[1] |
X. Ming, J.C. Huang, Z.J. Li. Materials-oriented integrated design and construction of structures in civil engineering—a review. Front Struct Civ Eng, 16 (1) ( 2022), pp. 24-44. DOI: 10.1007/s11709-021-0794-9
|
[2] |
C.R. Cao, K.Q. Huang, J.A. Shi, D.N. Zheng, W.H. Wang, L. Gu, et al.. Liquid-like behaviours of metallic glassy nanoparticles at room temperature. Nat Commun, 10 (1) ( 2019), p. 1966
|
[3] |
H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma. Atomic packing and short-to-medium-range order in metallic glasses. Nature, 439 (7075) ( 2006), pp. 419-425. DOI: 10.1038/nature04421
|
[4] |
S.R. Elliott.Physics of amorphous materials. (2nd ed.), Longman Scientific & Technical, Harlow ( 1990)
|
[5] |
T.R. Kirkpatrick, D. Thirumalai, P.G. Wolynes. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys Rev A, 40 (2) ( 1989), pp. 1045-1054
|
[6] |
Z. Fan, J. Ding, E. Ma. Machine learning bridges local static structure with multiple properties in metallic glasses. Mater Today, 40 ( 2020), pp. 48-62
|
[7] |
X. Xia, P.G. Wolynes. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc Natl Acad Sci USA, 97 (7) ( 2000), pp. 2990-2994
|
[8] |
X.J. Liu, Y. Xu, X. Hui, Z.P. Lu, F. Li, G.L. Chen, et al.. Metallic liquids and glasses: atomic order and global packing. Phys Rev Lett, 105 (15) ( 2010), Article 155501. DOI: 10.1103/PhysRevLett.105.155501
|
[9] |
Z.W. Wu, M.Z. Li, W.H. Wang, K.X. Liu. Hidden topological order and its correlation with glass-forming ability in metallic glasses. Nat Commun, 6 (1) ( 2015), p. 6035
|
[10] |
J. Ding, S. Patinet, M.L. Falk, Y. Cheng, E. Ma. Soft spots and their structural signature in a metallic glass. Proc Natl Acad Sci USA, 111 (39) ( 2014), pp. 14052-14056. DOI: 10.1073/pnas.1412095111
|
[11] |
J.D. Bernal. Geometry of the structure of monatomic liquids. Nature, 185 (4706) ( 1960), pp. 68-70. DOI: 10.1038/185068a0
|
[12] |
D.B. Miracle. A structural model for metallic glasses. Nat Mater, 3 (10) ( 2004), pp. 697-702
|
[13] |
D.B. Miracle. The efficient cluster packing model—an atomic structural model for metallic glasses. Acta Mater, 54 (16) ( 2006), pp. 4317-4336
|
[14] |
J.S. Langer. Shear-transformation-zone theory of plastic deformation near the glass transition. Phys Rev E, 77 (2) ( 2008), Article 021502. DOI: 10.1103/PhysRevE.77.021502
|
[15] |
A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A.R. Yavari, et al.. Direct observation of local atomic order in a metallic glass. Nat Mater, 10 (1) ( 2011), pp. 28-33. DOI: 10.1038/nmat2897
|
[16] |
|
[17] |
P.G. Debenedetti, F.H. Stillinger. Supercooled liquids and the glass transition. Nature, 410 (6825) ( 2001), pp. 259-267
|
[18] |
Y.C. Hu, F.X. Li, M.Z. Li, H.Y. Bai, W.H. Wang. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids. Nat Commun, 6 (1) ( 2015), p. 8310
|
[19] |
X.J. Liu, S.D. Wang, H.Y. Fan, Y.F. Ye, H. Wang, Y. Wu, et al.. Static atomic-scale structural heterogeneity and its effects on glass formation and dynamics of metallic glasses. Intermetallics, 101 ( 2018), pp. 133-143
|
[20] |
D.R. Nelson. Order, frustration, and defects in liquids and glasses. Phys Rev B, 28 (10) ( 1983), pp. 5515-5535
|
[21] |
P. Zhang, J.J. Maldonis, Z. Liu, J. Schroers, P.M. Voyles. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nat Commun, 9 (1) ( 2018), p. 1129
|
[22] |
T.J. Lei, L.R. DaCosta, M. Liu, W.H. Wang, Y.H. Sun, A.L. Greer, et al.. Microscopic characterization of structural relaxation and cryogenic rejuvenation in metallic glasses. Acta Mater, 164 ( 2019), pp. 165-170
|
[23] |
T.C. Pekin, J. Ding, C. Gammer, B. Ozdol, C. Ophus, M. Asta, et al.. Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass. Nat Commun, 10 (1) ( 2019), p. 2445
|
[24] |
Y.M. Lu, J.F. Zeng, S. Wang, B.A. Sun, Q. Wang, J. Lu, et al.. Structural signature of plasticity unveiled by nano-scale viscoelastic contact in a metallic glass. Sci Rep, 6 (1) ( 2016), p. 29357
|
[25] |
B.F. Lu, L.T. Kong, K.J. Laws, W.Q. Xu, Z. Jiang, Y.Y. Huang, et al.. EXAFS and molecular dynamics simulation studies of Cu-Zr metallic glass: short-to-medium range order and glass forming ability. Mater Charact, 141 ( 2018), pp. 41-48
|
[26] |
B. Huang, T.P. Ge, G.L. Liu, J.H. Luan, Q.F. He, Q.X. Yuan, et al.. Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography. Acta Mater, 155 ( 2018), pp. 69-79
|
[27] |
L.P. Deo, S. Nikodemski. Atom probe analysis of Ni-Nb-Zr metallic glasses. Bull Mater Sci, 43 (1) ( 2020), p. 44
|
[28] |
S. Hosokawa, J.F. Bérar, N. Boudet, W.C. Pilgrim, L. Pusztai, S. Hiroi, et al.. Detailed structural analysis of amorphous Pd40Cu40P20: comparison with the metallic glass Pd40Ni40P20 from the viewpoint of glass forming ability. J Non-Cryst Solids, 555 ( 2021), Article 120536
|
[29] |
A.R. Yavari. A new order for metallic glasses. Nature, 439 (7075) ( 2006), pp. 405-406. DOI: 10.1038/439405a
|
[30] |
Q. Zeng, H. Sheng, Y. Ding, L. Wang, W. Yang, J.Z. Jiang, et al.. Long-range topological order in metallic glass. Science, 332 (6036) ( 2011), pp. 1404-1406. DOI: 10.1126/science.1200324
|
[31] |
J.D. Stevenson, J. Schmalian, P.G. Wolynes. The shapes of cooperatively rearranging regions in glass-forming liquids. Nat Phys, 2 (4) ( 2006), pp. 268-274. DOI: 10.1038/nphys261
|
[32] |
Y. Yang, J.F. Zeng, A. Volland, J.J. Blandin, S. Gravier, C.T. Liu. Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy. Acta Mater, 60 (13-14) ( 2012), pp. 5260-5272
|
[33] |
Y. Yang, J. Zhou, F. Zhu, Y. Yuan, D.J. Chang, D.S. Kim, et al.. Determining the three-dimensional atomic structure of an amorphous solid. Nature, 592 (7852) ( 2021), pp. 60-64
|
[34] |
W. Ryu, R. Yamada, J. Saida. Tailored hardening of ZrCuAl bulk metallic glass induced by 2D gradient rejuvenation. NPG Asia Mater, 12 (1) ( 2020), p. 52
|
[35] |
X. Li, H. Liu, L. Cheng. Symmetry-mismatch reconstruction of genomes and associated proteins within icosahedral viruses using cryo-EM. Biophys Rep, 2 (1) ( 2016), pp. 25-32
|
[36] |
S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 117 (1) ( 1995), pp. 1-19
|
[37] |
Y.Q. Cheng, E. Ma, H.W. Sheng. Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett, 102 (24) ( 2009), Article 245501. DOI: 10.1103/PhysRevLett.102.245501
|
[38] |
J.M. Cowley. Diffraction physics. North-Holland Publishing Corp., Amsterdam ( 1975)
|
[39] |
B.J. Gellatly, J.L. Finney. Characterisation of models of multicomponent amorphous metals: the radical alternative to the Voronoi polyhedron. J Non-Cryst Solids, 50 (3) ( 1982), pp. 313-329
|
[40] |
D.B. Miracle, W.S. Sanders, O.N. Senkov. The influence of efficient atomic packing on the constitution of metallic glasses. Philos Mag, 83 (20) ( 2003), pp. 2409-2428
|
[41] |
S.G. Hao, C.Z. Wang, M.Z. Li, R.E. Napolitano, K.M. Ho. Dynamic arrest and glass formation induced by self-aggregation of icosahedral clusters in Zr 1-xCu x alloys. Phys Rev B, 84 (6) ( 2011), Article 064203. DOI: 10.1103/PhysRevB.84.064203
|
[42] |
K. Wong, R.P. Krishnan, C. Chen, Q. Du, D. Yu, Z. Lu, et al.. The role of local-geometrical-orders on the growth of dynamic-length-scales in glass-forming liquids. Sci Rep, 8 (1) ( 2018), p. 2025
|
[43] |
S.Q. Wu, C.Z. Wang, S.G. Hao, Z.Z. Zhu, K.M. Ho. Energetics of local clusters in Cu64.5Zr35.5 metallic liquid and glass. Appl Phys Lett, 97 (2) ( 2010), Article 021901
|
[44] |
L.C.R. Aliaga, L.V.P.C. Lima, G.M.B. Domingues, I.N. Bastos, G.A. Evangelakis. Experimental and molecular dynamics simulation study on the glass formation of Cu-Zr-Al alloys. Mater Res Express, 6 (4) ( 2019), Article 045202. DOI: 10.1088/2053-1591/aaf97e
|
[45] |
D. Wei, J. Yang, M.Q. Jiang, B.C. Wei, Y.J. Wang, L.H. Dai. Revisiting the structure-property relationship of metallic glasses: common spatial correlation revealed as a hidden rule. Phys Rev B, 99 (1) ( 2019), Article 014115
|
[46] |
A.L. Mackay. A dense non-crystallographic packing of equal spheres. Acta Cryst, 15 (9) ( 1962), pp. 916-918
|