Karaś, I. Karwaciak, A. Walczak-Drzewiecka, M. Krawczyk, M. Sobalska-Kwapis, et al. Identification of novel molecular markers of human Th17 cells. Cells, 9 (7) ( 2020), p. 1611. DOI: 10.3390/cells9071611
|
[56] |
L. Fu, J. Song, C. Wang, S. Fu, Y. Wang. Bifidobacterium infantis potentially alleviates shrimp tropomyosin-induced allergy by tolerogenic dendritic cell-dependent induction of regulatory T cells and alterations in gut microbiota. Front Immunol, 8 (2017), p. 1536
|
[57] |
M. Wang, S. Yin, Q. Qin, Y. Peng, Z. Hu, X. Zhu, et al. Stenotrophomonas maltophilia inhibits host cellular immunity by activating PD-1/PD-L 1 signaling pathway to induce T-cell exhaustion. Mol Immunol, 130 (2021), pp. 37-48
|
[58] |
B.A. McKelvey, C.B. Umbricht, M.A. Zeiger. Telomerase reverse transcriptase (TERT) regulation in thyroid cancer: a review. Front Endocrinol, 11 (2020), p. 485
|
[59] |
V. Fernández-García, S. González-Ramos, P. Martín-Sanz, F. García-Del Portillo, J.M. Laparra, L. Boscá. NOD 1 in the interplay between microbiota and gastrointestinal immune adaptations. Pharmacol Res, 171 (2021), Article 105775
|