人工智能在药学领域中的应用

路明坤, 殷佳依, 朱奇, 林高乐, 牟敏杰, 柳扶摇, 潘子祺, 游楠欣, 廉希晨, 李丰成, 张洪宁, 郑玲燕, 张维, 张瀚毓, 沈子豪, 顾臻, 李洪林, 朱峰

工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 37-69.

PDF(3773 KB)
PDF(3773 KB)
工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 37-69. DOI: 10.1016/j.eng.2023.01.014
研究论文
Review

人工智能在药学领域中的应用

作者信息 +

Artificial Intelligence in Pharmaceutical Sciences

Author information +
History +

摘要

药物研发影响着人类健康的方方面面,并对医药市场有着巨大的影响。然而,由于药物研发(research and development, R&D)过程漫长而复杂,对新药的投资往往收效甚微。随着实验技术和计算机硬件的发展,人工智能(artificial intelligence, AI)近些年来已成为分析大量高维数据的主要工具。生物医学数据规模的爆炸式增长更使得AI得以应用在药物研发的各个阶段。在生物医学大数据的推动下,AI能够更高效、更低成本地发现新药,从而引发了一场药物研发范式的革命。本综述首先简要介绍了药物发现领域常见的人工智能模型,然后总结并深入讨论了这些模型在药物研发各个阶段的具体应用,如靶点发现、药物发现和设计、临床前研究、药物智能制造以及对医药市场的影响。最后,充分讨论了AI在药物研发中的主要局限性,并提出了可能的解决方案。

Abstract

Drug discovery and development affects various aspects of human health and dramatically impacts the pharmaceutical market. However, investments in a new drug often go unrewarded due to the long and complex process of drug research and development (R&D). With the advancement of experimental technology and computer hardware, artificial intelligence (AI) has recently emerged as a leading tool in analyzing abundant and high-dimensional data. Explosive growth in the size of biomedical data provides advantages in applying AI in all stages of drug R&D. Driven by big data in biomedicine, AI has led to a revolution in drug R&D, due to its ability to discover new drugs more efficiently and at lower cost. This review begins with a brief overview of common AI models in the field of drug discovery; then, it summarizes and discusses in depth their specific applications in various stages of drug R&D, such as target discovery, drug discovery and design, preclinical research, automated drug synthesis, and influences in the pharmaceutical market. Finally, the major limitations of AI in drug R&D are fully discussed and possible solutions are proposed.

关键词

人工智能 / 机器学习 / 深度学习 / 靶标识别 / 靶标发现 / 药物设计 / 药物发现

Keywords

Artificial intelligence / Machine learning / Deep learning / Target identification / Target discovery / Drug design / Drug discovery

引用本文

导出引用
路明坤, 殷佳依, 朱奇. 人工智能在药学领域中的应用. Engineering. 2023, 27(8): 37-69 https://doi.org/10.1016/j.eng.2023.01.014

参考文献

[1]
L. Martin, M. Hutchens, C. Hawkins, A. Radnov. How much do clinical trials cost?. Nat Rev Drug Discov, 16 (6) (2017), pp. 381-382. DOI: 10.1038/nrd.2017.70
[2]
T.J. Moore, H. Zhang, G. Anderson, G.C. Alexander. Estimated costs of pivotal trials for novel therapeutic agents approved by the US Food and Drug Administration,2015-2016. JAMA Intern Med, 178 (11) (2018), pp. 1451-1457. DOI: 10.1001/jamainternmed.2018.3931
[3]
S.M. Paul, D.S. Mytelka, C.T. Dunwiddie, C.C. Persinger, B.H. Munos, S.R. Lindborg, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov, 9 (3) (2010), pp. 203-214. DOI: 10.1038/nrd3078
[4]
A.L. Hopkins. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol, 4 (11) (2008), pp. 682-690. DOI: 10.1038/nchembio.118
[5]
Z. Wang, M. Gerstein, M. Snyder. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10 (1) (2009), pp. 57-63
[6]
J. Giacomotto, L. Ségalat. High-throughput screening and small animal models, where are we?. Br J Pharmacol, 160 (2) (2010), pp. 204-216. DOI: 10.1111/j.1476-5381.2010.00725.x
[7]
L.M. Mayr, D. Bojanic. Novel trends in high-throughput screening. Curr Opin Pharmacol, 9 (5) (2009), pp. 580-588.
[8]
B.K. Shoichet. Virtual screening of chemical libraries. Nature, 432 (7019) (2004), pp. 862-865. DOI: 10.1038/nature03197
[9]
D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov, 3 (11) (2004), pp. 935-949. DOI: 10.1038/nrd1549
[10]
Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521 (7553) (2015), pp. 436-444. DOI: 10.1038/nature14539
[11]
C. Farabet, C. Couprie, L. Najman, Y. LeCun. Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell, 35 (8) (2013), pp. 1915-1929.
[12]
G.E. Dahl, D. Yu, L. Deng, A. Acero. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans Audio Speech, 20 (1) (2012), pp. 30-42.
[13]
J. Ding, N. Sharon, Z. Bar-Joseph. Temporal modelling using single-cell transcriptomics. Nat Rev Genet, 23 (6) (2022), pp. 355-368. DOI: 10.1038/s41576-021-00444-7
[14]
S. Liu, C. Trapnell. Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000 Res, 5 (1) (2016), Article 182. DOI: 10.12688/f1000research.7223.1
[15]
M.D. Luecken, F.J. Theis. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol, 15 (6) (2019), Article e8746.
[16]
R. Aebersold, M. Mann. Mass spectrometry-based proteomics. Nature, 422 (6928) (2003), pp. 198-207.
[17]
S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res, 49 (D1) (2021), pp. D1388-D1395. DOI: 10.1093/nar/gkaa971
[18]
A. Bateman, M.J. Martin, S. Orchard, M. Magrane, R. Agivetova, S. Ahmad, et al. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res, 49 (D1) (2021), pp. D480-D489.
[19]
C. Manzoni, D.A. Kia, J. Vandrovcova, J. Hardy, N.W. Wood, P.A. Lewis, et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform, 19 (2) (2018), pp. 286-302. DOI: 10.1093/bib/bbw114
[20]
Y. Shi, P.L. Prieto, T. Zepel, S. Grunert, J.E. Hein. Automated experimentation powers data science in chemistry. Acc Chem Res, 54 (3) (2021), pp. 546-555. DOI: 10.1021/acs.accounts.0c00736
[21]
A.S. Nam, R. Chaligne, D.A. Landau. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet, 22 (1) (2021), pp. 3-18. DOI: 10.1038/s41576-020-0265-5
[22]
M.J. Waring, J. Arrowsmith, A.R. Leach, P.D. Leeson, S. Mandrell, R.M. Owen, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov, 14 (7) (2015), pp. 475-486. DOI: 10.1038/nrd4609
[23]
K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A. Žídek, et al. Highly accurate protein structure prediction for the human proteome. Nature, 596 (7873) (2021), pp. 590-596. DOI: 10.1038/s41586-021-03828-1
[24]
C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, et al. Do transformers really perform badly for graph representation?. Adv Neural Inf Process Syst, 34 (1) (2021), pp. 28877-28888.
[25]
N.S. Seyed Tabib, M. Madgwick, P. Sudhakar, B. Verstockt, T. Korcsmaros, S. Vermeire. Big data in IBD: big progress for clinical practice. Gut, 69 (8) (2020), pp. 1520-1532. DOI: 10.1136/gutjnl-2019-320065
[26]
J.M. Granda, L. Donina, V. Dragone, D.L. Long, L. Cronin. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature, 559 (7714) (2018), pp. 377-381 Corrected in: Nature 2019;570:E67-9. DOI: 10.1038/s41586-018-0307-8
[27]
F. Zhong, J. Xing, X. Li, X. Liu, Z. Fu, Z. Xiong, et al. Artificial intelligence in drug design. Sci China Life Sci, 61 (10) (2018), pp. 1191-1204. DOI: 10.1007/s11427-018-9342-2
[28]
A. Zhavoronkov, Y.A. Ivanenkov, A. Aliper, M.S. Veselov, V.A. Aladinskiy, A.V. Aladinskaya, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol, 37 (9) (2019), pp. 1038-1040. DOI: 10.1038/s41587-019-0224-x
[29]
R. Winter, F. Montanari, F. Noé, D.A. Clevert. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem Sci, 10 (6) (2019), pp. 1692-1701. DOI: 10.1039/c8sc04175j
[30]
S. Zheng, J. Rao, Y. Song, J. Zhang, X. Xiao, E.F. Fang, et al. PharmKG: a dedicated knowledge graph benchmark for bomedical data mining. Brief Bioinform, 22 (4) (2021), Article bbaa344.
[31]
J. Jeon, S. Nim, J. Teyra, A. Datti, J.L. Wrana, S.S. Sidhu, et al. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Med, 6 (7) (2014), Article 57.
[32]
S. Riniker, Y. Wang, J.L. Jenkins, G.A. Landrum. Using information from historical high-throughput screens to predict active compounds. J Chem Inf Model, 54 (7) (2014), pp. 1880-1891. DOI: 10.1021/ci500190p
[33]
A.O. Basile, A. Yahi, N.P. Tatonetti. Artificial intelligence for drug toxicity and safety. Trends Pharmacol Sci, 40 (9) (2019), pp. 624-635.
[34]
S. Cruz Rivera, X. Liu, A.W. Chan, A.K. Denniston, M.J. Calvert. The SPIRIT-AI and CONSORT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Lancet Digit Health, 2 (10) (2020), pp. e549-e560.
[35]
S. Steiner, J. Wolf, S. Glatzel, A. Andreou, J.M. Granda, G. Keenan, et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science, 363 (6423) (2019), Article eaav2211.
[36]
P. Hamet, J. Tremblay. Artificial intelligence in medicine. Metabolism, 69 (Suppl) ( 2017), pp. S36-S40.
[37]
Y. Zhou, Y. Zhang, X. Lian, F. Li, C. Wang, F. Zhu, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res, 50 (D1) (2022), pp. D1398-D1407. DOI: 10.1093/nar/gkab953
[38]
K. Amahong, W. Zhang, Y. Zhou, S. Zhang, J. Yin, F. Li, et al. CovInter: interaction data between coronavirus RNAs and host proteins. Nucleic Acids Res, 51 (D1) (2022), pp. D546-D556
[39]
S. Liu, L. Chen, Y. Zhang, Y. Zhou, Y. He, Z. Chen, et al. M6AREG: m6A-centered regulation of disease development and drug response. Nucleic Acids Res, 51 (D1) (2022), pp. D1333-D1344
[40]
X. Sun, Y. Zhang, H. Li, Y. Zhou, S. Shi, Z. Chen, et al. DRESIS: the first comprehensive landscape of drug resistance information. Nucleic Acids Res, 51 (D1) (2022), pp. D1263-D1275
[41]
X. Wang, F. Li, W. Qiu, B. Xu, Y. Li, X. Lian, et al. SYNBIP: synthetic binding proteins for research, diagnosis and therapy. Nucleic Acids Res, 50 (D1) (2022), pp. D560-D570. DOI: 10.1093/nar/gkab926
[42]
S. Zhang, X. Sun, M. Mou, K. Amahong, H. Sun, W. Zhang, et al. REGLIV: molecular regulation data of diverse living systems facilitating current multiomics research. Comput Biol Med, 148 (1) (2022), Article 105825.
[43]
S.K. Burley, C. Bhikadiya, C. Bi, S. Bittrich, L. Chen, G.V. Crichlow, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res, 49 (D1) (2021), pp. D437-D451. DOI: 10.1093/nar/gkaa1038
[44]
Y. Perez-Riverol, J. Bai, C. Bandla, D. García-Seisdedos, S. Hewapathirana, S. Kamatchinathan, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res, 50 (D1) (2022), pp. D543-D552. DOI: 10.1093/nar/gkab1038
[45]
M. Blum, H.Y. Chang, S. Chuguransky, T. Grego, S. Kandasaamy, A. Mitchell, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res, 49 (D1) (2021), pp. D344-D354. DOI: 10.1093/nar/gkaa977
[46]
J. Yin, W. Sun, F. Li, J. Hong, X. Li, Y. Zhou, et al. VARIDT 1.0: variability of drug transporter database. Nucleic Acids Res, 48 (D1) (2020), pp. D1042-D1050. DOI: 10.1093/nar/gkz779
[47]
T. Fu, F. Li, Y. Zhang, J. Yin, W. Qiu, X. Li, et al. VARIDT 2.0: structural variability of drug transporter. Nucleic Acids Res, 50 (D1) (2022), pp. D1417-D1431. DOI: 10.1093/nar/gkab1013
[48]
F. Cunningham, J.E. Allen, J. Allen, J. Alvarez-Jarreta, M.R. Amode, I.M. Armean, et al. Ensembl 2022. Nucleic Acids Res, 50 (D1) (2022), pp. D988-D995. DOI: 10.1093/nar/gkab1049
[49]
W.J. Kent, C.W. Sugnet, T.S. Furey, K.M. Roskin, T.H. Pringle, A.M. Zahler, et al. The human genome browser at UCSC. Genome Res, 12 (6) (2002), pp. 996-1006
[50]
T. Barrett, S.E. Wilhite, P. Ledoux, C. Evangelista, I.F. Kim, M. Tomashevsky, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res, 41 (D1) (2013), pp. D991-D995.
[51]
E.W. Sayers, M. Cavanaugh, K. Clark, K.D. Pruitt, C.L. Schoch, S.T. Sherry, et al. GenBank. Nucleic Acids Res, 50 (D1) (2022), pp. D161-D164. DOI: 10.1093/nar/gkab1135
[52]
W. Li, K.R. O’Neill, D.H. Haft, M. DiCuccio, V. Chetvernin, A. Badretdin, et al. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res, 49 (D1) (2021), pp. D1020-D1028. DOI: 10.1093/nar/gkaa1105
[53]
I. Papatheodorou, P. Moreno, J. Manning, A.M. Fuentes, N. George, S. Fexova, et al. Expression Atlas update: from tissues to single cells. Nucleic Acids Res, 48 (D1) (2020), pp. D77-D83.
[54]
D. Mendez, A. Gaulton, A.P. Bento, J. Chambers, M. De Veij, E. Félix, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res, 47 (D1) (2019), pp. D930-D940. DOI: 10.1093/nar/gky1075
[55]
D.S. Wishart, Y.D. Feunang, A.C. Guo, E.J. Lo, A. Marcu, J.R. Grant, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res, 46 (D1) (2018), pp. D1074-D1082. DOI: 10.1093/nar/gkx1037
[56]
F. Li, J. Yin, M. Lu, M. Mou, Z. Li, Z. Zeng, et al. DrugMAP: molecular atlas and pharma-information of all drugs. Nucleic Acids Res, 51 (D1) (2022), pp. D1288-D1299
[57]
J. Tang, Z.U. Tanoli, B. Ravikumar, Z. Alam, A. Rebane, M. Vähä-Koskela, et al. Drug target commons: a community effort to build a consensus knowledge base for drug-target interactions. Cell Chem Biol, 25 (2) (2018), pp. 224-229. DOI: 10.3390/electronics7100224
[58]
T.K. Sheils, S.L. Mathias, K.J. Kelleher, V.B. Siramshetty, D.T. Nguyen, C.G. Bologa, et al. TCRD and Pharos 2021: mining the human proteome for disease biology. Nucleic Acids Res, 49 (D1) (2021), pp. D1334-D1346. DOI: 10.1093/nar/gkaa993
[59]
C. Hutter, J.C. Zenklusen. The Cancer Genome Atlas: creating lasting value beyond its data. Cell, 173 (2) (2018), pp. 283-285.
[60]
J. Piñero, J. Saüch, F. Sanz, L.I. Furlong. The DisGeNET Cytoscape App: exploring and visualizing disease genomics data. Comput Struct Biotechnol J, 19 (1) (2021), pp. 2960-2967.
[61]
M.J. Landrum, S. Chitipiralla, G.R. Brown, C. Chen, B. Gu, J. Hart, et al. ClinVar: improvements to accessing data. Nucleic Acids Res, 48 (D1) (2020), pp. D835-D844. DOI: 10.1093/nar/gkz972
[62]
J.S. Amberger, C.A. Bocchini, A.F. Scott,A. Hamosh. OMIM. org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res, 47 (D1) (2019), pp. D1038-D1043. DOI: 10.1093/nar/gky1151
[63]
D.A. Hashimoto, E. Witkowski, L. Gao, O. Meireles, G. Rosman. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology, 132 (2) (2020), pp. 379-394. DOI: 10.1097/aln.0000000000002960
[64]
W. Cheng, C.A. Ng. Using machine learning to classify bioactivity for 3486 per- and polyfluoroalkyl substances (PFASs) from the OECD list. Environ Sci Technol, 53 (23) (2019), pp. 13970-13980. DOI: 10.1021/acs.est.9b04833
[65]
J. Hong, Y. Luo, M. Mou, J. Fu, Y. Zhang, W. Xue, et al. Convolutional neural network-based annotation of bacterial type IV secretion system effectors with enhanced accuracy and reduced false discovery. Brief Bioinform, 21 (5) (2020), pp. 1825-1836. DOI: 10.1093/bib/bbz120
[66]
A.S. Rifaioglu, H. Atas, M.J. Martin, R. Cetin-Atalay, V. Atalay, T. Doğan. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform, 20 (5) (2019), pp. 1878-1912. DOI: 10.1093/bib/bby061
[67]
M. Kulmanov, R. Hoehndorf. DeepGOPlus: improved protein function prediction from sequence. Bioinformatics, 36 (2) (2020), pp. 422-429. DOI: 10.1093/bioinformatics/btz595
[68]
M. Kulmanov, M.A. Khan, R. Hoehndorf. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier. Bioinformatics, 34 (4) (2018), pp. 660-668. DOI: 10.1093/bioinformatics/btx624
[69]
V. Gligorijević, P.D. Renfrew, T. Kosciolek, J.K. Leman, D. Berenberg, T. Vatanen, et al. Structure-based protein function prediction using graph convolutional networks. Nat Commun, 12 (1) (2021), Article 3168.
[70]
W. Xia, L. Zheng, J. Fang, F. Li, Y. Zhou, Z. Zeng, et al. PFmulDL: a novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods. Comput Biol Med, 145 (1) (2022), Article 105465.
[71]
P. Carracedo-Reboredo, J. Liñares-Blanco, N. Rodríguez-Fernández, F. Cedrón, F.J. Novoa, A. Carballal, et al. A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J, 19 (1) (2021), pp. 4538-4558.
[72]
J. Ubels, T. Schaefers, C. Punt, H.J. Guchelaar, J. de Ridder. RAINFOREST: a random forest approach to predict treatment benefit in data from (failed) clinical drug trials. Bioinformatics, 36 (Suppl 2) (2020), pp. i601-i609. DOI: 10.1093/bioinformatics/btaa799
[73]
C. Yang, Y. Zhang. Delta machine learning to improve scoring-ranking-screening performances of protein-ligand scoring functions. J Chem Inf Model, 62 (11) (2022), pp. 2696-2712. DOI: 10.1021/acs.jcim.2c00485
[74]
K. Heikamp, J. Bajorath. Support vector machines for drug discovery. Expert Opin Drug Discov, 9 (1) (2014), pp. 93-104. DOI: 10.1517/17460441.2014.866943
[75]
S. Zhang, X. Li, M. Zong, X. Zhu, R. Wang. Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans Neural Netw Learn Syst, 29 (5) (2018), pp. 1774-1785. DOI: 10.1109/tnnls.2017.2673241
[76]
B. Liu, H. He, H. Luo, T. Zhang, J. Jiang. Artificial intelligence and big data facilitated targeted drug discovery. Stroke Vasc Neurol, 4 (4) (2019), pp. 206-213
[77]
D. Cirillo, A. Valencia. Big data analytics for personalized medicine. Curr Opin Biotechnol, 58 (1) (2019), pp. 161-167.
[78]
J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, V. Svetnik. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model, 55 (2) (2015), pp. 263-274. DOI: 10.1021/ci500747n
[79]
H.C. Shin, H.R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging, 35 (5) (2016), pp. 1285-1298.
[80]
B.J. Hou, Z.H. Zhou. Learning with interpretable structure from gated RNN. IEEE Trans Neural Netw Learn Syst, 31 (7) (2020), pp. 2267-2279.
[81]
Z. Zhang, L. Chen, F. Zhong, D. Wang, J. Jiang, S. Zhang, et al. Graph neural network approaches for drug-target interactions. Curr Opin Struct Biol, 73 (1) (2022), Article 102327
[82]
H. Zhang, Y. Wang, Z. Pan, X. Sun, M. Mou, B. Zhang, et al. ncRNAInter: a novel strategy based on graph neural network to discover interactions between lncRNA and miRNA. Brief Bioinform, 23 (6) (2022), Article bbac411.
[83]
C. Sun, Y. Cao, J.M. Wei, J. Liu. Autoencoder-based drug-target interaction prediction by preserving the consistency of chemical properties and functions of drugs. Bioinformatics, 37 (20) (2021), pp. 3618-3625. DOI: 10.1093/bioinformatics/btab384
[84]
X. Yi, E. Walia, P. Babyn. Generative adversarial network in medical imaging: a review. Med Image Anal, 58 (1) (2019), Article 101552.
[85]
X. Zhou, F. Shen, L. Liu, W. Liu, L. Nie, Y. Yang, et al. Graph convolutional network hashing. IEEE Trans Cybern, 50 (4) (2020), pp. 1460-1472. DOI: 10.1109/tcyb.2018.2883970
[86]
G.S. Handelman, H.K. Kok, R.V. Chandra, A.H. Razavi, S. Huang, M. Brooks, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. AJR Am J Roentgenol, 212 (1) (2019), pp. 38-43. DOI: 10.2214/ajr.18.20224
[87]
B.A. Richards, P.W. Frankland. The persistence and transience of memory. Neuron, 94 (6) (2017), pp. 1071-1084.
[88]
A. Krizhevsky, I. Sutskever, G.E. Hinton. ImageNet classification with deep convolutional neural networks. Commun ACM, 60 (6) (2017), pp. 84-90. DOI: 10.1145/3065386
[89]
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res, 15 (1) (2014), pp. 1929-1958.
[90]
J. Sun, X. Chen, Z. Zhang, S. Lai, B. Zhao, H. Liu, et al. Forecasting the long-term trend of COVID-19 epidemic using a dynamic model. Sci Rep, 10 (1) (2020), Article 21122.
[91]
Y. Jiao, P. Du. Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quant Biol, 4 (4) (2016), pp. 320-330. DOI: 10.1007/s40484-016-0081-2
[92]
L. Xue, J. Bajorath. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen, 3 (5) (2000), pp. 363-372. DOI: 10.2174/1386207003331454
[93]
J. Wenzel, H. Matter, F. Schmidt. Predictive multitask deep neural network models for ADME-Tox properties: learning from large data sets. J Chem Inf Model, 59 (3) (2019), pp. 1253-1268. DOI: 10.1021/acs.jcim.8b00785
[94]
Goh GB, Siegel C, Vishnu A, Hodas N. Using rule-based labels for weak supervised learning: a ChemNet for transferable chemical property prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2018 Aug 19-23; London, UK. New York City: Association for Computing Machinery; 2018. p.302-10.
[95]
M. Popova, O. Isayev, A. Tropsha. Deep reinforcement learning for de novo drug design. Sci Adv, 4 (7) (2018), Article eaap7885.
[96]
P. Karpov, G. Godin, I.V. Tetko. Transformer-CNN: Swiss knife for QSAR modeling and interpretation. J Cheminform, 12 (1) (2020), Article 17.
[97]
Goh GB, Hodas NO, Siegel C, Vishnu A.SMILES2Vec:an interpretable general-purpose deep neural network for predicting chemical properties. 2017. arXiv:171202034.
[98]
Z. Xiong, D. Wang, X. Liu, F. Zhong, X. Wan, X. Li, et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J Med Chem, 63 (16) (2020), pp. 8749-8760. DOI: 10.1021/acs.jmedchem.9b00959
[99]
K. Yang, K. Swanson, W. Jin, C. Coley, P. Eiden, H. Gao, et al. Analyzing learned molecular representations for property prediction. J Chem Inf Model, 59 (8) (2019), pp. 3370-3388. DOI: 10.1021/acs.jcim.9b00237
[100]
K. Li, C. Xu, J. Huang, W. Liu, L. Zhang, W. Wan, et al. Prediction and identification of the effectors of heterotrimeric G proteins in rice (Oryza sativa L.). Brief Bioinform, 18 (2) (2017), pp. 270-278.
[101]
M. Wu, Y. Yang, H. Wang, Y. Xu. A deep learning method to more accurately recall known lysine acetylation sites. BMC Bioinf, 20 (1) (2019), Article 49. DOI: 10.1007/978-3-319-99270-9_4
[102]
Y.H. Li, J.Y. Xu, L. Tao, X.F. Li, S. Li, X. Zeng, et al. SVM-Prot 2016: a web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. PLoS One, 11 (8) (2016), Article e0155290. DOI: 10.1371/journal.pone.0155290
[103]
L. Zou, C. Nan, F. Hu. Accurate prediction of bacterial type IV secreted effectors using amino acid composition and PSSM profiles. Bioinformatics, 29 (24) (2013), pp. 3135-3142. DOI: 10.1093/bioinformatics/btt554
[104]
P. Petrilli. Classification of protein sequences by their dipeptide composition. Comput Appl Biosci, 9 (2) (1993), pp. 205-209. DOI: 10.1093/bioinformatics/9.2.205
[105]
S. Seo, M. Oh, Y. Park, S. Kim. DeepFam: deep learning based alignment-free method for protein family modeling and prediction. Bioinformatics, 34 (13) (2018), pp. i254-i262. DOI: 10.1093/bioinformatics/bty275
[106]
J. Wang, B. Yang, J. Revote, A. Leier, T.T. Marquez-Lago, G. Webb, et al. POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics, 33 (17) (2017), pp. 2756-2758. DOI: 10.1093/bioinformatics/btx302
[107]
J. Hong, Y. Luo, Y. Zhang, J. Ying, W. Xue, T. Xie, et al. Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning. Brief Bioinform, 21 (4) (2020), pp. 1437-1447. DOI: 10.1093/bib/bbz081
[108]
C.Y. Yu, X.X. Li, H. Yang, Y.H. Li, W.W. Xue, Y.Z. Chen, et al. Assessing the performances of protein function prediction algorithms from the perspectives of identification accuracy and false discovery rate. Int J Mol Sci, 19 (1) (2018), Article 183
[109]
K.C. Chou. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 21 (1) (2005), pp. 10-19.
[110]
K.C. Chou. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 43 (3) (2001), pp. 246-255.
[111]
P.D. Mosier, A.E. Counterman, P.C. Jurs, D.E. Clemmer. Prediction of peptide ion collision cross sections from topological molecular structure and amino acid parameters. Anal Chem, 74 (6) (2002), pp. 1360-1370.
[112]
B. Ren. Atomic-level-based AI topological descriptors for structure-property correlations. J Chem Inf Comput Sci, 43 (1) (2003), pp. 161-169.
[113]
C.N. Magnan, P. Baldi. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics, 30 (18) (2014), pp. 2592-2597. DOI: 10.1093/bioinformatics/btu352
[114]
A. Strokach, D. Becerra, C. Corbi-Verge, A. Perez-Riba, P.M. Kim. Fast and flexible protein design using deep graph neural networks. Cell Syst, 11 (4) (2020), pp. 402-411.
[115]
J. Ingraham, V. Garg, R. Barzilay, T. Jaakkola. Generative models for graph-based protein design. Adv Neural Inf Process Syst, 32 (1) (2019), pp. 15820-15831
[116]
J.G. Greener, L. Moffat, D.T. Jones. Design of metalloproteins and novel protein folds using variational autoencoders. Sci Rep, 8 (1) (2018), Article 16189.
[117]
M. Karimi, S. Zhu, Y. Cao, Y. Shen. De novo protein design for novel folds using guided conditional Wasserstein generative adversarial networks. J Chem Inf Model, 60 (12) (2020), pp. 5667-5681. DOI: 10.1021/acs.jcim.0c00593
[118]
Q. Ye, C.Y. Hsieh, Z. Yang, Y. Kang, J. Chen, D. Cao, et al. A unified drug-target interaction prediction framework based on knowledge graph and recommendation system. Nat Commun, 12 (1) (2021), Article 6775.
[119]
A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci USA, 118 (15) (2021): e2016239118
[120]
G.B. Li, L.L. Yang, W.J. Wang, L.L. Li, S.Y. Yang. ID-Score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J Chem Inf Model, 53 (3) (2013), pp. 592-600. DOI: 10.1021/ci300493w
[121]
F. Montanari, L. Kuhnke, A. Ter Laak, D.A. Clevert. Modeling physico-chemical ADMET endpoints with multitask graph convolutional networks. Molecules, 25 (1) (2019), Article 44. DOI: 10.3390/molecules25010044
[122]
S. Dara, S. Dhamercherla, S.S. Jadav, C.M. Babu, M.J. Ahsan. Machine learning in drug discovery: a review. Artif Intell Rev, 55 (3) (2022), pp. 1947-1999. DOI: 10.1007/s10462-021-10058-4
[123]
M. Olivecrona, T. Blaschke, O. Engkvist, H. Chen. Molecular de-novo design through deep reinforcement learning. J Cheminform, 9 (1) (2017), Article 48.
[124]
S.N. Dean, J.A.E. Alvarez, D. Zabetakis, S.A. Walper, A.P. Malanoski. PepVAE: variational autoencoder framework for antimicrobial peptide generation and activity prediction. Front Microbiol, 12 (1) (2021), Article 725727.
[125]
G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res, 49 (W1) (2021), pp. W5-14. DOI: 10.1093/nar/gkab255
[126]
T. Gaudelet, B. Day, A.R. Jamasb, J. Soman, C. Regep, G. Liu, et al. Utilizing graph machine learning within drug discovery and development. Brief Bioinform, 22 (6) (2021), p. bbab159.
[127]
D.C. Swinney, J. Anthony. How were new medicines discovered?. Nat Rev Drug Discov, 10 (7) (2011), pp. 507-519. DOI: 10.1038/nrd3480
[128]
F. Vincent, A. Nueda, J. Lee, M. Schenone, M. Prunotto, M. Mercola.Publisher correction: phenotypic drug discovery: recent successes, lessons learned and new directions. Nat Rev Drug Discov, 21 (7) (2022), p. 541. DOI: 10.1038/s41573-022-00503-6
[129]
Y.H. Li, X.X. Li, J.J. Hong, Y.X. Wang, J.B. Fu, H. Yang, et al. Clinical trials, progression-speed differentiating features and swiftness rule of the innovative targets of first-in-class drugs. Brief Bioinform, 21 (2) (2020), pp. 649-662. DOI: 10.1093/bib/bby130
[130]
B.B. Misra, C.D. Langefeld, M. Olivier, L.A. Cox. Integrated omics: tools, advances, and future approaches. J Mol Endocrinol, 62 (1) (2019), pp. 21-45.
[131]
J. Fu, Y. Zhang, Y. Wang, H. Zhang, J. Liu, J. Tang, et al. Optimization of metabolomic data processing using NOREVA. Nat Protoc, 17 (1) (2022), pp. 129-151. DOI: 10.1038/s41596-021-00636-9
[132]
J. Tang, J. Fu, Y. Wang, B. Li, Y. Li, Q. Yang, et al. ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies. Brief Bioinform, 21 (2) (2020), pp. 621-636. DOI: 10.1093/bib/bby127
[133]
F. Li, Y. Zhou, Y. Zhang, J. Yin, Y. Qiu, J. Gao, et al. POSREG: proteomic signature discovered by simultaneously optimizing its reproducibility and generalizability. Brief Bioinform, 23 (2) (2022), p. bbac040.
[134]
F. Li, J. Yin, M. Lu, Q. Yang, Z. Zeng, B. Zhang, et al. ConSIG: consistent discovery of molecular signature from OMIC data. Brief Bioinform, 23 (4) (2022), p. bbac253.
[135]
Q. Yang, B. Li, P. Wang, J. Xie, Y. Feng, Z. Liu, et al. LargeMetabo: an out-of-the-box tool for processing and analyzing large-scale metabolomic data. Brief Bioinform, 23 (6) (2022), p. bbac455.
[136]
M. Mou, Z. Pan, M. Lu, H. Sun, Y. Wang, Y. Luo, et al. Application of machine learning in spatial proteomics. J Chem Inf Model, 62 (23) (2022), pp. 5875-5895. DOI: 10.1021/acs.jcim.2c01161
[137]
J. Fu, Q. Yang, Y. Luo, S. Zhang, J. Tang, Y. Zhang, et al. Label-free proteome quantification and evaluation. Brief Bioinform, 24 (1) (2022), p. bbac477
[138]
Q. Yang, Y. Wang, Y. Zhang, F. Li, W. Xia, Y. Zhou, et al. NOREVA: enhanced normalization and evaluation of time-course and multi-class metabolomic data. Nucleic Acids Res, 48 (W1) (2020), pp. W436-W448. DOI: 10.1093/nar/gkaa258
[139]
S. Zhang, K. Amahong, C. Zhang, F. Li, J. Gao, Y. Qiu, et al. RNA-RNA interactions between SARS-CoV-2 and host benefit viral development and evolution during COVID-19 infection. Brief Bioinform, 23 (1) (2022), p. bbab397.
[140]
Q. Yang, B. Li, J. Tang, X. Cui, Y. Wang, X. Li, et al. Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data. Brief Bioinform, 21 (3) (2020), pp. 1058-1068. DOI: 10.1093/bib/bbz049
[141]
S. Zhang, K. Amahong, X. Sun, X. Lian, J. Liu, H. Sun, et al. The miRNA: a small but powerful RNA for COVID-19. Brief Bioinform, 22 (2) (2021), pp. 1137-1149. DOI: 10.1093/bib/bbab062
[142]
P.S. Reel, S. Reel, E. Pearson, E. Trucco, E. Jefferson. Using machine learning approaches for multi-omics data analysis: a review. Biotechnol Adv, 49 (1) (2021), Article 107739.
[143]
The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455 (7216) ( 2008), pp. 1061-1068. Corrected in: Nature 2013 ;494(7438):506
[144]
A. Subramanian, R. Narayan, S.M. Corsello, D.D. Peck, T.E. Natoli, X. Lu, et al. A next generation connectivity map: L 1000 platform and the first 1,000,000 profiles. Cell, 171 (6) (2017), pp. 1437-1452.
[145]
M. Uhlén, L. Fagerberg, B.M. Hallström, C. Lindskog, P. Oksvold, A. Mardinoglu, et al. Tissue-based map of the human proteome. Science, 347 (6220) (2015), p. 1260419.
[146]
M.S. Kim, S.M. Pinto, D. Getnet, R.S. Nirujogi, S.S. Manda, R. Chaerkady, et al. A draft map of the human proteome. Nature, 509 (7502) (2014), pp. 575-581. DOI: 10.1038/nature13302
[147]
D.S. Wishart, A. Guo, E. Oler, F. Wang, A. Anjum, H. Peters, et al. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res, 50 (D1) (2022), pp. D622-D631. DOI: 10.1093/nar/gkab1062
[148]
C.A. Smith, G. O’Maille, E.J. Want, C. Qin, S.A. Trauger, T.R. Brandon, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit, 27 (6) (2005), pp. 747-751. DOI: 10.1097/01.ftd.0000179845.53213.39
[149]
M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, K. Morishima. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res, 45 (D1) (2017), pp. D353-D361. DOI: 10.1093/nar/gkw1092
[150]
R. Caspi, R. Billington, I.M. Keseler, A. Kothari, M. Krummenacker, P.E. Midford, et al. The MetaCyc database of metabolic pathways and enzymes—a 2019 update. Nucleic Acids Res, 48 (D1) (2020), pp. D445-D453. DOI: 10.1093/nar/gkz862
[151]
M. Gillespie, B. Jassal, R. Stephan, M. Milacic, K. Rothfels, A. Senff-Ribeiro, et al. The Reactome pathway knowledgebase 2022. Nucleic Acids Res, 50 (D1) (2022), pp. D687-D692. DOI: 10.1093/nar/gkab1028
[152]
Y. Zhang, J.T. Tseng, I.C. Lien, F. Li, W. Wu, H. Li. mRNAsi index: machine learning in mining lung adenocarcinoma stem cell biomarkers. Genes, 11 (3) (2020), p. 257
[153]
M. Duda, H. Zhang, H.D. Li, D.P. Wall, M. Burmeister, Y. Guan. Brain-specific functional relationship networks inform autism spectrum disorder gene prediction. Transl Psychiatry, 8 (1) (2018), p. 56.
[154]
T.P. Liu, Y.Y. Hsieh, C.J. Chou, P.M. Yang. Systematic polypharmacology and drug repurposing via an integrated L1000-based Connectivity Map database mining. R Soc Open Sci, 5 (11) (2018), Article 181321. DOI: 10.1098/rsos.181321
[155]
Y. Gao, S. Kim, Y.I. Lee, J. Lee.Cellular stress-modulating drugs can potentially be identified by in silico screening with Connectivity Map (CMap). Int J Mol Sci, 20 (22) (2019), p. 5601. DOI: 10.3390/ijms20225601
[156]
X. Liu, S. Ouyang, B. Yu, Y. Liu, K. Huang, J. Gong, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res, 38 (Suppl 2) (2010), pp. W609-W614. DOI: 10.1093/nar/gkq300
[157]
X. Wang, Y. Shen, S. Wang, S. Li, W. Zhang, X. Liu, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res, 45 (W1) (2017), pp. W356-W360. DOI: 10.1093/nar/gkx374
[158]
X. Wang, C. Pan, J. Gong, X. Liu, H. Li. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J Chem Inf Model, 56 (6) (2016), pp. 1175-1183. DOI: 10.1021/acs.jcim.5b00690
[159]
J. Gong, C. Cai, X. Liu, X. Ku, H. Jiang, D. Gao, et al. ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics, 29 (14) (2013), pp. 1827-1829. DOI: 10.1093/bioinformatics/btt270
[160]
X. Wang, H. Chen, F. Yang, J. Gong, S. Li, J. Pei, et al. iDrug: a web-accessible and interactive drug discovery and design platform. J Cheminform, 6 (1) (2014), p. 28
[161]
H. Noh, R. Gunawan. Inferring gene targets of drugs and chemical compounds from gene expression profiles. Bioinformatics, 32 (14) (2016), pp. 2120-2127. DOI: 10.1093/bioinformatics/btw148
[162]
J. Zhu, J. Wang, X. Wang, M. Gao, B. Guo, M. Gao, et al. Prediction of drug efficacy from transcriptional profiles with deep learning. Nat Biotechnol, 39 (11) (2021), pp. 1444-1452. DOI: 10.1038/s41587-021-00946-z
[163]
J.H. Woo, Y. Shimoni, W.S. Yang, P. Subramaniam, A. Iyer, P. Nicoletti, et al. Elucidating compound mechanism of action by network perturbation analysis. Cell, 162 (2) (2015), pp. 441-451.
[164]
B. Li, J. Tang, Q. Yang, S. Li, X. Cui, Y. Li, et al. NOREVA: normalization and evaluation of MS-based metabolomics data. Nucleic Acids Res, 45 (W1) (2017), pp. W162-W170. DOI: 10.1093/nar/gkx449
[165]
The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature, 474 (7353) (2011), pp. 609-615 Erratum in: Nature 2012;490(7419):292
[166]
D.L. Masica, R. Karchin. Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer Res, 71 (13) (2011), pp. 4550-4561.
[167]
J. Fang, P. Zhang, Q. Wang, C.W. Chiang, Y. Zhou, Y. Hou, et al. Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimer’s disease. Alzheimers Res Ther, 14 (1) (2022), p. 7.
[168]
N.A. Pabon, Y. Xia, S.K. Estabrooks, Z. Ye, A.K. Herbrand, E. Süß, et al. Predicting protein targets for drug-like compounds using transcriptomics. PLoS Comput Biol, 14 (12) (2018), p. e1006651. DOI: 10.1371/journal.pcbi.1006651
[169]
F. Zhong, X. Wu, R. Yang, X. Li, D. Wang, Z. Fu, et al. Drug target inference by mining transcriptional data using a novel graph convolutional network framework. Protein Cell, 13 (4) (2022), pp. 281-301. DOI: 10.1007/s13238-021-00885-0
[170]
K. Jaganathan, S. Kyriazopoulou Panagiotopoulou, J.F. McRae, S.F. Darbandi, D. Knowles, Y.I. Li, et al. Predicting splicing from primary sequence with deep learning. Cell, 176 (3) (2019), pp. 535-548.
[171]
R. Lopez, J. Regier, M.B. Cole, M.I. Jordan, N. Yosef. Deep generative modeling for single-cell transcriptomics. Nat Methods, 15 (12) (2018), pp. 1053-1058. DOI: 10.1038/s41592-018-0229-2
[172]
F. Liu, H. Li, C. Ren, X. Bo, W. Shu. PEDLA: predicting enhancers with a deep learning-based algorithmic framework. Sci Rep, 6 (1) (2016), p. 28517.
[173]
D.J. Downes, A.R. Cross, P. Hua, N. Roberts, R. Schwessinger, A.J. Cutler, et al. COMBAT Consortium. Identification of LZTFL 1 as a candidate effector gene at a COVID-19 risk locus. Nat Genet, 53 (11) (2021), pp. 1606-1615. DOI: 10.1038/s41588-021-00955-3
[174]
J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A.A. Margolin, S. Kim, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483 (7391) (2012), pp. 603-607. DOI: 10.1038/nature11003
[175]
J.R. Dry, S. Pavey, C.A. Pratilas, C. Harbron, S. Runswick, D. Hodgson, et al. Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res, 70 (6) (2010), pp. 2264-2273.
[176]
H. Sharifi-Noghabi, O. Zolotareva, C.C. Collins, M. Ester. MOLI: multi-omics late integration with deep neural networks for drug response prediction. Bioinformatics, 35 (14) (2019), pp. i501-i509. DOI: 10.1093/bioinformatics/btz318
[177]
F. Iorio, T.A. Knijnenburg, D.J. Vis, G.R. Bignell, M.P. Menden, M. Schubert, et al. A landscape of pharmacogenomic interactions in cancer. Cell, 166 (3) (2016), pp. 740-754.
[178]
W. Peng, T. Chen, W. Dai. Predicting drug response based on multi-omics fusion and graph convolution. IEEE J Biomed Health Inform, 26 (3) (2022), pp. 1384-1393. DOI: 10.1109/jbhi.2021.3102186
[179]
Y. Wang, Y. Yang, S. Chen, J. Wang. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration. Brief Bioinform, 22 (5) (2021), p. bbab048.
[180]
N. Novac. Challenges and opportunities of drug repositioning. Trends Pharmacol Sci, 34 (5) (2013), pp. 267-272.
[181]
M.J. Keiser, V. Setola, J.J. Irwin, C. Laggner, A.I. Abbas, S.J. Hufeisen, et al. Predicting new molecular targets for known drugs. Nature, 462 (7270) (2009), pp. 175-181. DOI: 10.1038/nature08506
[182]
A.P. Davis, C.J. Grondin, R.J. Johnson, D. Sciaky, J. Wiegers, T.C. Wiegers, et al. Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res, 49 (D1) (2021), pp. D1138-D1143. DOI: 10.1093/nar/gkaa891
[183]
S.D. Harding, J.F. Armstrong, E. Faccenda, C. Southan, S.P.H. Alexander, A.P. Davenport, et al. The IUPHAR/BPS guide to PHARMACOLOGY in 2022: curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Res, 50 (D1) (2022), pp. D1282-D1294. DOI: 10.1093/nar/gkab1010
[184]
S. Avram, C.G. Bologa, J. Holmes, G. Bocci, T.B. Wilson, D.T. Nguyen, et al. DrugCentral 2021 supports drug discovery and repositioning. Nucleic Acids Res, 49 (D1) (2021), pp. D1160-D1169. DOI: 10.1093/nar/gkaa997
[185]
L. Urán Landaburu, A.J. Berenstein, S. Videla, P. Maru, D. Shanmugam, A. Chernomoretz, et al. TDR Targets 6: driving drug discovery for human pathogens through intensive chemogenomic data integration. Nucleic Acids Res, 48 (D1) (2020), pp. D992-1005.
[186]
T.F. Chen, Y.C. Chang, Y. Hsiao, K.H. Lee, Y.C. Hsiao, Y.H. Lin, et al. DockCoV2: a drug database against SARS-CoV-2. Nucleic Acids Res, 49 (D1) (2021), pp. D1152-D1159. DOI: 10.1093/nar/gkaa861
[187]
M. Kanehisa, M. Furumichi, Y. Sato, M. Ishiguro-Watanabe, M. Tanabe. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res, 49 (D1) (2021), pp. D545-D551. DOI: 10.1093/nar/gkaa970
[188]
C. Wang, G. Hu, K. Wang, M. Brylinski, L. Xie, L. Kurgan. PDID: database of molecular-level putative protein-drug interactions in the structural human proteome. Bioinformatics, 32 (4) (2016), pp. 579-586. DOI: 10.1093/bioinformatics/btv597
[189]
M. Kuhn, I. Letunic, L.J. Jensen, P. Bork. The SIDER database of drugs and side effects. Nucleic Acids Res, 44 (D1) (2016), pp. D1075-D1079. DOI: 10.1093/nar/gkv1075
[190]
D. Ochoa, A. Hercules, M. Carmona, D. Suveges, A. Gonzalez-Uriarte, C. Malangone, et al. Open Targets Platform: supporting systematic drug-target identification and prioritisation. Nucleic Acids Res, 49 (D1) (2021), pp. D1302-D1310. DOI: 10.1093/nar/gkaa1027
[191]
Z. Gao, H. Li, H. Zhang, X. Liu, L. Kang, X. Luo, et al.PDTD: a web-accessible protein database for drug target identification. BMC Bioinf, 9 (1) (2008), p. 104.
[192]
RDKit: open-source cheminformatics software [Internet]. Basel: T 5 Informatics GmbH; [cited 2023 Feb 9]. Available from: https://www.rdkit.org/.
[193]
N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison. Open Babel: an open chemical toolbox. J Cheminform, 3 (1) (2011), p. 33.
[194]
Daylight Toolkit: C-language interface for SMILESTM, SMARTS® and SMIRKS® [Internet]. Laguna Niguel: Daylight Chemical Information Systems, Inc.; [cited 2023 Feb 9]. Available from: https://www.daylight.com/products/toolkit.html.
[195]
C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, E. Willighagen. The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics. J Chem Inf Comput Sci, 43 (2) (2003), pp. 493-500.
[196]
OpenEye Toolkits 2022.2.2 [Internet]. Santa Fe: OpenEye Scientific Software, Inc.; [cited 2023 Feb 9]. Available from: https://docs.eyesopen.com/toolkits/python/index.html.
[197]
Y. Cao, A. Charisi, L.C. Cheng, T. Jiang, T. Girke. ChemmineR: a compound mining framework for R. Bioinformatics, 24 (15) (2008), pp. 1733-1734. DOI: 10.1093/bioinformatics/btn307
[198]
Indigo Toolkit Internet. Newtown: EPAM System, Inc.; [cited 2023 Feb 9]. Available from: https://lifescience.opensource.epam.com/indigo/.
[199]
X. Liu, H. Jiang, H. Li. SHAFTS: a hybrid approach for 3D molecular similarity calculation. 1. Method and assessment of virtual screening. J Chem Inf Model, 51 (9) (2011), pp. 2372-2385. DOI: 10.1021/ci200060s
[200]
W. Lu, X. Liu, X. Cao, M. Xue, K. Liu, Z. Zhao, et al. SHAFTS: a hybrid approach for 3D molecular similarity calculation. 2. Prospective case study in the discovery of diverse p 90 ribosomal S6 protein kinase 2 inhibitors to suppress cell migration. J Med Chem, 54 (10) (2011), pp. 3564-3574. DOI: 10.1021/jm200139j
[201]
G. He, Y. Song, W. Wei, X. Wang, X. Lu, H. Li. eSHAFTS: integrated and graphical drug design software based on 3D molecular similarity. J Comput Chem, 40 (6) (2019), pp. 826-838. DOI: 10.1002/jcc.25769
[202]
P. Zhang, L. Tao, X. Zeng, C. Qin, S. Chen, F. Zhu, et al. A protein network descriptor server and its use in studying protein, disease, metabolic and drug targeted networks. Brief Bioinform, 18 (6) (2017), pp. 1057-1070.
[203]
G.M. Boratyn, C. Camacho, P.S. Cooper, G. Coulouris, A. Fong, N. Ma, et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res, 41 (W1) (2013), pp. W29-W33. DOI: 10.1093/nar/gkt282
[204]
J.D. Thompson, D.G. Higgins, T.J. Gibson. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22 (22) (1994), pp. 4673-4680. DOI: 10.1093/nar/22.22.4673
[205]
L. Holm, L.M. Laakso. Dali server update. Nucleic Acids Res, 44 (W1) (2016), pp. W351-W355. DOI: 10.1093/nar/gkw357
[206]
M. Shatsky, R. Nussinov, H.J. Wolfson. A method for simultaneous alignment of multiple protein structures. Proteins, 56 (1) (2004), pp. 143-156.
[207]
Y. Zhang, J. Skolnick. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res, 33 (7) (2005), pp. 2302-2309. DOI: 10.1093/nar/gki524
[208]
S. Li, C. Cai, J. Gong, X. Liu, H. Li. A fast protein binding site comparison algorithm for proteome-wide protein function prediction and drug repurposing. Proteins, 89 (11) (2021), pp. 1541-1556. DOI: 10.1002/prot.26176
[209]
A. Prlić, S. Bliven, P.W. Rose, W.F. Bluhm, C. Bizon, A. Godzik, et al. Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics, 26 (23) (2010), pp. 2983-2985. DOI: 10.1093/bioinformatics/btq572
[210]
A. Shulman-Peleg, R. Nussinov, H.J. Wolfson. Recognition of functional sites in protein structures. J Mol Biol, 339 (3) (2004), pp. 607-633.
[211]
M. Gao, J. Skolnick. APoc: large-scale identification of similar protein pockets. Bioinformatics, 29 (5) (2013), pp. 597-604. DOI: 10.1093/bioinformatics/btt024
[212]
M. Brylinski.eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models. PLoS Comput Biol, 10 (9) (2014), p. e1003829. DOI: 10.1371/journal.pcbi.1003829
[213]
P. Björkholm, P. Daniluk, A. Kryshtafovych, K. Fidelis, R. Andersson, T.R. Hvidsten. Using multi-data hidden Markov models trained on local neighborhoods of protein structure to predict residue-residue contacts. Bioinformatics, 25 (10) (2009), pp. 1264-1270. DOI: 10.1093/bioinformatics/btp149
[214]
L.J. McGuffin, K. Bryson, D.T. Jones. The PSIPRED protein structure prediction server. Bioinformatics, 16 (4) (2000), pp. 404-405.
[215]
M. Nayal, B. Honig. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins, 63 (4) (2006), pp. 892-906. DOI: 10.1002/prot.20897
[216]
D.S. Cao, S. Liu, Q.S. Xu, H.M. Lu, J.H. Huang, Q.N. Hu, et al. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures. Anal Chim Acta, 752 (1) (2012), pp. 1-10. DOI: 10.1038/emi.2012.7
[217]
H. Öztürk, A. Özgür, E. Ozkirimli. DeepDTA: deep drug-target binding affinity prediction. Bioinformatics, 34 (17) (2018), pp. i821-i829. DOI: 10.1093/bioinformatics/bty593
[218]
F. Rayhan, S. Ahmed, S. Shatabda, D.M. Farid, Z. Mousavian, A. Dehzangi, et al. iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting. Sci Rep, 7 (1) (2017), p. 17731.
[219]
K. Huang, T. Fu, L.M. Glass, M. Zitnik, C. Xiao, J. Sun. DeepPurpose: a deep learning library for drug-target interaction prediction. Bioinformatics, 36 (22-23) (2021), pp. 5545-5547. DOI: 10.1093/bioinformatics/btaa1005
[220]
K. Bleakley, Y. Yamanishi. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 25 (18) (2009), pp. 2397-2403. DOI: 10.1093/bioinformatics/btp433
[221]
Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, M. Kanehisa. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24 (13) (2008), pp. i232-i240. DOI: 10.1093/bioinformatics/btn162
[222]
M.A. Yıldırım, K.I. Goh, M.E. Cusick, A.L. Barabási, M. Vidal. Drug-target network. Nat Biotechnol, 25 (10) (2007), pp. 1119-1126. DOI: 10.1038/nbt1338
[223]
Y. Luo, X. Zhao, J. Zhou, J. Yang, Y. Zhang, W. Kuang, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun, 8 (1) (2017), p. 573.
[224]
X. Zeng, S. Zhu, W. Lu, Z. Liu, J. Huang, Y. Zhou, et al. Target identification among known drugs by deep learning from heterogeneous networks. Chem Sci, 11 (7) (2020), pp. 1775-1797. DOI: 10.1039/c9sc04336e
[225]
S.K. Mohamed, A. Nounu, V. Nováček. Biological applications of knowledge graph embedding models. Brief Bioinform, 22 (2) (2021), pp. 1679-1693. DOI: 10.1093/bib/bbaa012
[226]
L. Perlman, A. Gottlieb, N. Atias, E. Ruppin, R. Sharan. Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol, 18 (2) (2011), pp. 133-145. DOI: 10.1089/cmb.2010.0213
[227]
M.C. Cobanoglu, C. Liu, F. Hu, Z.N. Oltvai, I. Bahar. Predicting drug-target interactions using probabilistic matrix factorization. J Chem Inf Model, 53 (12) (2013), pp. 3399-3409. DOI: 10.1021/ci400219z
[228]
D. Sydow, L. Burggraaff, A. Szengel, H.W.T. van Vlijmen, IJzerman AP, et al. Advances and challenges in computational target prediction. J Chem Inf Model, 59 (5) (2019), pp. 1728-1742. DOI: 10.1021/acs.jcim.8b00832
[229]
M. Bagherian, E. Sabeti, K. Wang, M.A. Sartor, Z. Nikolovska-Coleska, K. Najarian. Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief Bioinform, 22 (1) (2021), pp. 247-269. DOI: 10.1093/bib/bbz157
[230]
X. Zhang, L. Li, M.K. Ng, S. Zhang. Drug-target interaction prediction by integrating multiview network data. Comput Biol Chem, 69 (1) (2017), pp. 185-193.
[231]
W. Zhang, Y. Chen, D. Li. Drug-target interaction prediction through label propagation with linear neighborhood information. Molecules, 22 (12) (2017), p. 2056. DOI: 10.3390/molecules22122056
[232]
T. van Laarhoven, E. Marchiori.Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One, 8 (6) (2013), p. e66952. DOI: 10.1371/journal.pone.0066952
[233]
T. He, M. Heidemeyer, F. Ban, A. Cherkasov, M. Ester. SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines. J Cheminform, 9 (1) (2017), p. 24.
[234]
A. Sharma, R. Rani. BE-DTI’: ensemble framework for drug target interaction prediction using dimensionality reduction and active learning. Comput Methods Programs Biomed, 165 (1) (2018), pp. 151-162.
[235]
Y. Liu, M. Wu, C. Miao, P. Zhao, X.L. Li.Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Comput Biol, 12 (2) (2016), p. e1004760. DOI: 10.1371/journal.pcbi.1004760
[236]
B. Bolgár, P. Antal. VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization. BMC Bioinf, 18 (1) (2017), p. 440.
[237]
L. Li, M. Cai. Drug target prediction by multi-view low rank embedding. IEEE/ACM Trans Comput Biol Bioinform, 16 (5) (2019), pp. 1712-1721. DOI: 10.1109/tcbb.2017.2706267
[238]
F. Cheng, C. Liu, J. Jiang, W. Lu, W. Li, G. Liu, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol, 8 (5) (2012), p. e1002503. DOI: 10.1371/journal.pcbi.1002503
[239]
X. Chen, M.X. Liu, G.Y. Yan. Drug-target interaction prediction by random walk on the heterogeneous network. Mol Biosyst, 8 (7) (2012), pp. 1970-1978. DOI: 10.1039/c2mb00002d
[240]
H. Chen, Z. Zhang.A semi-supervised method for drug-target interaction prediction with consistency in networks. PLoS One, 8 (5) (2013), p. e62975. DOI: 10.1371/journal.pone.0062975
[241]
S. Alaimo, A. Pulvirenti, R. Giugno, A. Ferro. Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics, 29 (16) (2013), pp. 2004-2008. DOI: 10.1093/bioinformatics/btt307
[242]
A. Mongia, A. Majumdar.Drug-target interaction prediction using multi graph regularized nuclear norm minimization. PLoS One, 15 (1) (2020), p. e0226484. DOI: 10.1371/journal.pone.0226484
[243]
Y. Wang, J. Zeng. Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics, 29 (13) (2013), pp. i126-i134. DOI: 10.1093/bioinformatics/btt234
[244]
H. Shi, S. Liu, J. Chen, X. Li, Q. Ma, B. Yu. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure. Genomics, 111 (6) (2019), pp. 1839-1852.
[245]
M. Wen, Z. Zhang, S. Niu, H. Sha, R. Yang, Y. Yun, et al. Deep-learning-based drug-target interaction prediction. J Proteome Res, 16 (4) (2017), pp. 1401-1409. DOI: 10.1021/acs.jproteome.6b00618
[246]
I. Lee, J. Keum, H. Nam.DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences. PLoS Comput Biol, 15 (6) (2019), p. e1007129. DOI: 10.1371/journal.pcbi.1007129
[247]
L. Xie, S. He, X. Song, X. Bo, Z. Zhang. Deep learning-based transcriptome data classification for drug-target interaction prediction. BMC Genomics, 19 (Suppl 7) (2018), p. 667.
[248]
J. Verma, V.M. Khedkar, E.C. Coutinho. 3D-QSAR in drug design—a review. Curr Top Med Chem, 10 (1) (2010), pp. 95-115. DOI: 10.2174/156802610790232260
[249]
Y. Jing, Y. Bian, Z. Hu, L. Wang, X.Q. Xie.Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J, 20 (3) (2018), p. 58. Corrected in: AAPS J 2018 ;20(4):79.
[250]
G. Hessler, K.H. Baringhaus. Artificial intelligence in drug design. Molecules, 23 (10) (2018), p. 2520. DOI: 10.3390/molecules23102520
[251]
E. Burello, A.P. Worth. QSAR modeling of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 3 (3) (2011), pp. 298-306. DOI: 10.1002/wnan.137
[252]
W. Xue, T. Fu, S. Deng, F. Yang, J. Yang, F. Zhu. Molecular mechanism for the allosteric inhibition of the human serotonin transporter by antidepressant escitalopram. ACS Chem Neurosci, 13 (3) (2022), pp. 340-351. DOI: 10.1021/acschemneuro.1c00694
[253]
F. Ballante, A.J. Kooistra, S. Kampen, C. de Graaf, J. Carlsson. Structure-based virtual screening for ligands of G protein-coupled receptors: what can molecular docking do for you?. Pharmacol Rev, 73 (4) (2021), pp. 1698-1736. DOI: 10.1124/pharmrev.120.000246
[254]
W.H. Shin, X. Zhu, M.G. Bures, D. Kihara. Three-dimensional compound comparison methods and their application in drug discovery. Molecules, 20 (7) (2015), pp. 12841-12862. DOI: 10.3390/molecules200712841
[255]
G. Ghislat, T. Rahman, P.J. Ballester. Recent progress on the prospective application of machine learning to structure-based virtual screening. Curr Opin Chem Biol, 65 (1) (2021), pp. 28-34.
[256]
M. Liu, S. Wang. MCDOCK: a Monte Carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des, 13 (5) (1999), pp. 435-451.
[257]
P. Sneha, C. George Priya Doss. Molecular dynamics: new frontier in personalized medicine. Adv Protein Chem Struct Biol, 102 (1) (2016), pp. 181-224.
[258]
W. Xue, F. Yang, P. Wang, G. Zheng, Y. Chen, X. Yao, et al. What contributes to serotonin-norepinephrine reuptake inhibitors’ dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chem Neurosci, 9 (5) (2018), pp. 1128-1140. DOI: 10.1021/acschemneuro.7b00490
[259]
Q.Q. Xie, L. Zhong, Y.L. Pan, X.Y. Wang, J.P. Zhou, L. Di-wu, et al. Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met. Eur J Med Chem, 46 (9) (2011), pp. 3675-3680.
[260]
J.C. Pereira, E.R. Caffarena, C.N. Dos Santos. Boosting docking-based virtual screening with deep learning. J Chem Inf Model, 56 (12) (2016), pp. 2495-2506. DOI: 10.1021/acs.jcim.6b00355
[261]
N. Huang, B.K. Shoichet, J.J. Irwin. Benchmarking sets for molecular docking. J Med Chem, 49 (23) (2006), pp. 6789-6801. DOI: 10.1021/jm0608356
[262]
P.T. Lang, S.R. Brozell, S. Mukherjee, E.F. Pettersen, E.C. Meng, V. Thomas, et al. DOCK 6: combining techniques to model RNA—small molecule complexes. RNA, 15 (6) (2009), pp. 1219-1230. DOI: 10.1261/rna.1563609
[263]
O. Trott, A.J. Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31 (2) (2010), pp. 455-461. DOI: 10.1002/jcc.21334
[264]
M.D. AbdulHameed, D.L. Ippolito, A. Wallqvist. Predicting rat and human pregnane X receptor activators using Bayesian classification models. Chem Res Toxicol, 29 (10) (2016), pp. 1729-1740. DOI: 10.1021/acs.chemrestox.6b00227
[265]
E.J. Martin, V.R. Polyakov, L. Tian, R.C. Perez.Profile-QSAR 2. 0: kinase virtual screening accuracy comparable to four-concentration IC50s for realistically novel compounds. J Chem Inf Model, 57 (8) (2017), pp. 2077-2088. DOI: 10.1021/acs.jcim.7b00166
[266]
J.J.F. Chen, D.P. Visco Jr.. Developing an in silico pipeline for faster drug candidate discovery: virtual high throughput screening with the signature molecular descriptor using support vector machine models. Chem Eng Sci, 159 (1) (2017), pp. 31-42. DOI: 10.3390/info8010031
[267]
K.Z. Myint, L. Wang, Q. Tong, X.Q. Xie. Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions. Mol Pharm, 9 (10) (2012), pp. 2912-2923. DOI: 10.1021/mp300237z
[268]
J. Jaén-Oltra, M.T. Salabert-Salvador, F.J. García-March, F. Pérez-Giménez, F. Tomás-Vert. Artificial neural network applied to prediction of fluorquinolone antibacterial activity by topological methods. J Med Chem, 43 (6) (2000), pp. 1143-1148.
[269]
E.B. Lenselink, N. Ten Dijke, B. Bongers, G. Papadatos, H.W.T. van Vlijmen, W. Kowalczyk, et al. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J Cheminform, 9 (1) (2017), p. 45.
[270]
M.J. Keiser, B.L. Roth, B.N. Armbruster, P. Ernsberger, J.J. Irwin, B.K. Shoichet. Relating protein pharmacology by ligand chemistry. Nat Biotechnol, 25 (2) (2007), pp. 197-206. DOI: 10.1038/nbt1284
[271]
T. Xiao, X. Qi, Y. Chen, Y. Jiang. Development of ligand-based big data deep neural network models for virtual screening of large compound libraries. Mol Inform, 37 (11) (2018), p. 1800031.
[272]
J. Fang, L. Wang, Y. Li, W. Lian, X. Pang, H. Wang, et al. AlzhCPI: a knowledge base for predicting chemical-protein interactions towards Alzheimer’s disease. PLoS One, 12 (5) (2017), p. e0178347. DOI: 10.1371/journal.pone.0178347
[273]
A. Bender, H.Y. Mussa, R.C. Glen. Screening for dihydrofolate reductase inhibitors using MOLPRINT 2D, a fast fragment-based method employing the naïve Bayesian classifier: limitations of the descriptor and the importance of balanced chemistry in training and test sets. J Biomol Screen, 10 (7) (2005), pp. 658-666. DOI: 10.1177/1087057105281048
[274]
A. Abdo, B. Chen, C. Mueller, N. Salim, P. Willett. Ligand-based virtual screening using Bayesian networks. J Chem Inf Model, 50 (6) (2010), pp. 1012-1020. DOI: 10.1021/ci100090p
[275]
Y. Li, L. Wang, Z. Liu, C. Li, J. Xu, Q. Gu, et al. Predicting selective liver X receptor β agonists using multiple machine learning methods. Mol Biosyst, 11 (5) (2015), pp. 1241-1250.
[276]
J. Fang, R. Yang, L. Gao, D. Zhou, S. Yang, A.L. Liu, et al. Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery. J Chem Inf Model, 53 (11) (2013), pp. 3009-3020. DOI: 10.1021/ci400331p
[277]
P. Schneider, Y. Tanrikulu, G. Schneider. Self-organizing maps in drug discovery: compound library design, scaffold-hopping, repurposing. Curr Med Chem, 16 (3) (2009), pp. 258-266. DOI: 10.2174/092986709787002655
[278]
D. Hristozov, T.I. Oprea, J. Gasteiger. Ligand-based virtual screening by novelty detection with self-organizing maps. J Chem Inf Model, 47 (6) (2007), pp. 2044-2062. DOI: 10.1021/ci700040r
[279]
D. Reker, T. Rodrigues, P. Schneider, G. Schneider. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci USA, 111 (11) (2014), pp. 4067-4072. DOI: 10.1073/pnas.1320001111
[280]
L. Stojanović, M. Popović, N. Tijanić, G. Rakočević, M. Kalinić. Improved scaffold hopping in ligand-based virtual screening using neural representation learning. J Chem Inf Model, 60 (10) (2020), pp. 4629-4639. DOI: 10.1021/acs.jcim.0c00622
[281]
A. Kadurin, A. Aliper, A. Kazennov, P. Mamoshina, Q. Vanhaelen, K. Khrabrov, et al. The cornucopia of meaningful leads: applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget, 8 (7) (2017), pp. 10883-10890. DOI: 10.18632/oncotarget.14073
[282]
Y. Xu, P. Chen, X. Lin, H. Yao, K. Lin. Discovery of CDK4 inhibitors by convolutional neural networks. Future Med Chem, 11 (3) (2019), pp. 165-177
[283]
H. Altae-Tran, B. Ramsundar, A.S. Pappu, V. Pande. Low data drug discovery with one-shot learning. ACS Cent Sci, 3 (4) (2017), pp. 283-293. DOI: 10.1021/acscentsci.6b00367
[284]
Z. Zhou, S. Kearnes, L. Li, R.N. Zare, P. Riley.Optimization of molecules via deep reinforcement learning. Sci Rep, 9 (1) (2019), p. 10752. Corrected in: Sci Rep 2020 ;10(1):10478.
[285]
M. Hartenfeller, G. Schneider. De novo drug design. Methods Mol Biol, 672 (1) (2011), pp. 299-323.
[286]
M. Segall. Advances in multiparameter optimization methods for de novo drug design. Expert Opin Drug Discov, 9 (7) (2014), pp. 803-817. DOI: 10.1517/17460441.2014.913565
[287]
G. Schneider, U. Fechner. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov, 4 (8) (2005), pp. 649-663. DOI: 10.1038/nrd1799
[288]
J.I. Sohn, J.W. Nam. The present and future of de novo whole-genome assembly. Brief Bioinform, 19 (1) (2018), pp. 23-40.
[289]
G. Schneider, D.E. Clark. Automated de novo drug design: are we nearly there yet?. Angew Chem Int Ed Engl, 58 (32) (2019), pp. 10792-10803. DOI: 10.1002/anie.201814681
[290]
J. Xiong, Z. Xiong, K. Chen, H. Jiang, M. Zheng. Graph neural networks for automated de novo drug design. Drug Discov Today, 26 (6) (2021), pp. 1382-1393.
[291]
T. Pereira, M. Abbasi, B. Ribeiro, J.P. Arrais. Diversity oriented deep reinforcement learning for targeted molecule generation. J Cheminform, 13 (1) (2021), p. 21.
[292]
N. Ståhl, G. Falkman, A. Karlsson, G. Mathiason, J. Boström. Deep reinforcement learning for multiparameter optimization in de novo drug design. J Chem Inf Model, 59 (7) (2019), pp. 3166-3176. DOI: 10.1021/acs.jcim.9b00325
[293]
Ł. Maziarka, A. Pocha, J. Kaczmarczyk, K. Rataj, T. Danel, M. Warchoł. Mol-CycleGAN: a generative model for molecular optimization. J Cheminform, 12 (1) (2020), p. 2.
[294]
B. Sanchez-Lengeling, C. Outeiral, G.L. Guimaraes,A. Aspuru-Guzik. Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). ChemRxiv. Cambridge Open Engage, Cambridge (2017)
[295]
E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy, B. Sanchez-Lengeling, A. Aspuru-Guzik, et al. Reinforced adversarial neural computer for de novo molecular design. J Chem Inf Model, 58 (6) (2018), pp. 1194-1204. DOI: 10.1021/acs.jcim.7b00690
[296]
S. Harel, K. Radinsky. Prototype-based compound discovery using deep generative models. Mol Pharm, 15 (10) (2018), pp. 4406-4416. DOI: 10.1021/acs.molpharmaceut.8b00474
[297]
W. Wilman, S. Wrobel, W. Bielska, P. Deszynski, P. Dudzic, I. Jaszczyszyn, et al. Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery. Brief Bioinform, 23 (4) (2022), p. bbac267.
[298]
J.A. Ruffolo, J. Sulam, J.J. Gray. Antibody structure prediction using interpretable deep learning. Patterns, 3 (2) (2022), Article 100406.
[299]
A. Sivasubramanian, A. Sircar, S. Chaudhury, J.J. Gray. Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking. Proteins, 74 (2) (2009), pp. 497-514. DOI: 10.1002/prot.22309
[300]
C. Schneider, A. Buchanan, B. Taddese, C.M. Deane. DLAB: deep learning methods for structure-based virtual screening of antibodies. Bioinformatics, 38 (2) (2022), pp. 377-383. DOI: 10.1093/bioinformatics/btab660
[301]
R.R. Eguchi, C.A. Choe, P.S. Huang.Ig-VAE: generative modeling of protein structure by direct 3D coordinate generation. PLoS Comput Biol, 18 (6) (2022), p. e1010271. DOI: 10.1371/journal.pcbi.1010271
[302]
M.I.J. Raybould, C. Marks, K. Krawczyk, B. Taddese, J. Nowak, A.P. Lewis, et al. Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci USA, 116 (10) (2019), pp. 4025-4030. DOI: 10.1073/pnas.1810576116
[303]
J.H. Kim, H.J. Hong. Humanization by CDR grafting and specificity-determining residue grafting. Methods Mol Biol, 907 (1) (2012), pp. 237-245. DOI: 10.1007/978-1-61779-974-7_13
[304]
J. Leem, L.S. Mitchell, J.H.R. Farmery, J. Barton, J.D. Galson. Deciphering the language of antibodies using self-supervised learning. Patterns, 3 (7) (2022), Article 100513.
[305]
T.H. Olsen, I.H. Moal, C.M. Deane. AbLang: an antibody language model for completing antibody sequences. Bioinform Adv, 2(1):vbac046 (2022)
[306]
J. Fu, Y. Zhang, J. Liu, X. Lian, J. Tang, F. Zhu. Pharmacometabonomics: data processing and statistical analysis. Brief Bioinform, 22 (5) (2021), p. bbab138.
[307]
N.A. Meanwell. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol, 24 (9) (2011), pp. 1420-1456. DOI: 10.1021/tx200211v
[308]
C.A. Lipinski. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol, 1 (4) (2004), pp. 337-341.
[309]
M.Q. Zhang, B. Wilkinson. Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol, 18 (6) (2007), pp. 478-488.
[310]
D.T. Manallack, R.J. Prankerd, E. Yuriev, T.I. Oprea, D.K. Chalmers. The significance of acid/base properties in drug discovery. Chem Soc Rev, 42 (2) (2013), pp. 485-496.
[311]
H. Zhang, M.L. Xiang, C.Y. Ma, Q. Huang, W. Li, Y. Xie, et al. Three-class classification models of logS and logP derived by using GA-CG-SVM approach. Mol Divers, 13 (2) (2009), pp. 261-268
[312]
W.L. Jorgensen, E.M. Duffy. Prediction of drug solubility from Monte Carlo simulations. Bioorg Med Chem Lett, 10 (11) (2000), pp. 1155-1158.
[313]
M.J. Kamlet, R.M. Doherty, J.L. Abboud, M.H. Abraham, R.W. Taft. Linear solvation energy relationships: 36. molecular properties governing solubilities of organic nonelectrolytes in water. J Pharm Sci, 75 (4) (1986), pp. 338-349. DOI: 10.1002/jps.2600750405
[314]
X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yang. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev, 119 (18) (2019), pp. 10520-10594. DOI: 10.1021/acs.chemrev.8b00728
[315]
D. Elder, R. Holm. Aqueous solubility: simple predictive methods (in silico, in vitro and bio-relevant approaches). Int J Pharm, 453 (1) (2013), pp. 3-11.
[316]
M. Hewitt, M.T. Cronin, S.J. Enoch, J.C. Madden, D.W. Roberts, J.C. Dearden. In silico prediction of aqueous solubility: the solubility challenge. J Chem Inf Model, 49 (11) (2009), pp. 2572-2587. DOI: 10.1021/ci900286s
[317]
P.G. Francoeur, D.R. Koes. SolTranNet—a machine learning tool for fast aqueous solubility prediction. J Chem Inf Model, 61 (6) (2021), pp. 2530-2536. DOI: 10.1021/acs.jcim.1c00331
[318]
D. Rogers, M. Hahn. Extended-connectivity fingerprints. J Chem Inf Model, 50 (5) (2010), pp. 742-754. DOI: 10.1021/ci100050t
[319]
W.X. Shen, X. Zeng, F. Zhu, Y.L. Wang, C. Qin, Y. Tan, et al. Out-of-the-box deep learning prediction of pharmaceutical properties by broadly learned knowledge-based molecular representations. Nat Mach Intell, 3 (4) (2021), pp. 334-343. DOI: 10.1038/s42256-021-00301-6
[320]
J. Yin, F. Li, Y. Zhou, M. Mou, Y. Lu, K. Chen, et al. INTEDE: interactome of drug-metabolizing enzymes. Nucleic Acids Res, 49 (D1) (2021), pp. D1233-D1243. DOI: 10.1093/nar/gkaa755
[321]
F. Cheng, W. Li, G. Liu, Y. Tang. In silico ADMET prediction: recent advances, current challenges and future trends. Curr Top Med Chem, 13 (11) (2013), pp. 1273-1289. DOI: 10.2174/15680266113139990033
[322]
Y. Wang, J. Xing, Y. Xu, N. Zhou, J. Peng, Z. Xiong, et al. In silico ADME/T modelling for rational drug design. Q Rev Biophys, 48 (4) (2015), pp. 488-515.
[323]
L.L.G. Ferreira, A.D. Andricopulo. ADMET modeling approaches in drug discovery. Drug Discov Today, 24 (5) (2019), pp. 1157-1165.
[324]
L. Tao, P. Zhang, C. Qin, S.Y. Chen, C. Zhang, Z. Chen, et al. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools. Adv Drug Deliv Rev, 86 (1) (2015), pp. 83-100.
[325]
A. Rácz, D. Bajusz, R.A. Miranda-Quintana, K. Héberger. Machine learning models for classification tasks related to drug safety. Mol Divers, 25 (3) (2021), pp. 1409-1424. DOI: 10.1007/s11030-021-10239-x
[326]
J.I. Vandenberg, M.D. Perry, M.J. Perrin, S.A. Mann, Y. Ke, A.P. Hill. hERG K+ channels: structure, function, and clinical significance. Physiol Rev, 92 (3) (2012), pp. 1393-1478. DOI: 10.1152/physrev.00036.2011
[327]
M.A. Kaisar, R.K. Sajja, S. Prasad, V.V. Abhyankar, T. Liles, L. Cucullo. New experimental models of the blood-brain barrier for CNS drug discovery. Expert Opin Drug Discov, 12 (1) (2017), pp. 89-103. DOI: 10.1080/17460441.2017.1253676
[328]
M.J. Smyth, E. Krasovskis, V.R. Sutton, R.W. Johnstone. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci USA, 95 (12) (1998), pp. 7024-7029.
[329]
A. Rácz, G.M. Keserű. Large-scale evaluation of cytochrome P450 2C9 mediated drug interaction potential with machine learning-based consensus modeling. J Comput Aided Mol Des, 34 (8) (2020), pp. 831-839. DOI: 10.1007/s10822-020-00308-y
[330]
H. Yang, L. Sun, W. Li, G. Liu, Y. Tang. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem, 6 (1) (2018), p. 30
[331]
I.J. Onakpoya, C.J. Heneghan, J.K. Aronson.Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med, 14 (1) (2016), p. 10. Corrected in: BMC Med 2019 ;17(1):56.
[332]
V.M. Alves, A. Golbraikh, S.J. Capuzzi, K. Liu, W.I. Lam, D.R. Korn, et al. Multi-descriptor read across (MuDRA): a simple and transparent approach for developing accurate quantitative structure-activity relationship models. J Chem Inf Model, 58 (6) (2018), pp. 1214-1223. DOI: 10.1021/acs.jcim.8b00124
[333]
T. Lei, F. Chen, H. Liu, H. Sun, Y. Kang, D. Li, et al. ADMET evaluation in drug discovery. Part 17: development of quantitative and qualitative prediction models for chemical-induced respiratory toxicity. Mol Pharm, 14 (7) (2017), pp. 2407-2421. DOI: 10.1021/acs.molpharmaceut.7b00317
[334]
L. Zhu, J. Zhao, Y. Zhang, W. Zhou, L. Yin, Y. Wang, et al. ADME properties evaluation in drug discovery: in silico prediction of blood-brain partitioning. Mol Divers, 22 (4) (2018), pp. 979-990. DOI: 10.1007/s11030-018-9866-8
[335]
B.H. Su, Y.S. Tu, C. Lin, C.Y. Shao, O.A. Lin, Y.J. Tseng.Rule-based prediction models of cytochrome P450 inhibition. J Chem Inf Model, 55 (7) (2015), pp. 1426-1434. DOI: 10.1021/acs.jcim.5b00130
[336]
M. Yang, J. Chen, L. Xu, X. Shi, X. Zhou, Z. Xi, et al. A novel adaptive ensemble classification framework for ADME prediction. RSC Adv, 8 (21) (2018), pp. 11661-11683. DOI: 10.1039/c8ra01206g
[337]
E.V. Radchenko, A.S. Dyabina, V.A. Palyulin. Towards deep neural network models for the prediction of the blood-brain barrier permeability for diverse organic compounds. Molecules, 25 (24) (2020), p. 5901. DOI: 10.3390/molecules25245901
[338]
D. Wang, W. Liu, Z. Shen, L. Jiang, J. Wang, S. Li, et al. Deep learning based drug metabolites prediction. Front Pharmacol, 10 (1) (2020), p. 1586.
[339]
H. Yang, C. Lou, L. Sun, J. Li, Y. Cai, Z. Wang, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35 (6) (2019), pp. 1067-1069. DOI: 10.1093/bioinformatics/bty707
[340]
A. Daina, O. Michielin, V. Zoete. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep, 7 (1) (2017), p. 42717.
[341]
P. Banerjee, A.O. Eckert, A.K. Schrey, R. Preissner. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res, 46 (W1) (2018), pp. W257-W263. DOI: 10.1093/nar/gky318
[342]
D.E. Pires, T.L. Blundell, D.B. Ascher. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem, 58 (9) (2015), pp. 4066-4072. DOI: 10.1021/acs.jmedchem.5b00104
[343]
M. Hay, D.W. Thomas, J.L. Craighead, C. Economides, J. Rosenthal. Clinical development success rates for investigational drugs. Nat Biotechnol, 32 (1) (2014), pp. 40-51. DOI: 10.1038/nbt.2786
[344]
S. Harrer, P. Shah, B. Antony, J. Hu. Artificial intelligence for clinical trial design. Trends Pharmacol Sci, 40 (8) (2019), pp. 577-591.
[345]
J.L. Perez-Gracia, M.F. Sanmamed, A. Bosch, A. Patiño-Garcia, K.A. Schalper, V. Segura, et al. Strategies to design clinical studies to identify predictive biomarkers in cancer research. Cancer Treat Rev, 53 (1) (2017), pp. 79-97.
[346]
J.M. Banda, M. Seneviratne, T. Hernandez-Boussard, N.H. Shah. Advances in electronic phenotyping: from rule-based definitions to machine learning models. Annu Rev Biomed Data Sci, 1 (1) (2018), pp. 53-68. DOI: 10.1146/annurev-biodatasci-080917-013315
[347]
S. Palmqvist, P.S. Insel, H. Zetterberg, K. Blennow, B. Brix, E. Stomrud, et al. Alzheimer’s Disease Neuroimaging Initiative, Swedish BioFINDER Study. Accurate risk estimation of β-amyloid positivity to identify prodromal Alzheimer’s disease: cross-validation study of practical algorithms. Alzheimers Dement, 15 (2) (2019), pp. 194-204. DOI: 10.1016/j.jalz.2018.08.014
[348]
K. Romero, K. Ito, J.A. Rogers, D. Polhamus, R. Qiu, D. Stephenson, et al. The future is now: model-based clinical trial design for Alzheimer’s disease. Clin Pharmacol Ther, 97 (3) (2015), pp. 210-214. DOI: 10.1002/cpt.16
[349]
E.E. Bain, L. Shafner, D.P. Walling, A.A. Othman, C. Chuang-Stein, J. Hinkle, et al. Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia. JMIR Mhealth Uhealth, 5 (2) (2017), p. e18. DOI: 10.2196/mhealth.7030
[350]
Yauney G, Shah P. Reinforcement learning with action-derived rewards for chemotherapy and clinical trial dosing regimen selection. In: Proceedings of the 3rd Machine Learning for Healthcare Conference; 2018 Aug 17-18; Stanford, CA, USA; 2018. p.161-226.
[351]
C.P. Farrington. Relative incidence estimation from case series for vaccine safety evaluation. Biometrics, 51 (1) (1995), pp. 228-235. DOI: 10.2307/2533328
[352]
P.B. Ryan, P.E. Stang, J.M. Overhage, M.A. Suchard, A.G. Hartzema, W. DuMouchel, et al. A comparison of the empirical performance of methods for a risk identification system. Drug Saf, 36 (Suppl 1) (2013), pp. 143-158. DOI: 10.1007/s40264-013-0108-9
[353]
G.N. Norén, J. Hopstadius, A. Bate, K. Star, I.R. Edwards. Temporal pattern discovery in longitudinal electronic patient records. Data Min Knowl Discov, 20 (3) (2010), pp. 361-387. DOI: 10.1007/s10618-009-0152-3
[354]
M. Morel, E. Bacry, S. Gaïffas, A. Guilloux, F. Leroy. ConvSCCS: convolutional self-controlled case series model for lagged adverse event detection. Biostatistics, 21 (4) (2020), pp. 758-774. DOI: 10.1093/biostatistics/kxz003
[355]
A. Ben Abacha, M.F.M. Chowdhury, A. Karanasiou, Y. Mrabet, A. Lavelli, P. Zweigenbaum. Text mining for pharmacovigilance: using machine learning for drug name recognition and drug-drug interaction extraction and classification. J Biomed Inform, 58 (1) (2015), pp. 122-132.
[356]
J. Mower, D. Subramanian, T. Cohen. Learning predictive models of drug side-effect relationships from distributed representations of literature-derived semantic predications. J Am Med Inform Assoc, 25 (10) (2018), pp. 1339-1350. DOI: 10.1093/jamia/ocy077
[357]
T. Lorberbaum, M. Nasir, M.J. Keiser, S. Vilar, G. Hripcsak, N.P. Tatonetti. Systems pharmacology augments drug safety surveillance. Clin Pharmacol Ther, 97 (2) (2015), pp. 151-158. DOI: 10.1002/cpt.2
[358]
A. Enshaei, C.N. Robson, R.J. Edmondson. Artificial intelligence systems as prognostic and predictive tools in ovarian cancer. Ann Surg Oncol, 22 (12) (2015), pp. 3970-3975. DOI: 10.1245/s10434-015-4475-6
[359]
D. Sun, M. Wang, A. Li. A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Trans Comput Biol Bioinform, 16 (3) (2018), pp. 841-850. DOI: 10.1159/000494471
[360]
C.L. Chi, W.N. Street, W.H. Wolberg. Application of artificial neural network-based survival analysis on two breast cancer datasets. AMIA Annu Symp Proc, 2007 (1) (2007), pp. 130-134.
[361]
D. Delen, G. Walker, A. Kadam. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med, 34 (2) (2005), pp. 113-127.
[362]
Y. Sun, S. Goodison, J. Li, L. Liu, W. Farmerie. Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics, 23 (1) (2007), pp. 30-37. DOI: 10.1093/bioinformatics/btl543
[363]
O. Gevaert, F. De Smet, D. Timmerman, Y. Moreau, B. De Moor. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 22 (14) (2006), pp. e184-e190. DOI: 10.1093/bioinformatics/btl230
[364]
C.M. Lynch, B. Abdollahi, J.D. Fuqua, A.R. de Carlo, J.A. Bartholomai, R.N. Balgemann, et al. Prediction of lung cancer patient survival via supervised machine learning classification techniques. Int J Med Inform, 108 (1) (2017), pp. 1-8
[365]
K.H. Yu, C. Zhang, G.J. Berry, R.B. Altman, C. , D.L. Rubin, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun, 7 (1) (2016), p. 12474.
[366]
A. Biglarian, E. Hajizadeh, A. Kazemnejad, M. Zali. Application of artificial neural network in predicting the survival rate of gastric cancer patients. Iran J Public Health, 40 (2) (2011), pp. 80-86.
[367]
Y. Zhu, Q.C. Wang, M.D. Xu, Z. Zhang, J. Cheng, Y.S. Zhong, et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointest Endosc, 89 (4) (2019), pp. 806-815. DOI: 10.1364/ao.58.000806
[368]
L. Zhu, W. Luo, M. Su, H. Wei, J. Wei, X. Zhang, et al. Comparison between artificial neural network and Cox regression model in predicting the survival rate of gastric cancer patients. Biomed Rep, 1 (5) (2013), pp. 757-760. DOI: 10.3892/br.2013.140
[369]
D.W. Tian, Z.L. Wu, L.M. Jiang, J. Gao, C.L. Wu,H.L. Hu. Neural precursor cell expressed, developmentally downregulated 8 promotes tumor progression and predicts poor prognosis of patients with bladder cancer. Cancer Sci, 110 (1) (2019), pp. 458-467. DOI: 10.1111/cas.13865
[370]
Z. Hasnain, J. Mason, K. Gill, G. Miranda, I.S. Gill, P. Kuhn, et al. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients. PLoS One, 14 (2) (2019), p. e0210976. DOI: 10.1371/journal.pone.0210976
[371]
R.J. Kuo, M.H. Huang, W.C. Cheng, C.C. Lin, Y.H. Wu. Application of a two-stage fuzzy neural network to a prostate cancer prognosis system. Artif Intell Med, 63 (2) (2015), pp. 119-133.
[372]
S. Zhang, Y. Xu, X. Hui, F. Yang, Y. Hu, J. Shao, et al. Improvement in prediction of prostate cancer prognosis with somatic mutational signatures. J Cancer, 8 (16) (2017), pp. 3261-3267. DOI: 10.7150/jca.21261
[373]
E.J. Corey, W.T. Wipke. Computer-assisted design of complex organic syntheses. Science, 166 (3902) (1969), pp. 178-192. DOI: 10.1126/science.166.3902.178
[374]
T.J. Struble, J.C. Alvarez, S.P. Brown, M. Chytil, J. Cisar, R.L. DesJarlais, et al. Current and future roles of artificial intelligence in medicinal chemistry synthesis. J Med Chem, 63 (16) (2020), pp. 8667-8682. DOI: 10.1021/acs.jmedchem.9b02120
[375]
M.H.S. Segler, M. Preuss, M.P. Waller. Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 555 (7698) (2018), pp. 604-610. DOI: 10.1038/nature25978
[376]
H. Gao, T.J. Struble, C.W. Coley, Y. Wang, W.H. Green, K.F. Jensen. Using machine learning to predict suitable conditions for organic reactions. ACS Cent Sci, 4 (11) (2018), pp. 1465-1476. DOI: 10.1021/acscentsci.8b00357
[377]
Y. Gong, D. Xue, G. Chuai, J. Yu, Q. Liu. DeepReac+: deep active learning for quantitative modeling of organic chemical reactions. Chem Sci, 12 (43) (2021), pp. 14459-14472. DOI: 10.1039/d1sc02087k
[378]
C.W. Coley, R. Barzilay, T.S. Jaakkola, W.H. Green, K.F. Jensen. Prediction of organic reaction outcomes using machine learning. ACS Cent Sci, 3 (5) (2017), pp. 434-443. DOI: 10.1021/acscentsci.7b00064
[379]
D. Caramelli, D. Salley, A. Henson, G.A. Camarasa, S. Sharabi, G. Keenan, et al. Networking chemical robots for reaction multitasking. Nat Commun, 9 (1) (2018), p. 3406.
[380]
R.B. Merrifield. Automated synthesis of peptides. Science, 150 (3693) (1965), pp. 178-185. DOI: 10.1126/science.150.3693.178
[381]
G. Alvarado-Urbina, G.M. Sathe, W.C. Liu, M.F. Gillen, P.D. Duck, R. Bender, et al. Automated synthesis of gene fragments. Science, 214 (4518) (1981), pp. 270-274. DOI: 10.1126/science.6169150
[382]
T. Doi, S. Fuse, S. Miyamoto, K. Nakai, D. Sasuga, T. Takahashi. A formal total synthesis of taxol aided by an automated synthesizer. Chem Asian J, 1 (3) (2006), pp. 370-383. DOI: 10.1002/asia.200600156
[383]
J. Boström, D.G. Brown, R.J. Young, G.M. Keserü. Expanding the medicinal chemistry synthetic toolbox. Nat Rev Drug Discov, 17 (10) (2018), pp. 709-727 Erratum in: Nat Rev Drug Discov 2018;17(12):922. DOI: 10.1038/nrd.2018.116
[384]
A. Bellomo, N. Celebi-Olcum, X. Bu, N. Rivera, R.T. Ruck, C.J. Welch, et al. Rapid catalyst identification for the synthesis of the pyrimidinone core of HIV integrase inhibitors. Angew Chem Int Ed Engl, 51 (28) (2012), pp. 6912-6915. DOI: 10.1002/anie.201201720
[385]
S.D. Dreher, P.G. Dormer, D.L. Sandrock, G.A. Molander. Efficient cross-coupling of secondary alkyltrifluoroborates with aryl chlorides—reaction discovery using parallel microscale experimentation. J Am Chem Soc, 130 (29) (2008), pp. 9257-9259. DOI: 10.1021/ja8031423
[386]
A. Buitrago Santanilla, E.L. Regalado, T. Pereira, M. Shevlin, K. Bateman, L.C. Campeau, et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science, 347 (6217) (2015), pp. 49-53. DOI: 10.1126/science.1259203
[387]
D. Perera, J.W. Tucker, S. Brahmbhatt, C.J. Helal, A. Chong, W. Farrell, et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science, 359 (6374) (2018), pp. 429-434. DOI: 10.1126/science.aap9112
[388]
M. Shevlin. Practical high-throughput experimentation for chemists. ACS Med Chem Lett, 8 (6) (2017), pp. 601-607. DOI: 10.1021/acsmedchemlett.7b00165
[389]
D.T. Ahneman, J.G. Estrada, S. Lin, S.D. Dreher, A.G. Doyle. Predicting reaction performance in C-N cross-coupling using machine learning. Science, 360 (6385) (2018), pp. 186-190. DOI: 10.1126/science.aar5169
[390]
O. Isayev. Text mining facilitates materials discovery. Nature, 571 (7763) (2019), pp. 42-43. DOI: 10.1038/d41586-019-01978-x
[391]
J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C.H. So, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36 (4) (2020), pp. 1234-1240.
[392]
C. Sun, Z. Yang, L. Luo, L. Wang, J. Wang. A deep learning approach with deep contextualized word representations for chemical-protein interaction extraction from biomedical literature. IEEE Access, 7 (1) (2019), pp. 151034-151046. DOI: 10.1109/access.2019.2948155
[393]
S. Zhao, C. Su, Z. Lu, F. Wang. Recent advances in biomedical literature mining. Brief Bioinform, 22 (3) (2021), p. bbaa057.
[394]
S.N. Deftereos, C. Andronis, E.J. Friedla, A. Persidis, A. Persidis. Drug repurposing and adverse event prediction using high-throughput literature analysis. Wiley Interdiscip Rev Syst Biol Med, 3 (3) (2011), pp. 323-334. DOI: 10.1002/wsbm.147
[395]
H.T. Yang, J.H. Ju, Y.T. Wong, I. Shmulevich, J.H. Chiang. Literature-based discovery of new candidates for drug repurposing. Brief Bioinform, 18 (3) (2017), pp. 488-497.
[396]
R. Zhang, M.J. Cairelli, M. Fiszman, H. Kilicoglu, T.C. Rindflesch, S.V. Pakhomov, et al. Exploiting literature-derived knowledge and semantics to identify potential prostate cancer drugs. Cancer Inform, 13 (Suppl 1) (2014), pp. 103-111
[397]
Y. Hu, L.M. Hines, H. Weng, D. Zuo, M. Rivera, A. Richardson, et al. Analysis of genomic and proteomic data using advanced literature mining. J Proteome Res, 2 (4) (2003), pp. 405-412.
[398]
N. Shang, H. Xu, T.C. Rindflesch, T. Cohen. Identifying plausible adverse drug reactions using knowledge extracted from the literature. J Biomed Inform, 52 (1) (2014), pp. 293-310.
[399]
S.A. Malec, P. Wei, E.V. Bernstam, R.D. Boyce, T. Cohen. Using computable knowledge mined from the literature to elucidate confounders for EHR-based pharmacovigilance. J Biomed Inform, 117 (1) (2021), Article 103719.
[400]
L.L. Wang, K. Lo.Text mining approaches for dealing with the rapidly expanding literature on COVID-19. Brief Bioinform, 22 (2) (2021), pp. 781-799. DOI: 10.1093/bib/bbaa296
[401]
Z. Feng, Z. Shen, H. Li, S. Li. e-TSN: an interactive visual exploration platform for target-disease knowledge mapping from literature. Brief Bioinform, 23 (6) (2022), p. bbac465.
[402]
J. Wang, Z. Shen, Y. Liao, Z. Yuan, S. Li, G. He, et al. Multi-modal chemical information reconstruction from images and texts for exploring the near-drug space. Brief Bioinform, 23 (6) (2022), p. bbac461.
[403]
A.C. Ahn, M. Tewari, C.S. Poon, R.S. Phillips.The limits of reductionism in medicine: could systems biology offer an alternative?. PLoS Med, 3 (6) (2006), p. e208. DOI: 10.1371/journal.pmed.0030208
[404]
I.R. König, O. Fuchs, G. Hansen, E. von Mutius, M.V. Kopp.What is precision medicine?. Eur Respir J, 50 (4) (2017), p. 1700391. DOI: 10.1183/13993003.00391-2017
[405]
E.M. Antman, J. Loscalzo. Precision medicine in cardiology. Nat Rev Cardiol, 13 (10) (2016), pp. 591-602. DOI: 10.1038/nrcardio.2016.101
[406]
A.D. Hingorani, D.A. van der Windt, R.D. Riley, K. Abrams, K.G.M. Moons, E.W. Steyerberg, et al. Prognosis research strategy (PROGRESS) 4: stratified medicine research. BMJ, 346 (2013), p. e5793. DOI: 10.1136/bmj.e5793
[407]
J. Tang, M. Mou, Y. Wang, Y. Luo, F. Zhu. MetaFS: performance assessment of biomarker discovery in metaproteomics. Brief Bioinform, 22 (3) (2021), p. bbaa105.
[408]
Q. Yang, B. Li, S. Chen, J. Tang, Y. Li, Y. Li, et al. MMEASE: online meta-analysis of metabolomic data by enhanced metabolite annotation, marker selection and enrichment analysis. J Proteomics, 232 (1) (2021), Article 104023.
[409]
Y. Zhao, Z. Pan, S. Namburi, A. Pattison, A. Posner, S. Balachander, et al. CUP-AI-Dx: a tool for inferring cancer tissue of origin and molecular subtype using RNA gene-expression data and artificial intelligence. EBioMedicine, 61 (1) (2020), Article 103030.
[410]
Y.L. Yeh, M.W. Su, B.L. Chiang, Y.H. Yang, C.H. Tsai, Y.L. Lee. Genetic profiles of transcriptomic clusters of childhood asthma determine specific severe subtype. Clin Exp Allergy, 48 (9) (2018), pp. 1164-1172. DOI: 10.1111/cea.13175
[411]
D.C.M. Rolland, V. Basrur, Y.K. Jeon, C. McNeil-Schwalm, D. Fermin, K.P. Conlon, et al. Functional proteogenomics reveals biomarkers and therapeutic targets in lymphomas. Proc Natl Acad Sci USA, 114 (25) (2017), pp. 6581-6586. DOI: 10.1073/pnas.1701263114
[412]
L. Niu, M. Thiele, P.E. Geyer, D.N. Rasmussen, H.E. Webel, A. Santos, et al. Noninvasive proteomic biomarkers for alcohol-related liver disease. Nat Med, 28 (6) (2022), pp. 1277-1287. DOI: 10.1038/s41591-022-01850-y
[413]
W. Poon, B.R. Kingston, B. Ouyang, W. Ngo, W.C.W. Chan. A framework for designing delivery systems. Nat Nanotechnol, 15 (10) (2020), pp. 819-829. DOI: 10.1038/s41565-020-0759-5
[414]
M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas, R. Langer. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov, 20 (2) (2021), pp. 101-124. DOI: 10.1038/s41573-020-0090-8
[415]
J. Li, B. Esteban-Fernández de Ávila, W. Gao, L. Zhang, J. Wang.Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot, 2(4): eaam6431 (2017)
[416]
A.T. Ong, P.W. Serruys. Technology insight: an overview of research in drug-eluting stents. Nat Clin Pract Cardiovasc Med, 2 (12) (2005), pp. 647-658. DOI: 10.1038/ncpcardio0378
[417]
S.N. Bhatia, X. Chen, M.A. Dobrovolskaia, T. Lammers. Cancer nanomedicine. Nat Rev Cancer, 22 (10) (2022), pp. 550-556. DOI: 10.1038/s41568-022-00496-9
[418]
J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov, 18 (6) (2019), pp. 463-477. DOI: 10.1038/s41573-019-0024-5
[419]
S. Ekins, A.C. Puhl, K.M. Zorn, T.R. Lane, D.P. Russo, J.J. Klein, et al. Exploiting machine learning for end-to-end drug discovery and development. Nat Mater, 18 (5) (2019), pp. 435-441. DOI: 10.1038/s41563-019-0338-z
[420]
C. Chen, Z. Yaari, E. Apfelbaum, P. Grodzinski, Y. Shamay, D.A. Heller. Merging data curation and machine learning to improve nanomedicines. Adv Drug Deliv Rev, 183 (1) (2022), Article 114172.
[421]
D. Reker, Y. Rybakova, A.R. Kirtane, R. Cao, J.W. Yang, N. Navamajiti, et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat Nanotechnol, 16 (6) (2021), pp. 725-733. DOI: 10.1038/s41565-021-00870-y
[422]
Y. Shamay, J. Shah, M. Işık, A. Mizrachi, J. Leibold, D.F. Tschaharganeh, et al. Quantitative self-assembly prediction yields targeted nanomedicines. Nat Mater, 17 (4) (2018), pp. 361-368. DOI: 10.1038/s41563-017-0007-z
[423]
Y. Lu, A.A. Aimetti, R. Langer, Z. Gu. Bioresponsive materials. Nat Rev Mater, 2 (1) (2016), p. 16075.
[424]
R. Santana, R. Zuluaga, P. Gañán, S. Arrasate, E. Onieva, H. González-Díaz. Predicting coated-nanoparticle drug release systems with perturbation-theory machine learning (PTML) models. Nanoscale, 12 (25) (2020), pp. 13471-13483. DOI: 10.1039/d0nr01849j
[425]
C. Owh, V. Ow, Q. Lin, J.H.M. Wong, D. Ho, X.J. Loh, et al. Bottom-up design of hydrogels for programmable drug release. Biomater Adv, 141 (1) (2022), Article 213100.
[426]
C. Boztepe, A. Künkül, M. Yüceer. Application of artificial intelligence in modeling of the doxorubicin release behavior of pH and temperature responsive poly (NIPAAm-co-AAc)-PEG IPN hydrogel. J Drug Deliv Sci Technol, 57 (1) (2020), Article 101603.
[427]
R.T. Stiepel, E.S. Pena, S.A. Ehrenzeller, M.D. Gallovic, L.M. Lifshits, C.J. Genito, et al. A predictive mechanistic model of drug release from surface eroding polymeric nanoparticles. J Control Release, 351 (1) (2022), pp. 883-895.
[428]
M.K.P. Jayatunga, W. Xie, L. Ruder, U. Schulze, C. Meier. AI in small-molecule drug discovery: a coming wave?. Nat Rev Drug Discov, 21 (3) (2022), pp. 175-176. DOI: 10.1038/d41573-022-00025-1
[429]
P. Richardson, I. Griffin, C. Tucker, D. Smith, O. Oechsle, A. Phelan, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 395 (10223) (2020), pp. e30-e31.
[430]
P. Kirkpatrick. Artificial intelligence makes a splash in small-molecule drug discovery. Biopharm Deal, 16 (2) (2022), pp. 84-86
[431]
C. Zhang, M. Mou, Y. Zhou, W. Zhang, X. Lian, S. Shi, et al. Biological activities of drug inactive ingredients. Brief Bioinform, 23 (5) (2022), p. bbac160.
[432]
L. Haghverdi, A.T.L. Lun, M.D. Morgan, J.C. Marioni. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol, 36 (5) (2018), pp. 421-427. DOI: 10.1038/nbt.4091
PDF(3773 KB)

Accesses

Citation

Detail

段落导航
相关文章

/