[1] |
E. Uhlemann. Platooning: connected vehicles for safety and efficiency. IEEE Veh Technol Mag, 11 (3) (2016), pp. 13-18
|
[2] |
A. Saleem, A. Al Maashri, M.A. Al-Rahbi, M. Awadallah, H. Bourdoucen. Cooperative cruise controller for homogeneous and heterogeneous vehicle platoon system. Int J Automot Technol, 20 (6) ( 2019), pp. 1131-1143. DOI: 10.1007/s12239-019-0106-8
|
[3] |
Zhang X, Li W, Guo K, Peng T, Huang Y. Longitudinal acceleration allocation for cooperative adaptive cruise control including platoon kinematics. In: Proceedings of 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE); 2019 Jun 12-14; Vancouver, BC, Canada. IEEE; 2019. p. 1512-7.
|
[4] |
SAE. J3016:taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Report. New York City: SAE International; 2016.
|
[5] |
Wang Z, Wu G, Barth MJ. A review on cooperative adaptive cruise control (CACC) systems: architectures, controls, and applications. In: Proceedings of 2018 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 4-7; Maui, HI, USA. IEEE; 2018. p. 2884-91.
|
[6] |
Sawade O, Radusch I. Survey and classification of cooperative automated driver assistance systems. In: Proceedings of 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall); 2015 Sep 6-9; Boston, MA, USA. IEEE; 2015. p.1-5.
|
[7] |
Q. Li, W. Dai, Z. Yang, Q. Jia. Investigation on aerodynamic characteristics of tailing vehicle hood in a two-vehicle platoon. Proc Inst Mech Eng, 234 (1) ( 2020), pp. 283-299. DOI: 10.1177/0954407019857430
|
[8] |
Z. Wang, Y. Bian, S.E. Shladover, G. Wu, S.E. Li, M.J. Barth. A survey on cooperative longitudinal motion control of multiple connected and automated vehicles. IEEE Intell Transp Syst Mag, 12 (1) ( 2019), pp. 4-24. DOI: 10.1117/12.2504774
|
[9] |
S.E. Li, Y. Zheng, K. Li, L.Y. Wang, H. Zhang. Platoon control of connected vehicles from a networked control perspective: literature review, component modeling, and controller synthesis. IEEE Transp Vehicular Technol, 1 (2018)
|
[10] |
S.E. Li, Y. Zheng, K. Li, Y. Wu, J.K. Hedrick, F. Gao, et al. Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities. IEEE Intell Transp Syst Mag, 9 (3) (2017), pp. 46-58
|
[11] |
J. Guanetti, Y. Kim, F. Borrelli. Control of connected and automated vehicles: state of the art and future challenges. Annu Rev Contr, 45 (2018), pp. 18-40
|
[12] |
Hou J, Yu J, Qu S, Wang F, Zi Y, Chen G. GA-based velocity planning using jerk as the encoding method for autonomous vehicles. In:Proceedings of 2019 3rd Conference on Vehicle Control and Intelligence (CVCI); 2019 Sep 21-22; Hefei, China. IEEE; 2019. p. 1-6.
|
[13] |
W. Zhang, E. Jenelius, X. Ma. Freight transport platoon coordination and departure time scheduling under travel time uncertainty. Transp Res Part E Logist Transp Rev, 98 (2017), pp. 1-23
|
[14] |
Wang H, Wang R, Wu R, Zhu K, Zhang L. IPCS: intersection platoon control scheme for non-traffic light community. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27-30; Auckland, New Zealand. IEEE; 2019. p. 3502-7.
|
[15] |
Song M, Chen F, Ma X. A simulation of the traffic behavior with autonomous truck platoons based on cellular automaton. In: Proceedings of 2019 5th International Conference on Transportation Information and Safety (ICTIS); 2019 Jul 14-17; Liverpool, UK. IEEE; 2019. p. 416-23.
|
[16] |
C. Chen, J. Jiang, N. Lv, S. Li. An intelligent path planning scheme of autonomous vehicles platoon using deep reinforcement learning on network edge. IEEE Access, 8 ( 2020), pp. 99059-99069. DOI: 10.1109/access.2020.2998015
|
[17] |
U. Kohler. Stability of vehicle platoons. Transp Traffic Theory, 6 ( 1974), pp. 39-55. DOI: 10.2307/27757327
|
[18] |
S. Feng, Y. Zhang, S.E. Li, Z. Cao, H.X. Liu, L. Li. String stability for vehicular platoon control: definitions and analysis methods. Annu Rev Contr, 47 (2019), pp. 81-97
|
[19] |
S. Tsugawa, S. Jeschke, S.E. Shladover. A review of truck platooning projects for energy savings. IEEE Trans on Intell Veh, 1 (1) (2016), pp. 68-77
|
[20] |
S. Mariani, G. Cabri, F. Zambonelli. Coordination of autonomous vehicles: taxonomy and survey. ACM Comput Surv, 54 (1) ( 2021), pp. 1-33. DOI: 10.26633/rpsp.2021.22
|
[21] |
S. Malik, M.A. Khan, H. El-Sayed. Collaborative autonomous driving—a survey of solution approaches and future challenges. Sensors, 21 (11) ( 2021), p. 3783. DOI: 10.3390/s21113783
|
[22] |
J. Riostorres, A.A. Malikopoulos. A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps. IEEE Trans Intell Transp Syst, 18 (5) (2017), pp. 1066-1077
|
[23] |
D. Jia, K. Lu, J. Wang, X. Zhang, X. Shen. A survey on platoon-based vehicular cyber-physical systems. IEEE Comm Surv Tutor, 18 (1) (2016), pp. 263-284
|
[24] |
F.J. Ros, J.A. Martinez, P.M. Ruiz. A survey on modeling and simulation of vehicular networks: communications, mobility, and tools. Comput Commun, 43 (2014), pp. 1-15
|
[25] |
X. Sun, F.R. Yu, P. Zhang. A survey on cyber-security of connected and autonomous vehicles (CAVs). IEEE Trans Intell Transp Syst, 23 (7) ( 2021), pp. 6240-6259. DOI: 10.1021/acs.chemmater.1c02136
|
[26] |
R. Shaaban, S. Faruque. Cyber security vulnerabilities for outdoor vehicular visible light communication in secure platoon network: review, power distribution, and signal to noise ratio analysis. Phys Commun, 40 (2020), Article 101094
|
[27] |
A. Ghosal, S.U. Sagong, S. Halder, K. Sahabandu, M. Conti, R. Poovendran, et al. Truck platoon security: state-of-the-art and road ahead. Comput Netw, 185 (2021), Article 107658
|
[28] |
G.F. Riley, T.R. Henderson. The NS-3 network simulator. Modeling and Tools for Network Simulation, Springer, Berlin (2010)
|
[29] |
R.T. Hay. SUMO: a history of modification. Mol Cell, 18 (1) (2005), pp. 1-12
|
[30] |
Halati A, Lieu H, Walker S. CORSIM-corridor traffic simulation model. In: Proceedings of Traffic Congestion and Traffic Safety in the 21st Century. ASCE; 1997. p. 570-6.
|
[31] |
M. Fellendorf, P. Vortisch. Microscopic traffic flow simulator VISSIM. Fundamentals of traffic simulation, Springer, Berlin (2010)
|
[32] |
S. Stüdli, M.M. Seron, R.H. Middleton. From vehicular platoons to general networked systems: string stability and related concepts. Annu Rev Contr, 44 (2017), pp. 157-172
|
[33] |
D. Bevly, X. Cao, M. Gordon, G. Ozbilgin, D. Kari, B. Nelson, et al. Lane change and merge maneuvers for connected and automated vehicles: a survey. IEEE Trans Intell Veh, 1 (1) (2016), pp. 105-120
|
[34] |
S. Badnava, N. Meskin, A. Gastli, M. Al-Hitmi, J. Ghommam, M. Mesbah, et al. Platoon transitional maneuver control system: a review. IEEE Access, 9 ( 2021), pp. 88327-88347. DOI: 10.1109/access.2021.3089615
|
[35] |
Woodman R, Lu K, Higgins MD, Brewerton S, Jennings P, Birrell S. A human factors approach to defining requirements for low-speed autonomous vehicles to enable intelligent platooning. In: Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV); 2019 Jun 9-12; Paris, France. IEEE; 2019. p. 2371-6.
|
[36] |
J. Axelsson. Safety in vehicle platooning: a systematic literature review. IEEE Trans Intell Transp Syst, 18 (5) (2017), pp. 1033-1045
|
[37] |
J. Chen, H. Chen, J. Gao, J.A. Pattinson, R. Quaranta. A business model and cost analysis of automated platoon vehicles assisted by the internet of things. Proc Inst Mech Eng, 235 (2-3) ( 2021), pp. 721-731. DOI: 10.1177/0954407020949726
|
[38] |
Tsugawa S. Results and issues of an automated truck platoon within the energy its project. In: Proceedings of 2014 IEEE Intelligent Vehicles Symposium Proceedings; 2014 Jun 8-11; Dearborn, MI, USA. IEEE; 2014. p. 642-7.
|
[39] |
Kunze R, Ramakers R, Henning K, Jeschke S. Organization and operation of electronically coupled truck platoons on German motorways. In: Proceedings of Intelligent Robotics and Applications; 2009 Dec 16-18; Singapore, Singapore. Berlin: Springer; 2009. p. 135-46.
|
[40] |
C. Nowakowski, S.E. Shladover, X.Y. Lu, D. Thompson, A. Kailas. Cooperative adaptive cruise control (CACC) for truck platooning: operational concept alternatives [Report]. University of California, Berkeley (2015)
|
[41] |
K. Dey, L. Yan, X. Wang, Y. Wang, H. Shen, M. Chowdhury, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (CACC). IEEE Trans Intell Transp Syst, 17 (2) (2016), pp. 491-509
|
[42] |
E. Larsson, G. Sennton, J. Larson. The vehicle platooning problem: computational complexity and heuristics. Transp Res Part C Emerg Technol, 60 (2015), pp. 258-277
|
[43] |
J. Ma, X. Li, F. Zhou, J. Hu, B.B. Park. Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: computational issues and optimization. Transp Res Part B Methodol, 95 (2017), pp. 421-441
|
[44] |
F. Zhou, X. Li, J. Ma. Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: theoretical analysis with generalized time geography. Transp Res Part B Methodol, 95 (2017), pp. 394-420
|
[45] |
Duret A, Wang M, Leclercq L. Truck platooning strategy near merge: Heuristic-based solution and optimality conditions. In: Proceedings of 2018 Transportation Research Board Annual Meeting (TRB); 2018 Jan; Washington, DC, USA.HAL; 2018. p. 1-20.
|
[46] |
Heinovski J, Dressler F. Platoon formation: optimized car to platoon assignment strategies and protocols. In:Proceedings of 2018 IEEE Vehicular Networking Conference (VNC); 2018 Dec 5- 7; Taipei, China. IEEE; 2018. p. 1-8.
|
[47] |
P. Wang, Y. Jiang, L. Xiao, Y. Zhao, Y. Li. A joint control model for connected vehicle platoon and arterial signal coordination. J Intell Transp Syst, 24 (1) ( 2020), pp. 81-92. DOI: 10.1080/15472450.2019.1579093
|
[48] |
X.J. Liang, S.I. Guler, V.V. Gayah. A heuristic method to optimize generic signal phasing and timing plans at signalized intersections using connected vehicle technology. Transp Res Part C Emerg Technol, 111 (2020), pp. 156-170
|
[49] |
Dos Santos TC, Bruno DR, Osório FS, Wolf DF. Evaluation of lane-merging approaches for connected vehicles. In: Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV); 2019 Jun 9-12; Paris, France. IEEE; 2019. p. 1935-9.
|
[50] |
M. Amoozadeh, H. Deng, C. Chuah, H.M. Zhang, D. Ghosal. Platoon management with cooperative adaptive cruise control enabled by VANET. Veh Commun, 2 (2) (2015), pp. 110-123
|
[51] |
Li M, Gao X, Wen Y, Si J, Huang HH. Offline policy iteration based reinforcement learning controller for online robotic knee prosthesis parameter tuning. In: Proceedings of 2019 International Conference on Robotics and Automation (ICRA); 2019 May 20-24; Montreal, QC, Canada. IEEE; 2019. p. 2831-7.
|
[52] |
Gu S, Yang L, Du Y, Chen G, Walter F, Wang J, et al. A review of safe reinforcement learning: methods, theory and applications. 2022. ArXiv:2205.10330.
|
[53] |
J. Guan, G. Chen, J. Huang, Z. Li, L. Xiong, J. Hou, et al. A discrete soft actor-critic decision-making strategy with sample filter for freeway autonomous driving. IEEE Trans Vehicular Technol, 72 (2) (2022), pp. 2593-2598
|
[54] |
R. Zhang, J. Hou, G. Chen, Z. Li, J. Chen, A. Knoll. Residual policy learning facilitates efficient model-free autonomous racing. IEEE Robot Autom Lett, 7 (4) ( 2022), pp. 11625-11632. DOI: 10.1109/lra.2022.3192770
|
[55] |
Semsar-Kazerooni E, Verhaegh J, Ploeg J, Alirezaei M. Cooperative adaptive cruise control: an artificial potential field approach. In: Proceedings of 2016 IEEE Intelligent Vehicles Symposium (IV); 2016 Jun 19-22; Gothenburg, Sweden. IEEE; 2016. p. 361-7.
|
[56] |
E. Semsar-Kazerooni, K. Elferink, J. Ploeg, H. Nijmeijer. Multi-objective platoon maneuvering using artificial potential fields. IFAC PapersOnLine, 50 (1) (2017), pp. 15006-15011
|
[57] |
K. Gao, D. Yan, F. Yang, J. Xie, L. Liu, R. Du, et al. Conditional artificial potential field-based autonomous vehicle safety control with interference of lane changing in mixed traffic scenario. Sensors, 19 (19) ( 2019), p. 4199. DOI: 10.3390/s19194199
|
[58] |
McCrone DJ, Arasteh E, Jan FM. An artificial potential field approach to simulate cooperative adaptive cruise controlled vehicles. In: Proceedings of Dynamic Systems and Control Conference; 2017 Oct 11-13; Tysons, VA, USA. ASME; 2017. p. 58271.
|
[59] |
Z. Huang, D. Chu, C. Wu, Y. He. Path planning and cooperative control for automated vehicle platoon using hybrid automata. IEEE Trans Intell Transp Syst, 20 (3) ( 2018), pp. 959-974. DOI: 10.3390/app8060959
|
[60] |
Yu J, Hou J, Chen G. Improved safety-first A-star algorithm for autonomous vehicles. In: Proceedings of 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM); 2020 Dec 18-21; Shenzhen, China. IEEE; 2020. p. 706-10.
|
[61] |
Mohamed A, Ren J, Lang H, El-Gindy M. Optimal collision free path planning for an autonomous articulated vehicle with two trailers. In: Proceedings of 2017 IEEE International Conference on Industrial Technology (ICIT); 2017 Mar 22-25; Toronto, ON, Canada. IEEE; 2017. p. 860-5.
|
[62] |
K. Liang, S.V. De Hoef, H. Terelius, V. Turri, B. Besselink, J. Martensson, et al. Networked control challenges in collaborative road freight transport. Eur J Control, 30 (2016), pp. 2-14
|
[63] |
Q. Ye, X. Chen, R. Liao, L. Yu. Development and evaluation of a vehicle platoon guidance strategy at signalized intersections considering fuel savings. Transp Res Part D Transp Environ, 77 (2019), pp. 120-131
|
[64] |
M. Liu, M. Wang, S. Hoogendoorn. Optimal platoon trajectory planning approach at arterials. Transp Res Rec, 2673 (9) ( 2019), pp. 214-226. DOI: 10.1177/0361198119847474
|
[65] |
Z. Huang, D. Chu, C. Wu, Y. He. Path planning and cooperative control for automated vehicle platoon using hybrid automata. IEEE Trans Intell Transp Syst, 20 (3) ( 2019), pp. 959-974. DOI: 10.1109/tits.2018.2841967
|
[66] |
An G, Talebpour A. Lane-changing trajectory optimization to minimize traffic flow disturbance in a connected automated driving environment. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27-30; Auckland, New Zealand. IEEE; 2019. p. 1794-9.
|
[67] |
L.D. Baskar, B. De Schutter, H. Hellendoorn. Optimal routing for automated highway systems. Transp Res Part C Emerg Technol, 30 (2013), pp. 1-22
|
[68] |
Goli M, Eskandarian A. MPC-based lateral controller with look-ahead design for autonomous multi-vehicle merging into platoon. In: Proceedings of 2019 American Control Conference (ACC); 2019 Jul 10-12; Philadelphia, PA, USA. IEEE; 2019. p. 5284-91.
|
[69] |
Liu H, Zhuang W, Yin G, Tang Z, Xu L.Strategy for heterogeneous vehicular platoons merging in automated highway system. In:Proceedings of 2018 Chinese Control and Decision Conference (CCDC); 2018 Jun 9- 11; Shenyang, China. IEEE; 2018. p. 2736-40.
|
[70] |
V. Sokolov, J. Larson, T. Munson, J. Auld, D. Karbowski. Maximization of platoon formation through centralized routing and departure time coordination. Transp Res Rec, 2667 (1) ( 2017), pp. 10-16. DOI: 10.3141/2667-02
|
[71] |
K.Y. Liang, J. Mårtensson, K.H. Johansson. Heavy-duty vehicle platoon formation for fuel efficiency. IEEE Trans Intell Transp Syst, 17 (4) (2015), pp. 1051-1061
|
[72] |
R.W. Timmerman, M.A.A. Boon. Platoon forming algorithms for intelligent street intersections. Transp A Transp Sci, 17 (3) (2019), pp. 278-307
|
[73] |
J. Mei, K. Zheng, L. Zhao, L. Lei, X. Wang. Joint radio resource allocation and control for vehicle platooning in ITE-V2V network. IEEE Trans Vehicular Technol, 67 (12) ( 2018), pp. 12218-12230. DOI: 10.1109/tvt.2018.2874722
|
[74] |
G. Chen, J. Hou, J. Dong, Z. Li, S. Gu, B. Zhang, et al. Multiobjective scheduling strategy with genetic algorithm and time-enhanced A* planning for autonomous parking robotics in high-density unmanned parking lots. IEEE/ASME Trans Mechatron, 26 (3) (2020), pp. 1547-1557
|
[75] |
S. Ding, X. Chen, L. Yu, X. Wang. Arterial offset optimization considering the delay and emission of platoon: a case study in Beijing. Sustainability, 11 (14) ( 2019), p. 3882. DOI: 10.3390/su11143882
|
[76] |
F. Valdés, R. Iglesias, F. Espinosa, M.A. Rodríguez. An efficient algorithm for optimal routing applied to convoy merging manoeuvres in urban environments. Appl Intell, 37 (2) ( 2012), pp. 267-279. DOI: 10.1007/s10489-011-0326-8
|
[77] |
I. Johansson, J. Jin, X. Ma, H. Pettersson. Look-ahead speed planning for heavy-duty vehicle platoons using traffic information. Transp Res Procedia, 22 (2017), pp. 561-569
|
[78] |
Odekunle A, Gao W, Anayor C, Wang X, Chen Y. Predictive cruise control of connected and autonomous vehicles:an adaptive dynamic programming approach. In: Proceedings of SoutheastCon 2018; 2018 Apr 19-22; St. Petersburg, FL, USA. IEEE; 2018. p. 1-6.
|
[79] |
J. Chen, J. Sun. Platoon separation strategy optimization method based on deep cognition of a driver’s behavior at signalized intersections. IEEE Access, 8 ( 2020), pp. 17779-17791. DOI: 10.1109/access.2020.2966236
|
[80] |
W. Gao, Z.P. Jiang, K. Ozbay. Data-driven adaptive optimal control of connected vehicles. IEEE Trans Intell Transp Syst, 18 (5) ( 2016), pp. 1122-1133. DOI: 10.1109/ICSAI.2016.7811119
|
[81] |
M. Huang, W. Gao, Y. Wang, Z.P. Jiang. Data-driven shared steering control of semi-autonomous vehicles. IEEE Trans Hum Mach Syst, 49 (4) ( 2019), pp. 350-361. DOI: 10.1109/thms.2019.2900409
|
[82] |
J. Lan, D. Zhao, D. Tian. Data-driven robust predictive control for mixed vehicle platoons using noisy measurement. IEEE Trans Intell Transp Syst (2021), pp. 1-11
|
[83] |
T. Zhang, Y. Zou, X. Zhang, N. Guo, W. Wang. Data-driven based cruise control of connected and automated vehicles under cyber-physical system framework. IEEE Trans Intell Transp Syst, 22 (10) (2020), pp. 6307-6319
|
[84] |
J. Guo, H. Guo, J. Liu, D. Cao, H. Chen. Distributed data-driven predictive control for hybrid connected vehicle platoons with guaranteed robustness and string stability. IEEE Internet Things J, 9 (17) ( 2022), pp. 16308-16321. DOI: 10.1109/jiot.2022.3152165
|
[85] |
J. Zhan, Z. Ma, L. Zhang. Data-driven modeling and distributed predictive control of mixed vehicle platoons. IEEE Trans Intell Veh, 8 (1) (2022), pp. 572-582
|
[86] |
A.B. Parsa, R. Shabanpour, A. Mohammadian, J. Auld, T. Stephens. A data-driven approach to characterize the impact of connected and autonomous vehicles on traffic flow. Transp Lett, 13 (10) ( 2021), pp. 687-695. DOI: 10.1080/19427867.2020.1776956
|
[87] |
D. Gettman, S.G. Shelby, L. Head, D.M. Bullock, N. Soyke. Data-driven algorithms for real-time adaptive tuning of offsets in coordinated traffic signal systems. Transp Res Rec, 2035 (1) (2007), pp. 1-9. DOI: 10.3141/2035-01
|
[88] |
F. Jaffar, T. Farid, M. Sajid, Y. Ayaz, M.J. Khan. Prediction of drag force on vehicles in a platoon configuration using machine learning. IEEE Access, 8 ( 2020), pp. 201823-201834. DOI: 10.1109/access.2020.3035318
|
[89] |
Buechel M, Knoll A.Deep reinforcement learning for predictive longitudinal control of automated vehicles. In:Proceedings of 2018 21st International Conference on Intelligent Transportation Systems ITSC; 2018 Nov 4- 7; Maui, HI, USA. IEEE; 2018. p. 2391-7.
|
[90] |
Y. Feng, D. He, Y. Guan. Composite platoon trajectory planning strategy for intersection throughput maximization. IEEE Trans Vehicular Technol, 68 (7) ( 2019), pp. 6305-6319. DOI: 10.1109/tvt.2019.2914163
|
[91] |
Fan Y, Xiao X, Feng W.An anti-jamming game in VANET platoon with reinforcement learning. In:Proceedings of 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW); 2018 May 19- 21; Taichung, China. IEEE; 2018. p. 1-2.
|
[92] |
Dos Santos TC, Wolf DF.Automated conflict resolution of lane change utilizing probability collectives. In:Proceedings of 19th International Conference on Advanced Robotics (ICAR); 2019 Dec 2- 6; Belo Horizonte, Brazil. IEEE; 2019. p. 623-8.
|
[93] |
B. Li, Y. Zhang, Y. Feng, Y. Zhang, Y. Ge, Z. Shao. Balancing computation speed and quality: a decentralized motion planning method for cooperative lane changes of connected and automated vehicles. IEEE Trans Intell Veh, 3 (3) ( 2018), pp. 340-350. DOI: 10.1109/tiv.2018.2843159
|
[94] |
Zhang R, Chen G, Hou J, Li Z, Knoll A. PIPO: policy optimization with permutation-invariant constraint for distributed multi-robot navigation. In:Proceedings of 2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI); 2022 Sep 20-22; Bedford, UK. IEEE; 2022. p. 1-7.
|
[95] |
Johansson A, Nekouei E, Johansson KH, Mårtensson J. Multi-fleet platoon matching: a game-theoretic approach. In:Proceedings of 2018 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 4- 7; Maui, HI, USA. IEEE; 2018. p. 2980-5.
|
[96] |
Y. Liu, C. Zong, X. Han, D. Zhang, H. Zheng, C. Shi.Spacing allocation method for vehicular platoon: a cooperative game theory approach. Appl Sci, 10 (16) ( 2020), p. 5589. DOI: 10.3390/app10165589
|
[97] |
Ma X, Zhao J, Li Q, Gong Y.Reinforcement learning based task offloading and take-back in vehicle platoon networks. In:Proceedings of 2019 IEEE International Conference on Communications Workshops (ICC Workshops); 2019 May 20- 24; Shanghai, China. IEEE; 2019. p. 1-6.
|
[98] |
Lobato W, Rosario D, Gerla M, Villas LA.Platoon-based driving protocol based on game theory for multimedia transmission over VANET. In: Proceedings of 2017 IEEE Global Communications Conference; 2017 Dec 4-8; Singapore, Singapore. IEEE; 2017. p. 1-6.
|
[99] |
S. Gu, G. Chen, L. Zhang, J. Hou, Y. Hu, A. Knoll. Constrained reinforcement learning for vehicle motion planning with topological reachability analysis. Robotics, 11 (4) (2022), p. 81
|
[100] |
M. Saeednia, M. Menendez. A consensus-based algorithm for truck platooning. IEEE Trans Intell Transp Syst, 18 (2) (2016), pp. 404-415
|
[101] |
W. Wang, C. Wang, Y. Guo, X. Luo, Y. Gao. Self-triggered consensus of vehicle platoon system with time-varying topology. Front Neurorobot, 14 (2020), p. 53
|
[102] |
P. Yang, Y. Tang, M. Yan, X. Zhu. Consensus based control algorithm for nonlinear vehicle platoons in the presence of time delay. Int J Control Autom Syst, 17 (3) ( 2019), pp. 752-764. DOI: 10.1007/s12555-017-0600-6
|
[103] |
J. Wu, Y. Wang, L. Wang, Z. Shen, C. Yin. Consensus-based platoon forming for connected autonomous vehicles. IFAC PapersOnLine, 51 (31) (2018), pp. 801-806
|
[104] |
S. Yu, R. Fu, Y. Guo, Q. Xin, Z. Shi. Consensus and optimal speed advisory model for mixed traffic at an isolated signalized intersection. Phys A, 531 (2019), Article 121789
|
[105] |
Khamis MA, Gomaa W. Enhanced multiagent multi-objective reinforcement learning for urban traffic light control. In: Proceedings of 2012 11th International Conference on Machine Learning and Applications; 2012 Dec 12-15; Boca Raton, FL, USA. IEEE; 2012. p. 586-91.
|
[106] |
Sharma S, Singh B.Cooperative reinforcement learning based adaptive resource allocation in V2V communication. In:Proceedings of 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN); 2019 Mar 7- 8; Noida, India. IEEE; 2019. p. 489-94.
|
[107] |
R. Elbert, J.K. Knigge, A. Friedrich. Analysis of decentral platoon planning possibilities in road freight transport using an agent-based simulation model. J Simul, 14 (1) ( 2020), pp. 64-75. DOI: 10.1080/17477778.2019.1675480
|
[108] |
M. Saeednia, M. Menendez. Analysis of strategies for truck platooning: hybrid strategy. Transp Res Rec, 2547 (2547) ( 2016), pp. 41-48. DOI: 10.3141/2547-07
|
[109] |
Johansson A, Mårtensson J. Game theoretic models for profit-sharing in multi-fleet platoons. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27-30; Auckland, New Zealand. IEEE; 2019. p. 3019-24.
|
[110] |
J. Wu, S. Ahn, Y. Zhou, P. Liu, X. Qu. The cooperative sorting strategy for connected and automated vehicle platoons. Transp Res Part C Emerg Technol, 123 (2021), Article 102986
|
[111] |
W.J. Lee, S.I. Kwag, Y.D. Ko. The optimal eco-friendly platoon formation strategy for a heterogeneous fleet of vehicles. Transp Res Part D Transp Environ, 90 (2021), Article 102664
|
[112] |
J. Auld, M. Hope, H. Ley, V. Sokolov, B. Xu, K. Zhang. Polaris: agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations. Transp Res Part C Emerg Technol, 64 (2016), pp. 101-116
|
[113] |
H. Hasrouny, A.E. Samhat, C. Bassil, A. Laouiti. VANET security challenges and solutions: a survey. Veh Commun, 7 (2017), pp. 7-20
|
[114] |
Huang Z, Zhuang W, Yin G, Xu L, Luo K. Cooperative merging for multiple connected and automated vehicles at highway on-ramps via virtual platoon formation. In: Proceedings of 2019 Chinese Control Conference (CCC); 2019 Jul 27-30; Guangzhou, China. IEEE; 2019. p. 6709-14.
|
[115] |
Hao P, Wang Z, Wu G, Boriboonsomsin K, Barth M.Intra-platoon vehicle sequence optimization for ecocooperative adaptive cruise control. In:Proceedings of 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC); 2017 Oct 16- 19; Yokohama, Japan. IEEE; 2017. p. 1-6.
|
[116] |
Farag A, Hussein A, Shehata OM, Garcia F, Tadjine HH, Matthes E.Dynamics platooning model and protocols for self-driving vehicles. In:Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV); 2019 Jun 9- 12; Paris, France. IEEE; 2019. p. 1974-80.
|
[117] |
S. Karbalaieali, O.A. Osman, S. Ishak. A dynamic adaptive algorithm for merging into platoons in connected automated environments. IEEE Trans Intell Transp Syst, 21 (10) (2019), pp. 4111-4122
|
[118] |
J. Wang, F. Ma, Y. Yu, S. Zhu, S.Y. Gelbal, B. Aksun-Guvenc, et al. Optimization design of the decentralized multi-vehicle cooperative controller for freeway ramp entrance. Int J Automot Technol, 22 (3) ( 2021), pp. 799-810. DOI: 10.1007/s12239-021-0073-8
|
[119] |
R. Timmerman, M.A. Boon. Platoon forming algorithms for intelligent street intersections. Transp A Transp Sci, 17 (3) ( 2021), pp. 278-307. DOI: 10.1080/23249935.2019.1692962
|
[120] |
Pongor G. OMNET: objective modular network testbed. In:Proceedings of International Workshop on Modeling, Analysis, and Simulation on Computer and Telecommunication Systems; 1993; San Diego, CA, USA. Society for Computer Simulation International; 1993. p. 323-6.
|
[121] |
M. Saeednia, M. Menendez. A consensus-based algorithm for truck platooning. IEEE Trans Intell Transp Syst, 18 (2) (2017), pp. 404-415
|
[122] |
Liang KY, Mårtensson J, Johansson KH.Fuel-saving potentials of platooning evaluated through sparse heavy duty vehicle position data. In:Proceedings of 2014 IEEE Intelligent Vehicles Symposium Proceedings; 2014 Jun 8- 11; Dearborn, MI, USA. IEEE; 2014. p. 1061-8.
|
[123] |
Larson J, Kammer C, Liang KY, Johansson KH.Coordinated route optimization for heavy-duty vehicle platoons. In:Proceedings of 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013); 2013 Oct 6- 9; The Hague, Netherlands. IEEE; 2013. p. 1196-202.
|
[124] |
S. Van de Hoef. Fuel-efficient centralized coordination of truck platooning dissertation KTH Royal Institute of Technology, Stockholm (2016)
|
[125] |
Adler A, Miculescu D, Karaman S. Optimal policies for platooning and ride sharing in autonomy-enabled transportation; In: Proceedings of Algorithmic Foundations of Robotics XII. 2016 Dec 18-20; San Francisco, CA, USA. Springer; 2020. p. 848-63.
|
[126] |
A.K. Bhoopalam, N. Agatz, R. Zuidwijk. Planning of truck platoons: a literature review and directions for future research. Transp Res Part B Methodol, 107 (2018), pp. 212-228
|
[127] |
A.I.M. Medina, N. van de Wouw, H. Nijmeijer. Cooperative intersection control based on virtual platooning. IEEE Trans Intell Transp Syst, 19 (6) (2017), pp. 1727-1740
|
[128] |
Bashiri M, Jafarzadeh H, Fleming CH. PAIM: platoon-based autonomous intersection management. 2018. ArXiv:1809.06956.
|
[129] |
S. Stebbins, M. Hickman, J. Kim, H.L. Vu. Characterising green light optimal speed advisory trajectories for platoon-based optimisation. Transp Res Part C Emerg Technol, 82 (2017), pp. 43-62
|
[130] |
Bashiri M, Fleming CH. A platoon-based intersection management system for autonomous vehicles. In: Proceedings of 2017 IEEE Intelligent Vehicles Symposium (IV); 2017 Jun 11-14; Los Angeles, CA, USA. IEEE; 2017. p. 667-72.
|
[131] |
B. Liu, A. El Kamel. V2X-based decentralized cooperative adaptive cruise control in the vicinity of intersections. IEEE Trans Intell Transp Syst, 17 (3) (2016), pp. 644-658
|
[132] |
Gunther HJ, Kleinau S, Trauer O, Wolf L.Platooning at traffic lights. In:Proceedings of Intelligent Vehicles Symposium (IV); 2016 Jun 19- 22; Gothenburg, Sweden. IEEE; 2016. p. 1047-53.
|
[133] |
Masi S, Xu P, Bonnifait P. Adapting the virtual platooning concept to roundabout crossing. In: Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV); 2018 Jun 26-30; Changshu, China. IEEE; 2018. p. 1366-72.
|
[134] |
X. Wu, H. Yang, B. Mainali, P. Pokharel, S. Chiu. Development of platoon-based actuated signal control systems to coordinated intersections: application in corridors in Houston. IET Intell Transp Syst, 14 (2) (2019), pp. 127-137
|
[135] |
Kong X, Wu J, Qu X. An online processing method for the cooperative control of connected and automated vehicle platoons. Smart Transp Syst 2021;133-99.
|
[136] |
H. Namazi, A. Taghavipour. Traffic flow and emissions improvement via vehicle-to-vehicle and vehicle-to-infrastructure communication for an intelligent intersection. Asian J Control, 23 (5) ( 2021), pp. 2328-2342. DOI: 10.1002/asjc.2508
|
[137] |
Wu Y, Hou J, Chen G, Knoll A. Trajectory prediction based on planning method considering collision risk. In: Proceedings of 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM); 2020 Dec 18-21; Shenzhen, China. IEEE, 2020. p. 466-70.
|
[138] |
G. Dai, H. Wang, W. Wang. Signal optimization and coordination for bus progression based on maxband. KSCE J Civ Eng, 20 (2) ( 2016), pp. 890-898. DOI: 10.1007/s12205-015-1516-4
|
[139] |
Dong Y, Xu Y, Li D, Hu C, Xi Y. Model of platoon evolution in LVM scenario. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27-30; Auckland, New Zealand. IEEE; 2019. p. 2932-7.
|
[140] |
Chen J, ShangGuan W, Cai B, Bhat M, Du Y. Intelligent platoon operating slot optimization method based on drivers’ overtaking behavior. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27-30; Auckland, New Zealand. IEEE; 2019. p. 1947-52.
|
[141] |
S. Lee, C. Oh, S. Hong. Exploring lane change safety issues for manually driven vehicles in vehicle platooning environments. IET Intell Transp Syst, 12 (9) ( 2018), pp. 1142-1147. DOI: 10.1049/iet-its.2018.5167
|
[142] |
D. Swaroop, J.K. Hedrick, C. Chien, P. Ioannou. A comparision of spacing and headway control laws for automatically controlled vehicles. Veh Syst Dyn, 23 (1) ( 1994), pp. 597-625. DOI: 10.1080/00423119408969077
|
[143] |
H. Liang, S. Zhou, X. Liu, F. Zheng, X. Hong, X. Zhou, et al. A dynamic resource allocation model based on SMDP and DRL algorithm for truck platoon in vehicle network. IEEE Internet Things J, 9 (12) (2021), pp. 10295-10305
|
[144] |
Xu R, Li J, Dong X, Yu H, Ma J. Bridging the domain gap for multi-agent perception. 2022. ArXiv:2210.08451.
|
[145] |
Araújo F, Serra HP, Rosário D, Cerqueira E. Optimized-selection model of relay nodes in platoon-based vehicular ad-hoc networks. In: Proceedings of the 10th Latin America Networking Conference; 2018 Oct 3-4; São Paulo, Brazil. ACM; 2018. p. 18-24.
|
[146] |
H. Peng, D. Li, Q. Ye, K. Abboud, H. Zhao, W. Zhuang, et al. Resource allocation for cellular-based intervehicle communications in autonomous multiplatoons. IEEE Trans Vehicular Technol, 66 (12) (2017), pp. 11249-11263
|
[147] |
Cao L, Yin H.Resource allocation for vehicle platooning in 5G NR-V2X via deep reinforcement learning. 2021. ArXiv:2101.10424.
|
[148] |
V. Lesch, C. Krupitzer, K. Stubenrauch, N. Keil, C. Becker, S. Kounev, et al. A comparison of mechanisms for compensating negative impacts of system integration. Future Gener Comput Syst, 116 (2021), pp. 117-131
|
[149] |
Parvini M, Javan MR, Mokari N, Abbasi B, Jorswieck EA.AOI-aware resource allocation for platoon-based C-V2X networks via multi-agent multi-task reinforcement learning. 2021. ArXiv:2105.04196.
|
[150] |
Zheng D, Chen Y, Wei L, Jiao B, Hanzo L. Dynamic NOMA-based computation offloading in vehicular platoons. 2021. ArXiv:2103.17049.
|
[151] |
H. Song, D. Ding, H. Dong, X. Yi. Distributed filtering based on Cauchy-kernel-based maximum correntropy subject to randomly occurring cyber-attacks. Automatica, 135 (2022), Article 110004
|
[152] |
X. Wang, D. Ding, X. Ge, Q.L. Han. Neural-network-based control for discrete-time nonlinear systems with Denialof-service attack: the adaptive event-triggered case. Int J Robust Nonlinear Control, 32 (5) ( 2022), pp. 2760-2779. DOI: 10.1002/rnc.5831
|
[153] |
D. Ding, Q.L. Han, Y. Xiang, X. Ge, X.M. Zhang. A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing, 275 (2018), pp. 1674-1683
|
[154] |
X.M. Zhang, Q.L. Han, X. Ge, D. Ding, L. Ding, D. Yue, et al. Networked control systems: a survey of trends and techniques. IEEE/CAA J Automat Sinica, 7 (1) (2019), pp. 1-17
|
[155] |
Ge X, Han QL, Wang Z, Ding D. Dynamic event-triggered vehicle platooning control: trade-off between communication efficiency and platoon performance. In: Proceedings of 2021 40th Chinese Control Conference (CCC); 2021 Jul 26-28; Shanghai, China. IEEE; 2021. p. 4883-8.
|
[156] |
X. Ge, S. Xiao, Q.L. Han, X.M. Zhang, D. Ding. Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks. IEEE/CAA J Automat Sinica, 9 (1) ( 2022), pp. 31-46. DOI: 10.1109/jas.2021.1004060
|
[157] |
Chan E, Gilhead P, Jelinek P, Krejci P, Robinson T. Cooperative control of Sartre automated platoon vehicles. In: Proceedings of 19th ITS World Congress; 2012 Oct 22-26; Vienna, Austria. America ITS; 2012. p. 22-6.
|
[158] |
Q. Deng. A general simulation framework for modeling and analysis of heavy-duty vehicle platooning. IEEE Trans Intell Transp Syst, 17 (11) (2016), pp. 3252-3262
|
[159] |
O. Karoui, E. Guerfala, A. Koubaa, M. Khalgui, E. Tovard, N. Wu, et al. Performance evaluation of vehicular platoons using Webots. IET Intell Transp Syst, 11 (8) ( 2017), pp. 441-449. DOI: 10.1049/iet-its.2017.0036
|
[160] |
A. Tuchner, J. Haddad. Vehicle platoon formation using interpolating control: a laboratory experimental analysis. Transp Res Part C Emerg Technol, 84 (2017), pp. 21-47
|
[161] |
J. Ploeg, E. Semsar-Kazerooni, A.I.M. Medina, J.F. de Jongh, J. van de Sluis, A. Voronov, et al. Cooperative automated maneuvering at the 2016 grand cooperative driving challenge. IEEE Trans Intell Transp Syst, 19 (4) (2017), pp. 1213-1226
|
[162] |
R. Hult, F.E. Sancar, M. Jalalmaab, A. Vijayan, A. Severinson, M. Di Vaio, et al. Design and experimental validation of a cooperative driving control architecture for the grand cooperative driving challenge 2016. IEEE Trans Intell Transp Syst, 19 (4) ( 2018), pp. 1290-1301. DOI: 10.1109/tits.2017.2750083
|
[163] |
I.P. Alonso, R.I. Gonzalo, J. Alonso, Á. García-Morcillo, D. Fernández-Llorca, M.Á. Sotelo. The experience of drivertive-driverless cooperative vehicle-team in the 2016 GCDC. IEEE Trans Intell Transp Syst, 19 (4) (2017), pp. 1322-1334
|
[164] |
Eilers S, Mårtensson J, Pettersson H, Pillado M, Gallegos D, Tobar M, et al. Companion—towards co-operative platoon management of heavy-duty vehicles. In: Proceedings of 2015 IEEE 18th International Conference on Intelligent Transportation Systems; 2015 Sep 15-18; Gran Canaria, Spain. IEEE; 2015. p. 1267-73.
|
[165] |
J. Zhang, P.A. Ioannou, A. Chassiakos. Automated container transport system between inland port and terminals. ACM Trans Model Comput Simulat, 16 (2) ( 2006), pp. 95-118. DOI: 10.1145/1138464.1138465
|
[166] |
Pourmohammad-Zia N, Schulte F, Souravlias D, Negenborn RR. Platooning of automated ground vehicles to connect port and hinterland:a multi-objective optimization approach. In: Proceedings of International Conference on Computational Logistics; 2020 Sep 28-30; Enschede, the Netherlands. Springer Cam; 2020. p. 780.
|
[167] |
S. Chen, H. Wang, Q. Meng. Autonomous truck scheduling for container transshipment between two seaport terminals considering platooning and speed optimization. Transp Res Part B Methodol, 154 (2021), pp. 289-315
|
[168] |
S. Tsugawa. An overview on an automated truck platoon within the energy its project. IF AC Proc, 46 (21) (2013), pp. 41-46
|
[169] |
A.A. Ceder. Public-transport vehicle scheduling with multi vehicle type. Transp Res Part C Emerg Technol, 19 (3) (2011), pp. 485-497
|
[170] |
S. Hassold, A. Ceder. Multiobjective approach to creating bus timetables with multiple vehicle types. Transp Res Rec, 2276 (1) ( 2012), pp. 56-62. DOI: 10.3141/2276-07
|
[171] |
S. Hassold, A.A. Ceder. Public transport vehicle scheduling featuring multiple vehicle types. Transp Res Part B Methodol, 67 (2014), pp. 129-143
|
[172] |
Q.W. Guo, J.Y. Chow, P. Schonfeld. Stochastic dynamic switching in fixed and flexible transit services as market entry-exit real options. Transp Res Procedia, 23 (2017), pp. 380-399
|
[173] |
Z. Dai, X.C. Liu, X. Chen, X. Ma. Joint optimization of scheduling and capacity for mixed traffic with autonomous and human-driven buses: a dynamic programming approach. Transp Res Part C Emerg Technol, 114 (2020), pp. 598-619
|
[174] |
Z. Chen, X. Li, X. Zhou. Operational design for shuttle systems with modular vehicles under oversaturated traffic: continuous modeling method. Transp Res Part B Methodol, 132 (2020), pp. 76-100
|
[175] |
Z. Chen, X. Li, X. Zhou. Operational design for shuttle systems with modular vehicles under oversaturated traffic: discrete modeling method. Transp Res Part B Methodol, 122 (2019), pp. 1-19
|
[176] |
X. Shi, Z. Chen, M. Pei, X. Li. Variable-capacity operations with modular transits for shared-use corridors. Transp Res Rec, 2674 (9) ( 2020), pp. 230-244. DOI: 10.1177/0361198120928077
|
[177] |
X. Liu, X. Qu, X. Ma. Improving flex-route transit services with modular autonomous vehicles. Transp Res Part E Logist Trans Rev, 149 (2021), Article 102331
|
[178] |
Z. Chen, X. Li, X. Qu. A continuous model for designing corridor systems with modular autonomous vehicles enabling station-wise docking. Transport Sci, 56 (1) (2022), pp. 1-30
|
[179] |
W. Scholte, P.W. Zegelaar, H. Nijmeijer. A control strategy for merging a single vehicle into a platoon at highway on-ramps. Transp Res Part C Emerg Technol, 136 (2022), Article 103511
|
[180] |
H.C.H. Hsu, A. Liu. Kinematic design for platoon-lane-change maneuvers. IEEE Trans Intell Transp Syst, 9 (1) (2008), pp. 185-190
|
[181] |
Featherstone C, Lowson M.Safety of automated passenger vehicle platooning. In:Proceedings of 12th World Congress on Intelligent Transport Systems; 2005 Nov 6- 10; San Francisco, CA, USA. ITS America; 2005. p. 1665-73.
|
[182] |
N. Li, S. Chen, J. Zhu, D.J. Sun. A platoon-based adaptive signal control method with connected vehicle technology. Comput Intell Neuro, 2020 (2020), p. 2764576
|
[183] |
Zhang Y, Su R, Zhang Y.A dynamic optimization model for bus schedule design to mitigate the passenger waiting time by dispatching the bus platoon. In:Proceedings of 2020 American Control Conference (ACC); 2020 Jul 1- 3; Denver, CO, USA. IEEE; 2020. p. 4096-101.
|
[184] |
A. Paranjothi, M. Atiquzzaman, M.S. Khan. PMCD: platoon-merging approach for cooperative driving. Int Technol Lett, 3 (1) (2020), p. e139
|
[185] |
G.D. Cameron, G.I. Duncan. Paramics—parallel microscopic simulation of road traffic. J Supercomput, 10 (1) (1996), pp. 25-53
|
[186] |
W. Gao, J. Gao, K. Ozbay, Z. Jiang. Reinforcement-learning-based cooperative adaptive cruise control of buses in the Lincoln tunnel corridor with time-varying topology. IEEE Trans Intell Transp Syst, 20 (10) ( 2019), pp. 3796-3805. DOI: 10.1109/tits.2019.2895285
|
[187] |
K. Shaaban, I. Kim. Comparison of Simtraffic and VISSIM microscopic traffic simulation tools in modeling roundabouts. Procedia Comput Sci, 52 (2015), pp. 43-50
|
[188] |
L. Lu, T. Yun, L. Li, Y. Su, D. Yao. A comparison of phase transitions produced by Paramics, Transmodeler, and VISSIM. IEEE Intell Transp Syst Mag, 2 (3) ( 2010), pp. 19-24. DOI: 10.1080/00043125.2010.11519098
|
[189] |
Seredynski M, Grzybek A. Coping with non-recurring congestion with distributed hybrid routing strategy. In: Proceedings of 2016 IEEE Intelligent Vehicles Symposium (IV); 2016 Jul 19-22; Gothenburg, Sweden. IEEE; 2016. p. 1121-7.
|
[190] |
M. Gerla, L. Kleinrock. Vehicular networks and the future of the mobile internet. Comput Netw, 55 (2) (2011), pp. 457-469
|
[191] |
De Rango F, Tropea M, Raimondo P, Santamaria AF, Fazio P.Bio inspired strategy for improving platoon management in the future autonomous electrical VANET environment. In:Proceedings of 2019 28th International Conference on Computer Communication and Networks (ICCCN); 2019 Jul 29-Aug 1; Valencia, Spain. IEEE; 2019. p. 1-7.
|
[192] |
M. Rondinone, J. Maneros, D. Krajzewicz, R. Bauza, P. Cataldi, F. Hrizi, et al. ITETRIS: a modular simulation platform for the large scale evaluation of cooperative its applications. Simul Model Pract Theory, 34 (2013), pp. 99-125
|
[193] |
Sommer C, Eckhoff D, Brummer A, Buse DS, Hagenauer F, Joerer S, et al. Veins: the open source vehicular network simulation framework. Recent Advances in Network Simulation. Online. Springer Cham; 2019.
|
[194] |
Won M. L-platooning: a protocol for managing a long platoon with DSRC. 2019. ArXiv:1910.05192.
|
[195] |
S.E. Shladover, D. Su, X.Y. Lu. Impacts of cooperative adaptive cruise control on freeway traffic flow. Transp Res Rec, 2324 (1) ( 2012), pp. 63-70. DOI: 10.3141/2324-08
|
[196] |
L. Yu. Calibration of platoon dispersion parameters on the basis of link travel time statistics. Transp Res Rec, 1727 (1) ( 2000), pp. 89-94. DOI: 10.3141/1727-11
|
[197] |
Sebe SM, Müller JP. PFARA: a platoon forming and routing algorithm for same-day deliveries. 2019. ArXiv:1912.08929.
|
[198] |
M. Zhu, C. Liu, Y. Han. Approach to discovering companion patterns based on traffic data stream. IET Intell Transp Syst, 12 (10) ( 2018), pp. 1351-1359. DOI: 10.1049/iet-its.2018.5166
|
[199] |
A. Saha, S. Chandra, I. Ghosh. Modeling platoon dispersion at signalized intersections in mixed traffic scenario. Arab J Sci Eng, 44 (5) ( 2019), pp. 4829-4838. DOI: 10.1007/s13369-018-3568-5
|
[200] |
V. Punzo, M.T. Borzacchiello, B. Ciuffo. On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (NGSIM) program data. Transp Res Part C Emerg Technol, 19 (6) (2011), pp. 1243-1262
|
[201] |
Calvert SC, Mecacci G, Heikoop DD, De Sio FS. Full platoon control in truck platooning: a meaningful human control perspective. In:Proceedings of 2018 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 4- 7; Maui, HI, USA. IEEE; 2018. p. 3320-6.
|
[202] |
G. Chen, H. Cao, J. Conradt, H. Tang, F. Rohrbein, A. Knoll. Event-based neuromorphic vision for autonomous driving: a paradigm shift for bio-inspired visual sensing and perception. IEEE Signal Process Mag, 37 (4) ( 2020), pp. 34-49. DOI: 10.1109/msp.2020.2985815
|
[203] |
G. Chen, F. Wang, W. Li, L. Hong, J. Conradt, J. Chen, et al. Neuroiv: neuromorphic vision meets intelligent vehicle towards safe driving with a new database and baseline evaluations. IEEE Trans Intell Transp Syst, 23 (2) (2020), pp. 1171-1183
|
[204] |
W. Liu, K. Quijano, M.M. Crawford. YOLOV5-TASSEL: detecting tassels in RGB UAV imagery with improved YOLOV5 based on transfer learning. IEEE J Sel Top Appl Earth Obs Remote Sens, 15 ( 2022), pp. 8085-8094. DOI: 10.1109/jstars.2022.3206399
|
[205] |
C. Jiang, Z. Ding, J. Yu, S. Zhang, C. Yan, Y. Zhang, et al. Cabin computing. Sci Sin Inform, 51 (8) (2021), pp. 1233-1254
|
[206] |
F.H. Robertson, F. Bourriez, M. He, D. Soper, C. Baker, H. Hemida, et al. An experimental investigation of the aerodynamic flows created by lorries travelling in a long platoon. J Wind Eng Ind Aerodyn, 193 (2019), Article 103966
|