[1] |
M. Bar Dolev, I. Braslavsky, P.L. Davies. Ice-binding proteins and their function. Annu Rev Biochem, 85 (1) (2016), pp. 515-542.
|
[2] |
K. Liu, C. Wang, J. Ma, G. Shi, X. Yao, H. Fang, et al. Janus effect of antifreeze proteins on ice nucleation. Proc Natl Acad Sci USA, 113 (51) (2016), pp. 14739-14744.
|
[3] |
J. Wu, Y. Rong, Z. Wang, Y. Zhou, S. Wang, B. Zhao. Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction. Food Chem, 174 (2015), pp. 621-629.
|
[4] |
G. Bai, D. Gao, Z. Liu, X. Zhou, J. Wang. Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature, 576 (7787) (2019), pp. 437-441.
|
[5] |
Z. Liu, X. Zheng, J. Wang. Bioinspired ice-binding materials for tissue and organ cryopreservation. J Am Chem Soc, 144 (13) (2022), pp. 5685-5701.
|
[6] |
C.A. Stevens, F. Bachtiger, X.D. Kong, L.A. Abriata, G.C. Sosso, M.I. Gibson, et al. A minimalistic cyclic ice-binding peptide from phage display. Nat Commun, 12 (1) (2021), p. 2675.
|
[7] |
E.M. Marcotte, M. Pellegrini, T.O. Yeates, D. Eisenberg. A census of protein repeats. J Mol Biol, 293 (1) (1999), pp. 151-160.
|
[8] |
G. Levinson, G.A. Gutman. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol, 4 (3) (1987), pp. 203-221.
|
[9] |
B. Charlesworth, P. Sniegowski, W. Stephan. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 371 (6494) (1994), pp. 215-220.
|
[10] |
K. Basu, R.L. Campbell, S. Guo, T. Sun, P.L. Davies. Modeling repetitive, non-globular proteins. Protein Sci, 25 (5) (2016), pp. 946-958.
|
[11] |
A.L. DeVries, D.E. Wohlschlag. Freezing resistance in some Antarctic fishes. Science, 163 (3871) (1969), pp. 1073-1075.
|
[12] |
L. Mularoni, A. Ledda, M. Toll-Riera, M.M. Albà. Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Res, 20 (6) (2010), pp. 745-754.
|
[13] |
S. Lutz. Beyond directed evolution—semi-rational protein engineering and design. Curr Opin Biotechnol, 21 (6) (2010), pp. 734-743.
|
[14] |
L.Q. Liu, H. Liu, W. Zhang, M.D. Yao, B.Z. Li, D. Liu, et al. Engineering the biosynthesis of caffeic acid in Saccharomyces cerevisiae with heterologous enzyme combinations. Engineering, 5 (2) (2019), pp. 287-295.
|
[15] |
D. Bednar, K. Beerens, E. Sebestova, J. Bendl, S. Khare, R. Chaloupkova, et al. FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLOS Comput Biol, 11 (11) (2015), p. e1004556.
|
[16] |
Y. Ma, M.D. Yao, B.Z. Li, M.Z. Ding, B. He, S. Chen, et al. Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering. Engineering, 4 (6) (2018), pp. 888-893.
|
[17] |
W.J. Swanson, C.F. Aquadro. Positive Darwinian selection promotes heterogeneity among members of the antifreeze protein multigene family. J Mol Evol, 54 (3) (2002), pp. 403-410.
|
[18] |
J.L.F. Abascal, E. Sanz, R. García Fernández, C. Vega. A potential model for the study of ices and amorphous water: TIP4P/Ice. J Chem Phys, 122 (23) (2005), p. 234511.
|
[19] |
K.A. Murray, M.I. Gibson. Post-thaw culture and measurement of total cell recovery is crucial in the evaluation of new macromolecular cryoprotectants. Biomacromolecules, 21 (7) (2020), pp. 2864-2873.
|
[20] |
Y.C. Liou, A. Tocilj, P.L. Davies, Z. Jia. Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature, 406 (6793) (2000), pp. 322-324.
|
[21] |
S.P. Graether, M.J. Kuiper, S.M. Gagné, V.K. Walker, Z. Jia, B.D. Sykes, et al. β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature, 406 (6793) (2000), pp. 325-328.
|
[22] |
C.P. Garnham, J.A. Gilbert, C.P. Hartman, R.L. Campbell, J. Laybourn-Parry, P.L. Davies. A Ca2+-dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold. Biochem J, 411 (1) (2008), pp. 171-180.
|
[23] |
D.Q. Zhang, B. Liu, D.R. Feng, Y.M. He, S.Q. Wang, H.B. Wang, et al. Significance of conservative asparagine residues in the thermal hysteresis activity of carrot antifreeze protein. Biochem J, 377 (3) (2004), pp. 589-595.
|
[24] |
U.P. John, R.M. Polotnianka, K.A. Sivakumaran, O. Chew, L. Mackin, M.J. Kuiper, et al. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant Cell Environ, 32 (4) (2009), pp. 336-348.
|
[25] |
L. Zimmermann, A. Stephens, S.Z. Nam, D. Rau, J. Kübler, M. Lozajic, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol, 430 (15) (2018), pp. 2237-2243.
|
[26] |
A. Biegert, J. Söding. De novo identification of highly diverged protein repeats by probabilistic consistency. Bioinformatics, 24 (6) (2008), pp. 807-814.
|
[27] |
F. Gabler, S.Z. Nam, S. Till, M. Mirdita, M. Steinegger, J. Söding, et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics, 72 (1) (2020), p. e108.
|
[28] |
M. Bayer-Giraldi, I. Weikusat, H. Besir, G. Dieckmann. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology, 63 (3) (2011), pp. 210-219.
|
[29] |
T. Arai, D. Fukami, T. Hoshino, H. Kondo, S. Tsuda. Ice-binding proteins from the fungus Antarctomyces psychrotrophicus possibly originate from two different bacteria through horizontal gene transfer. FEBS J, 286 (5) (2019), pp. 946-962.
|
[30] |
T.L. Bailey, C. Elkan. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol, 2 (1994), pp. 28-36.
|
[31] |
T Congdon, R Notman, MI Gibson. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study. Biomacromolecules, 14 (5) (2013), pp. 1578-1586.
|
[32] |
B. Graham, A.E.R. Fayter, M.I. Gibson. Synthesis of anthracene conjugates of truncated antifreeze protein sequences: effect of the end group and photocontrolled dimerization on ice recrystallization inhibition activity. Biomacromolecules, 20 (12) (2019), pp. 4611-4621.
|
[33] |
H. Geng, X. Liu, G. Shi, G. Bai, J. Ma, J. Chen, et al. Graphene oxide restricts growth and recrystallization of ice crystals. Angew Chem Int Ed Engl, 56 (4) (2017), pp. 997-1001.
|
[34] |
C.P. Garnham, R.L. Campbell, P.L. Davies. Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci USA, 108 (18) (2011), pp. 7363-7367.
|
[35] |
A. Hudait, Y. Qiu, N. Odendahl, V. Molinero. Hydrogen-bonding and hydrophobic groups contribute equally to the binding of hyperactive antifreeze and ice-nucleating proteins to ice. J Am Chem Soc, 141 (19) (2019), pp. 7887-7898.
|
[36] |
H. Chao, M.E. Houston Jr, R.S. Hodges, C.M. Kay, B.D. Sykes, M.C. Loewen, et al. A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry, 36 (48) (1997), pp. 14652-14660.
|
[37] |
J.M. Gao, X.Y. Yu, X.L. Wang, Y.N. He, J.D. Ding. Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine. Engineering, 13 (2022), pp. 31-45.
|
[38] |
B.R. Blazar. Immune regulatory cell biology and clinical applications to prevent or treat acute graft-versus-host disease. Engineering, 5 (1) (2019), pp. 98-105.
|
[39] |
Y.H. Li, Y. Huo, L. Yu, J.Z. Wang. Quality control and nonclinical research on CAR-T cell products: general principles and key issues. Engineering, 5 (1) (2019), pp. 122-131.
|
[40] |
I. Horiguchi, M. Kino-oka. Current developments in the stable production of human induced pluripotent stem cells. Engineering, 7 (2) (2021), pp. 144-152.
|
[41] |
R.M.F. Tomás, A. Bissoyi, T.R. Congdon, M.I. Gibson. Assay-ready cryopreserved cell monolayers enabled by macromolecular cryoprotectants. Biomacromolecules, 23 (9) (2022), pp. 3948-3959.
|
[42] |
T.L. Bailey, C. Stubbs, K. Murray, R.M.F. Tomás, L. Otten, M.I. Gibson. Synthetically scalable poly(ampholyte) which dramatically enhances cellular cryopreservation. Biomacromolecules, 20 (8) (2019), pp. 3104-3114.
|
[43] |
Y. Sun, D. Maltseva, J. Liu, T. Hooker II, V. Mailänder, H. Ramløv, et al. Ice recrystallization inhibition is insufficient to explain cryopreservation abilities of antifreeze proteins. Biomacromolecules, 23 (3) (2022), pp. 1214-1220.
|
[44] |
D. Bratosin, L. Mitrofan, C. Palii, J. Estaquier, J. Montreuil. Novel fluorescence assay using calcein-AM for the determination of human erythrocyte viability and aging. Cytom Part A, 66A (1) (2005), pp. 78-84.
|
[45] |
L. Galluzzi, S.A. Aaronson, J. Abrams, E.S. Alnemri, D.W. Andrews, E.H. Baehrecke, et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ, 16 (8) (2009), pp. 1093-1107.
|
[46] |
B. Rubinsky, A. Arav, M. Mattioli, A.L. Devries. The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures. Biochem Biophys Res Commun, 173 (3) (1990), pp. 1369-1374.
|
[47] |
B. Rubinsky, M. Mattioli, A. Arav, B. Barboni, G.L. Fletcher. Inhibition of Ca2+ and K+ currents by “antifreeze” proteins. Am J Physiol, 262 (3 Pt 2) (1992), pp. R542-R545.
|
[48] |
R. Yamaguchi, A. Andreyev, A.N. Murphy, G.A. Perkins, M.H. Ellisman, D.D. Newmeyer. Mitochondria frozen with trehalose retain a number of biological functions and preserve outer membrane integrity. Cell Death Differ, 14 (3) (2007), pp. 616-624.
|
[49] |
H. Huang, G. Zhao, Y. Zhang, J. Xu, T.L. Toth, X. He. Predehydration and ice seeding in the presence of trehalose enable cell cryopreservation. ACS Biomater Sci Eng, 3 (8) (2017), pp. 1758-1768.
|