[1] |
Pinto L, Gupta A. Supersizing self-supervision:learning to grasp from 50K tries and 700 robot hours. In: Proceedingsof IEEE International Conference on Robotics and Automation ( ICRA2016; May 16-21 2016 ; Stockholm, Sweden. New York City: IEEE; 2016.
|
[2] |
J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, et al.. Learning ambidextrous robot grasping policies. Sci Robot, 4 (26) ( 2019), p. eaau4984
|
[3] |
Zeng A, Song S, Yu KT, Donlon E, Hogan FR, Bauza M, et al. Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching. In: Proceedingsof IEEE International Conference on Robotics and Automation ( ICRA2018; May 21-25 2018 ; Brisbane, QLD, Australia. New York City: IEEE; 2018.
|
[4] |
F. Cini, V. Ortenzi, P. Corke, M. Controzzi. On the choice of grasp type and location when handing over an object. Sci Robot, 4 (27) ( 2019), p. eaau9757
|
[5] |
Yahya A, Li A, Kalakrishnan M, Chebotar Y, Levine S. Collective robot reinforcement learning with distributed asynchronous guided policy search. In: Proceedingsof IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS2017; Sep 24-28 2017. p. 2017 ; Vancouver, BC, Canada. New York City: IEEE; 79-86.
|
[6] |
S. Schaal, A. Ijspeert, A. Billard. Computational approaches to motor learning by imitation. Phil Trans R Soc Lond B, 358 (1431) ( 2003), pp. 537-547
|
[7] |
G. Maeda, M. Ewerton, D. Koert, J. Peters. Acquiring and generalizing the embodiment mapping from human observations to robot skills. IEEE Robot Autom Lett, 1 (2) ( 2016), pp. 784-791
|
[8] |
Nguyen A, Kanoulas D, Caldwell DG, Tsagarakis NG. Detecting object affordances with convolutional neural networks. In: Proceedingsof IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS2016; Oct 9-14 2016. p. 2016 ; Daejeon, Republic of Korea. New York City: IEEE; 2765-70.
|
[9] |
Kokic M, Stork JA, Haustein JA, Kragic D. Affordance detection for task-specific grasping using deep learning. In: Proceedings of 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids); 2017 Nov 15-17; Birmingham, UK. New York City: IEEE; 2017. p. 91-8.
|
[10] |
Mohseni-Kabir A, Rich C, Chernova S, Sidner CL, Miller D. Interactive hierarchical task learning from a single demonstration. In: Proceedings of the 2015 10th Annual ACM/IEEE International Conference on Human-Robot Interaction; 2015 Mar 2-5; Portland, OR, USA. New York City: IEEE; 2015. p. 205-12.
|
[11] |
Xiong C, Shukla N, Xiong W, Zhu SC. Robot learning with a spatial, temporal, and causal and-or graph. In: Proceedings of 2016 IEEE International Conference on Robotics and Automation ( ICRA2016; May 16-21 2016. p. 2016 ; Stockholm, Sweden. New York City: IEEE; 2144-51.
|
[12] |
Liu H, Zhang C, Zhu Y, Jiang C, Zhu SC. Mirroring without overimitation: learning functionally equivalent manipulation actions. In:Proceedings of the AAAI Conference on Artificial Intelligence (AAAI); 2019 Jan 27-Feb 1; Honolulu, HI, USA. 2019. p. 8025-33.
|
[13] |
Abbeel P, Ng AY. Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the 21st International Conference on Machine Learning ( ICML2004; Jul 4-8 Canada. 2004 ; Banff, AB, New York City: Association for Computing Machinery (ACM); 2004.
|
[14] |
Prieur U, Perdereau V, Bernardino A. Modeling and planning high-level in-hand manipulation actions from human knowledge and active learning from demonstration. In: Proceedingsof 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; Oct 7-12 2012. p. 2012 ; Vilamoura-Algarve, Portugal. New York City: IEEE; 1330-6.
|
[15] |
Ibarz B, Leike J, Pohlen T, Irving G, Legg S, Amodei D.Reward learning from human preferences and demonstrations in Atari. In:Proceedings of the 32nd Conference on Advances in Neural Information Processing Systems (NeurIPS 2018); 2018 Dec 3- 8 ; Montréal, QC, Canada. Red Hook: Curran Associates Inc.; 2018. p.1-13.
|
[16] |
Xie X, Liu H, Zhang Z, Qiu Y, Gao F, Qi S, et al. VRGym:a virtual testbed for physical and interactive AI. In: Proceedingsof the ACM Turing Celebration Conference-China; May 17-19 China. 2019. p. 2019 ; Chengdu, New York City: Association for Computing Machinery; 1-6.
|
[17] |
Li C, Xia F, Martín-Martín R, Lingelbach M, Srivastava S, Shen B, et al. IGibson 2.0:object-centric simulation for robot learning of everyday household tasks. In:Proceedings of the 5th Annual Conference on Robot Learning (CoRL 2021); 2021 Nov 8- 11; online; 2021.
|
[18] |
Szot A, Clegg A, Undersander E, Wijmans E, Zhao Y, Turner J, et al. Habitat 2.0:training home assistants to rearrange their habitat. In:Proceedings of 35th Conference on Neural Information Processing Systems (NeurIPS 2021); 2021 Dec 6- 14; online; 2021.
|
[19] |
M. Li, Z. Ferguson, T. Schneider, T. Langlois, D. Zorin, D. Panozzo, et al.. Incremental potential contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans Graph, 39 (4) ( 2020), p. 49
|
[20] |
Liu H, Xie X, Millar M, Edmonds M, Gao F, Zhu Y, et al. A glove-based system for studying hand-object manipulation via joint pose and force sensing. In: Proceedingsof 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS; Sep 24-28 2017. p. 2019 ; Vancouver, BC, Canada. New York City: IEEE; 6617-24.
|
[21] |
M. Edmonds, F. Gao, H. Liu, X. Xie, S. Qi, B. Rothrock, et al.. A tale of two explanations: enhancing human trust by explaining robot behavior. Sci Robot, 4 (37) ( 2019), p. aay4663
|
[22] |
Brahmbhatt S, Ham C, Kemp CC, Hays J. ContactDB:analyzing and predicting grasp contact via thermal imaging. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR2019; Jun 15-20 2019. p. 2019 ; Long Beach, CA, USA. New York City: IEEE; 8701-11.
|
[23] |
Liu H, Zhang Z, Xie X, Zhu Y, Liu Y, Wang Y, et al. High-fidelity grasping in virtual reality using a glove-based system. In: Proceedings of the 2019 International Conference on Robotics and Automation ( ICRA2019; May 20-24 2019. p. 2019 ; Montreal, QC, Canada. New York City: IEEE; 5180-6.
|
[24] |
Duan K, Parikh D, Crandall D, Grauman K. Discovering localized attributes for fine-grained recognition. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR2012; Jun 16-21 ; Providence RI, USA. 2012. p. 2012 New York City: IEEE; 3474-81.
|
[25] |
Liu Y, Wei P, Zhu SC. Jointly recognizing object fluents and tasks in egocentric videos. In: Proceedingsof 2017 IEEE International Conference on Computer Vision ICCV; Oct 22-29 2017. p. 2017 ; Venice, Italy. New York City: IEEE; 2943-51.
|
[26] |
Nagarajan T, Grauman K. Attributes as operators: factorizing unseen attribute-object compositions. In:Proceedings of European Conference on Computer Vision (ECCV 2018); 2018 Sep 8-14; Munich, Germany. Berlin:Springer; 2018. p. 172-90.
|
[27] |
I. Newton, J. Colson. The method of fluxions and infinite series; with its application to the geometry of curve-lines. Henry Woodfall, London (1736)
|
[28] |
L. Dipietro, A.M. Sabatini, P. Dario. A survey of glove-based systems and their applications. IEEE Trans Syst Man Cybern Part C, 38 (4) ( 2008), pp. 461-482
|
[29] |
Kramer RK, Majidi C, Sahai R, Wood RJ. Soft curvature sensors for joint angle proprioception. In: Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS2011; Sep 25-30 2011. p. 2011 ; San Francisco, CA, USA. New York City: IEEE; 1919-26.
|
[30] |
N.S. Kamel, S. Sayeed, G.A. Ellis. Glove-based approach to online signature verification. IEEE Trans Pattern Anal Mach Intell, 30 (6) ( 2008), pp. 1109-1113
|
[31] |
J. Oh, S. Kim, S. Lee, S. Jeong, S.H. Ko, J. Bae.A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality. Adv Funct Mater, 31 (39) ( 2021), p. 2007772
|
[32] |
M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao, Y. Zeng, et al.. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat Electron, 3 (9) ( 2020), pp. 563-570
|
[33] |
F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu, Z. Zhang, et al.. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv Sci, 7 (14) ( 2020), p. 2000261
|
[34] |
Taylor T, Ko S, Mastrangelo C, Bamberg SJM. Forward kinematics using IMU on-body sensor network for mobile analysis of human kinematics. In: Proceedings of 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society ( EMBC2013; Jul 3-7 2013. p. 2013 ; Osaka, Japan. New York City: IEEE; 1230-3.
|
[35] |
H.G. Kortier, V.I. Sluiter, D. Roetenberg, P.H. Veltink.Assessment of hand kinematics using inertial and magnetic sensors. J NeuroEng Rehabil, 11 (1) ( 2014), p. 70
|
[36] |
B. Hu, T. Ding, Y. Peng, L. Liu, X. Wen. Flexible and attachable inertial measurement unit (IMU)-based motion capture instrumentation for the characterization of hand kinematics: a pilot study. Instrum Sci Technol, 49 (2) ( 2020), pp. 125-145
|
[37] |
Santaera G, Luberto E, Serio A, Gabiccini M, Bicchi A. Low-cost, fast and accurate reconstruction of robotic and human postures via IMU measurements. In: Proceedings of 2015 IEEE International Conference on Robotics and Automation ( ICRA2015; May 26-30 ; Seattle WA, USA. 2015. p. 2015 New York City: IEEE; 2728-35.
|
[38] |
G. Ligorio, A.M. Sabatini. Extended Kalman filter-based methods for pose estimation using visual, inertial and magnetic sensors: comparative analysis and performance evaluation. Sensors, 13 (2) ( 2013), pp. 1919-1941
|
[39] |
H.G. Kortier, J. Antonsson, H.M. Schepers, F. Gustafsson, P.H. Veltink. Hand pose estimation by fusion of inertial and magnetic sensing aided by a permanent magnet. IEEE Trans Neural Syst Rehabiln Eng, 23 (5) ( 2015), pp. 796-806
|
[40] |
Hammond FL, Menguč Y, Wood RJ. Toward a modular soft sensor-embedded glove for human hand motion and tactile pressure measurement. In: Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS2014; Sep 14-18 ; Chicago IL, USA. 2014. p. 2014 New York City: IEEE; 4000-7.
|
[41] |
Gu Y, Sheng W, Liu M, Ou Y. Fine manipulative action recognition through sensor fusion. In: Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS2015; 2015. p. 2015 Sep 28-Oct 2; Hamburg, Germany. New York City: IEEE; 886-91.
|
[42] |
Mohammadi M, Baldi TL, Scheggi S, Prattichizzo D. Fingertip force estimation via inertial and magnetic sensors in deformable object manipulation. In: Proceedingsof the International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems ( HAPTICS2016; Apr 8-11 ; Philadelphia PA, USA. 2016. p. 2016 New York City: IEEE; 284-9.
|
[43] |
B.S. Lin, I.J. Lee, J.L. Chen. Novel assembled sensorized glove platform for comprehensive hand function assessment by using inertial sensors and force sensing resistors. IEEE Sensors J, 20 (6) ( 2020), pp. 3379-3389
|
[44] |
E. Battaglia, M. Bianchi, A. Altobelli, G. Grioli, M.G. Catalano, A. Serio, et al.. ThimbleSense: a fingertip-wearable tactile sensor for grasp analysis. IEEE Trans Haptics, 9 (1) ( 2016), pp. 121-133
|
[45] |
Low JH, Khin PM, Yeow CH. A pressure-redistributing insole using soft sensors and actuators. In: Proceedings of 2015 IEEE International Conference on Robotics and Automation ( ICRA2015; May 26-30 ; Seattle WA, USA. 2015. p. 2015 New York City: IEEE; 2926-30.
|
[46] |
Pugach G, Melnyk A, Tolochko O, Pitti A, Gaussier P. Touch-based admittance control of a robotic arm using neural learning of an artificial skin. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS2016; Oct 9-14 2016. p. 2016 ; Daejeon, Republic of Korea. New York City: IEEE; 3374-80.
|
[47] |
Müller S, Schröter C, Gross HM.Smart fur tactile sensor for a socially assistive mobile robot. In:Proceedings of International Conference on Intelligent Robotics and Applications (ICIRA 2015); 2015 Aug 24-27; Portsmouth, UK. Berlin:Springer; 2015. p. 49-60.
|
[48] |
Jeong E, Lee J, Kim D. Finger-gesture recognition glove using Velostat. In: Proceedings of 2011 11th International Conference on Control, Automationand Systems ( ICCAS2011; Oct 26-29 2011. p. 2011 ; Gyeonggi-do, Republic of Korea. New York City: IEEE; 206-10.
|
[49] |
Boulic R, Rezzonico S, Thalmann D. Multi-finger manipulation of virtual objects. In: Proceedingsof the ACM Symposium on Virtual Reality Software and Technology ( VRST1996; Jul 1-4 China. 1996. p. 1996 ; Hong Kong, New York City: Association for Computing Machinery (ACM); 67-74.
|
[50] |
H. Choi, C. Crump, C. Duriez, A. Elmquist, G. Hager, D. Han, et al.. On the use of simulation in robotics: opportunities, challenges, and suggestions for moving forward. Proc Nat Acad Sci USA, 118 (1) ( 2019), Article e1907856118
|
[51] |
Hu Y, Liu J, Spielberg A, Tenenbaum JB, Freeman WT, Wu J, et al. ChainQueen: a real-time differentiable physical simulator for soft robotics. In:Proceedings of 2019 International Conference on Robotics and Automation (ICRA 2019); 2019 Dec 4- 6; Montréal, QC, Canada. 2019. p. 6265-71.
|
[52] |
M. Kennedy, K. Schmeckpeper, D. Thakur, C. Jiang, V. Kumar, K. Daniilidis. Autonomous precision pouring from unknown containers. IEEE Robot Autom Lett, 4 (3) ( 2019), pp. 2317-2324
|
[53] |
Heiden E, Macklin M, Narang Y, Fox D, Garg A, Ramos F. DiSECt:a differentiable simulation engine for autonomous robotic cutting. In: Proceedings of the 2021 Robotics: Science and Systems ( RSS2021; Jul 12-16 2021 ; online. New York City: IEEE; 2021.
|
[54] |
J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, C. Jiang.CD-MPM: continuum damage material point methods for dynamic fracture animation. ACM Trans Graph, 38 (4) ( 2019), p. 119
|
[55] |
Lin J, Wu Y, Huang TS. Modeling the constraints of human hand motion. In: Proceeding Workshop on Human Motion; 2000 Dec 7-8; Austin, TX, USA. New York City: IEEE; 2000. p. 121-6.
|
[56] |
B.W. Lee, H. Shin. Feasibility study of sitting posture monitoring based on piezoresistive conductive film-based flexible force sensor. IEEE Sensors J, 16 (1) ( 2016), pp. 15-16
|
[57] |
Leap motion controller [Internet]. Mountain View: ultraleap; [cited 2023 Jan 5].
|
[58] |
Intel® RealSense™ Technology [Internet]. Santa Clara: Intel; [cited 2023 Jan 5].
|
[59] |
T. Feix, J. Romero, H.B. Schmiedmayer, A.M. Dollar, D. Kragic. The GRASP Taxonomy of human grasp types. IEEE Trans Hum Mach Syst, 46 (1) ( 2016), pp. 66-77
|
[60] |
T. Liu, Z. Liu, Z. Jiao, Y. Zhu, S.C. Zhu. Synthesizing diverse and physically stable grasps with arbitrary hand structures using differentiable force closure estimator. IEEE Robot Autom Lett, 7 (1) ( 2022), pp. 470-477
|
[61] |
Zienkiewicz OC, Taylor RL. The finite element method, volume 2: solid mechanics. 5th ed. Oxford: Butterworth-Heinemann; 2000.
|
[62] |
M. Li. Robust and accurate simulation of elastodynamics and contact [dissertation]. University of Pennsylvania, Pennsylvania ( 2020)
|
[63] |
M. Li, D.M. Kaufman,C. Jiang. Codimensional incremental potential contact. ACM Trans Graph, 40 (4) ( 2021), p. 170
|
[64] |
Y. Fang, M. Li, C. Jiang, D.M. Kaufman.Guaranteed globally injective 3D deformation processing. ACM Trans Graph, 40 (4) ( 2021), p. 75
|
[65] |
Z. Ferguson, M. Li, T. Schneider, F. Gil-Ureta, T. Langlois, C. Jiang, et al.. Intersection-free rigid body dynamics. ACM Trans Graph, 40 (4) ( 2021), p. 183
|
[66] |
L. Lan, Y. Yang, D.M. Kaufman, J. Yao, M. Li, C. Jiang.Medial IPC: accelerated incremental potential contact with medial elastics. ACM Trans Graph, 40 (4) ( 2021), p. 158
|
[67] |
Zhao Y, Choo J, Jiang Y, Li M, Jiang C, Soga K. A barrier method for frictional contact on embedded interfaces. 2021. arXiv:2107.05814.
|
[68] |
M. Li, M. Gao, T. Langlois, C. Jiang, D.M. Kaufman.Decomposed optimization time integrator for large-step elastodynamics. ACM Trans Graph, 38 (4) ( 2019), p. 70
|
[69] |
X. Wang, M. Li, Y. Fang, X. Zhang, M. Gao, M. Tang, et al.. Hierarchical optimization time integration for CFL-rate MPM stepping. ACM Trans Graph, 39 (3) ( 2020), p. 21
|
[70] |
J. Nocedal, S. Wright. Numerical optimization. Springer Science & Business Media, Berlin ( 2006)
|
[71] |
Hegemann J, Jiang C, Schroeder C, Teran JM. A level set method for ductile fracture. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA); 2013 Jul 19-21; Anaheim, CA, USA. New York City: Association for Computing Machinery (ACM); 2013. p. 193-202.
|
[72] |
M. Bourne. Food texture and viscosity: concept and measurement. Elsevier, Amsterdam ( 2002)
|
[73] |
S.H. Williams, B.W. Wright, V. Truong, C.R. Daubert, C.J. Vinyard. Mechanical properties of foods used in experimental studies of primate masticatory function. Am J Primatol, 67 (3) ( 2005), pp. 329-346
|
[74] |
M. Kiani, H. Maghsoudi, S. Minaei. Determination of Poisson’s ratio and Young’s modulus of red bean grains. J Food Process Eng, 34 (5) ( 2011), pp. 1573-1583
|
[75] |
Edmonds M, Gao F, Xie X, Liu H, Qi S, Zhu Y, et al. Feeling the force:integrating force and pose for fluent discovery through imitation learning to open medicine bottles. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS2017; Sep 24-28 2017. p. 2017 ; Vancouver, BC, Canada. New York City: IEEE; 3530-7.
|
[76] |
Xie X, Li C, Zhang C, Zhu Y, Zhu SC. Learning virtual grasp with failed demonstrations via Bayesian inverse reinforcement learning. In: Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS2019; Nov 3-8 2019. p. 2019 ; Macao, China. New York City: IEEE; 1812-7.
|
[77] |
S.S. Rautaray, A. Agrawal. Vision based hand gesture recognition for human computer interaction: a survey. Artif Intell Rev, 43 (1) ( 2015), pp. 1-54
|
[78] |
K. Dautenhahn, C.L. Nehaniv. Imitation in animals and artifacts. MIT Press, Cambridge ( 2002)
|
[79] |
H.KJ. Kubricht, H. Lu. Intuitive physics: current research and controversies. Trends Cogn Sci, 21 (10) ( 2017), pp. 749-759
|
[80] |
E.S. Spelke. What babies know: core knowledge and composition, volume 1, Oxford University Press, Oxford ( 2022)
|
[81] |
E.S. Spelke, K.D. Kinzler. Core knowledge. Dev Sci, 10 (1) ( 2007), pp. 89-96
|
[82] |
Y. Zhu, T. Gao, L. Fan, S. Huang, M. Edmonds, H. Liu, et al.. Dark, beyond deep: a paradigm shift to cognitive AI with humanlike common sense. Engineering, 6 (3) ( 2020), pp. 310-345
|
[83] |
Z. Zhang, Z. Jiao, W. Wang, Y. Zhu, S.C. Zhu, H. Liu. Understanding physical effects for effective tool-use. IEEE Robot Autom Lett, 7 (4) ( 2022), pp. 9469-9476
|
[84] |
Li P, Liu T, Li Y, Geng Y, Zhu Y, Yang Y, et al. GenDexGrasp: generalizable dexterous grasping. 2022. arXiv:2210.00722.
|
[85] |
Zhu Y, Zhao Y, Zhu SC. Understanding tools:task-oriented object modeling, learning and recognition. In: Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition ( CVPR2015; Jun 7-12 ; Boston MA, USA. 2015. p. 2015 New York City: IEEE; 2855-64.
|
[86] |
M. Han, Z. Zhang, Z. Jiao, X. Xie, Y. Zhu, S.C. Zhu, et al.. Scene reconstruction with functional objects for robot autonomy. Int J Comput Vis, 130 (12) ( 2022), pp. 2940-2961
|
[87] |
Han M, Zhang Z, Jiao Z, Xie X, Zhu Y, Zhu SC, et al. Reconstructing interactive 3D scene by panoptic mapping and cad model alignments. In: Proceedings of 2021 IEEE International Conference on Robotics and Automation ( ICRA2021; 2021. p. 2021 May 30-Jun 5; Xi’an, China. New York City: IEEE; 12199-206.
|
[88] |
Chen Y, Huang S, Yuan T, Zhu Y, Qi S, Zhu SC. Holistic++ scene understanding:single-view 3D holistic scene parsing and human pose estimation with human-object interaction and physical commonsense. In: Proceedings of 2019 IEEE/CVF International Conference on Computer Vision ( ICCV2019; 2019. p. 2019 Oct 27-Nov 2; Seoul, Republic of Korea. New York City: IEEE; 8647-56.
|
[89] |
Huang S, Qi S, Xiao Y, Zhu Y, Wu YN, Zhu SC.Cooperative holistic scene understanding:unifying 3D object, layout and camera pose estimation. In:Proceedings of Proceedings of the 32nd International Conference on Neural Information Processing Systems (NeurIPS 2018); 2018 Dec 3- 8 ; Montréal, QC, Canada. Red Hook: Curran Associates Inc.; 2018. p.206-17.
|
[90] |
Huang S, Qi S, Zhu Y, Xiao Y, Xu Y, Zhu SC.Holistic 3D scene parsing and reconstruction from a single RGB image. In:Proceedings of 2018 15th European Conference on Computer Vision (ECCV 2018); 2018 Sep 14-18; Munich, Germany. Berlin:Springer; 2018. p. 194-211.
|
[91] |
C. Li, W. Liang, C. Quigley, Y. Zhao, L.F. Yu. Earthquake safety training through virtual drills. IEEE Trans Vis Comput Graph, 23 (4) ( 2017), pp. 1275-1284
|
[92] |
Zhu Y, Jiang C, Zhao Y, Terzopoulos D, Zhu SC. Inferring forces and learning human utilities from videos. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR2016; Jun 27-30 2016. p. 2016 ; Las Vegas, NV, USA. New York City: IEEE; 3823-33.
|
[93] |
B. Zheng, Y. Zhao, J. Yu, K. Ikeuchi, S.C. Zhu. Scene understanding by reasoning stability and safety. Int J Comput Vis, 112 (2) ( 2015), pp. 221-238
|
[94] |
Zheng B, Zhao Y, Yu JC, Ikeuchi K, Zhu SC. Beyond point clouds:scene understanding by reasoning geometry and physics. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR2013; Jun 23-28 ; Portland OR, USA. 2013. p. 2013 New York City: IEEE; 3127-34.
|
[95] |
Jiao Z, Zhang Z, Wang W, Han D, Zhu SC, Zhu Y, et al. Efficient task planning for mobile manipulation:a virtual kinematic chain perspective. In: Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS2021; 2021. p. 2021 Sep 27-Oct 1; Prague, Czech Republic. New York City: IEEE; 8288-94.
|
[96] |
Jiao Z, Zhang Z, Jiang X, Han D, Zhu SC, Zhu Y, et al. Consolidating kinematic models to promote coordinated mobile manipulations. In: Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS2021; 2021. p. 2021 Sep 27-Oct 1; Prague, Czech Republic. New York City: IEEE; 979-85.
|
[97] |
Jiao Z, Niu Y, Zhang Z, Zhu SC, Zhu Y, Liu H. Sequential manipulation planning on scene graph. In: Proceedings of 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems ( IROS2022; Oct 23-27 2022. p. 2022 ; Kyoto, Japan. New York City: IEEE; 8203-10.
|
[98] |
Taheri O, Ghorbani N. Black MJ, Tzionas D. GRAB: a dataset of whole-body human grasping of objects. In:Proceedings of 16th European Conference on Computer Vision (ECCV 2020); 2020 Aug 23-28, Glasgow, UK. Berlin:Springer; 2020. p. 581-600.
|
[99] |
Wang Z, Chen Y, Liu T, Zhu Y, Liang W, Huang S.HUMANISE:language-conditioned human motion generation in 3D scenes. In:Proceedings of 36th Conference on Neural Information Processing Systems (NeurIPS 2022); 2022 Nov 28-Dec 9; New Orleans, LA, USA. Red Hook: Curran Associates Inc.; 2022.
|
[100] |
Jiang N, Liu T, Cao Z, Cui J, Chen Y, Wang H, et al. CHAIRS: towards full-body articulated human-object interaction. 2022. arXiv:2212.10621.
|
[101] |
Jia B, Chen Y, Huang S, Zhu Y, Zhu SC. LEMMA: a multi-view dataset for learning multi-agent multi-task activities. In:Proceedings of European Conference on Computer Vision (ECCV 2020); 2020 Aug 23-28; Glasgow, UK. Berlin:Springer; 2020. p. 1-7.
|