八步连续流全合成维生素B1工艺研究

Meifen Jiang, Minjie Liu, Weijian Li, Yingqi Xia, Fen-Er Chen

工程(英文) ›› 2024, Vol. 32 ›› Issue (1) : 226-232.

PDF(2090 KB)
PDF(2090 KB)
工程(英文) ›› 2024, Vol. 32 ›› Issue (1) : 226-232. DOI: 10.1016/j.eng.2023.01.016
研究论文
Article

八步连续流全合成维生素B1工艺研究

作者信息 +

An Eight-Step Continuous-Flow Total Synthesis of Vitamin B1

Author information +
History +

摘要

维生素B1作为一种抗利尿和抗氧化剂被广泛应用于医疗保健和食品行业,以维持神经传导、心脏和胃肠道的正常功能。本研究报道了由市售2-氰基乙酰胺进行的维生素B1的八步连续流全合成工艺。本研究提出的连续流工艺基于化学、工程和设备设计的创新基础,与间歇釜式工艺相比,生产的性能和安全性均有所提高。本文使用各种微通道流反应器、微混合器、连续分离设备和连续过滤器等装置,对连续流合成工艺中的问题和挑战进行了精确的研究和控制,包括混合、意外堵塞、溶剂切换、放热反应和避免副反应等。维生素B1全合成的连续流工艺总停留时间约为3.5小时,产品纯度高,分离产率为47.7%。该八步连续流动技术方案至少涉及绿色化学的六个关键准则。因此,连续流技术的应用对于提高生产安全性、减少废物污染,尤其是提高批量操作的生产效率至关重要。

Abstract

Vitamin B1 is widely applied in the healthcare and food industry as an antineuritic and antioxidant to maintain the normal functioning of nerve conduction, the heart, and the gastrointestinal tract. This study reports on an integrated eight-step continuous-flow synthesis of vitamin B 1 from commercially available 2-cyanoacetamide. The proposed continuous-flow process is based on advances in chemistry, engineering, and equipment design, and affords improved performance and safety compared with batch-mode manufacturing. Several challenges were precisely investigated and controlled, including mixing, unexpected clogging, solvent switches, an exothermic reaction, and the prevention of side reactions, using various micro-channel flow reactors, mixers, separators, and continuous filters. Vitamin B 1 was produced with a separated yield of 47.7% and high purity, with a total residence time of about 3.5 h. This eight-step continuous-flow protocol enables technology involving up to six of the key principles of green chemistry. Hence, the application of flow technology is of paramount importance for improving security, reducing waste, and, in particular, improving the efficiency of batch operations that require several days for manufacturing.

关键词

维生素B1 / 连续流合成 / 微反应器 / 连续制造

Keywords

Vitamin B1 / Continuous-flow synthesis / Micro-reactor / Continuous manufacturing

引用本文

导出引用
Meifen Jiang, Minjie Liu, Weijian Li. 八步连续流全合成维生素B1工艺研究. Engineering. 2024, 32(1): 226-232 https://doi.org/10.1016/j.eng.2023.01.016

参考文献

[1]
G.Á. de Carvalho, L.R. Soldi, G.V. Portari. Patel ( Ed.),Thiamine, oxidative stress, and ethanol. V.B. Molecular nutrition:vitamins, Academic Press, London ( 2020), pp. 207-223
[2]
L. Bettendorff, P. Wins. Biochemistry of thiamine and thiamine phosphate compounds. W.J. Lennarz, M.D. Lane (Eds.), Encyclopedia of biological chemistry ( 2nd ed.), Academic Press, London ( 2013), pp. 202-209
[3]
Y. Parkhomenko, A. Vovk, Z. Protasova. Patel ( Ed.),Vitamin B1 and the pyruvate dehydrogenase complex. V.B. Molecular nutrition:vitamins, Academic Press, London ( 2020), pp. 185-206
[4]
J.J. DiNicolantonio, J. Liu, J.H. O’Keefe. Thiamine and cardiovascular disease: a literature review. Prog Cardiovas Dis, 61 (1) ( 2018), pp. 27-32
[5]
Global thiamine mononitrate ( vitamin B1) market highlights over 2022-2031
[ Internet. New York City: Research Nester; [cited 2023 Mar 16 ]
[6]
Vitamin B1 (thiamine mononitrate) market is projected to grow at an exemplary growth rate of around 4.7% by 2028
[ Internet. New York City: MarketWatch, Inc.; [cited 2023 Apr 20 ]
[7]
M. Eggersdorfer, D. Laudert, U. Létinois, T. McClymont, J. Medlock, T. Netscher, et al.. One hundred years of vitamins—a success story of the natural sciences. Angew Chem Int Ed Engl, 51 (52) ( 2012), pp. 12960-12990
[8]
E.R. Buchman.Studies of crystalline vitamin B1. XIV. Sulfite cleavage. IV. The thiazole half. J Am Chem Soc, 58 (9) ( 1936), pp. 1803-1805
[9]
R.R. Williams, R.E. Waterman, J.C. Keresztesy, E.R. Buchman.Studies of crystalline vitamin B1. III. Cleavage of vitamin with sulfite. J Am Chem Soc, 57 (3) ( 1935), pp. 536-537
[10]
R.R. Williams, J.K. Cline. Synthesis of vitamin B1. J Am Chem Soc, 58 (8) ( 1936), pp. 1504-1505
[11]
J.M. Van Lanen, H.P. Broquist, M.J. Johnson, I.L. Baldwin, W.H. Peterson. Synthesis of vitamin B1 by yeast. Ind Eng Chem, 34 (10) ( 1942), pp. 1244-1247
[12]
A.H. Tracy, R.C. Elderfield.Studies in the pryidine series. II. Synthesis of 2-methyl-3-(β-hydroxyethyl)pyyridine and of the pyridine analog of thiamine (vitamin B1). J Org Chem, 6 (1) ( 1941), pp. 54-62
[13]
T. Matsukawa, T. Iwatsu. Studies on vitamin B1 and related compounds. XXII. Preparation of vitamin B1 from 3-[2 ′-methyl-4′-aminopyrimidyl-(5′)]-methyl-4-methyl-5-β-hydroxyethylthiiothiazolone (2). Pharm Sci J, 71 (11) ( 1951), pp. 1215-1218 [Japanese]
[14]
P. Contant, L. Forzy, U. Hengartner, G. Moine. A new convergent synthesis of thiamine hydrochloride. Helv Chim Acta, 73 (5) ( 1990), pp. 1300-1305
[15]
P. Faou, M. Tropschug. Neurospora crassa CyPBP37: a cytosolic stress protein that is able to replace yeast Thi4p function in the synthesis of vitamin B1. J Mol Biol, 344 (4) ( 2004), pp. 1147-1157
[16]
U. Létinois, J. Schütz, R. Härter, R. Stoll, F. Huffschmidt, W. Bonrath, et al.. Lewis acid-catalyzed synthesis of 4-aminopyrimidines: a scalable industrial process. Org Process Res Dev, 17 (3) ( 2013), pp. 427-431
[17]
D. Price, E.L. May, F.D. Pickel.Studies on pyrimidines related to vitamin B1. I. A new synthesis of 2-methyl-6-aminopyrimidine-5-aldehyde. J Am Chem Soc, 62 (10) ( 1940), pp. 2818-2820
[18]
L. Zhao, X.D. Ma, F.E. Chen. Development of two scalable syntheses of 4-amino-5-aminomethyl-2-methylpyrimidine: key intermediate for vitamin B1. Org Process Res Dev, 16 (1) ( 2012), pp. 57-60
[19]
L. Wan, G. Kong, M. Liu, M. Jiang, D. Cheng, F. Chen. Flow chemistry in the multi-step synthesis of natural products. Green Synth Catal, 3 (3) ( 2022), pp. 243-258
[20]
K.P. Cole, J.M. Groh, M.D. Johnson, C.L. Burcham, B.M. Campbell, W.D. Diseroad, et al.. Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions. Science, 356 (6343) ( 2017), pp. 1144-1150
[21]
A. Adamo, R.L. Beingessner, M. Behnam, J. Chen, T.F. Jamison, K.F. Jensen, et al.. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science, 352 (6281) ( 2016), pp. 61-67
[22]
P. Bana, R. Örkényi, K. Lövei, Á. Lakó, G.I. Túrós, J. Éles, et al.. The route from problem to solution in multistep continuous flow synthesis of pharmaceutical compounds. Bioorg Med Chem, 25 (23) ( 2017), pp. 6180-6189
[23]
A. Domokos, B. Nagy, B. Szilágyi, G. Marosi, Z.K. Nagy. Integrated continuous pharmaceutical technologies—a review. Org Process Res Dev, 25 (4) ( 2021), pp. 721-739
[24]
D.R. Snead, T.F. Jamison. A three-minute synthesis and purification of ibuprofen: pushing the limits of continuous-flow processing. Angew Chem Int Ed Engl, 54 (3) ( 2015), pp. 983-987
[25]
T. Tsubogo, H. Oyamada, S. Kobayashi. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts. Nature, 520 (7547) ( 2015), pp. 329-332
[26]
M. Jiang, M. Liu, H. Huang, F. Chen. Fully continuous flow synthesis of 5-(aminomethyl)-2-methylpyrimidin-4-amine: a key intermediate of vitamin B1. Org Process Res Dev, 25 (10) ( 2021), pp. 2331-2337
[27]
M. Jiang, M. Liu, C. Yu, D. Cheng, F. Chen. Fully continuous flow synthesis of 3-chloro-4-oxopentyl acetate: an important intermediate for vitamin B1. Org Process Res Dev, 25 (9) ( 2021), pp. 2020-2028
[28]
L. Wan, M. Jiang, D. Cheng, M. Liu, F. Chen. Continuous flow technology—a tool for safer oxidation chemistry. React Chem Eng, 7 (3) ( 2022), pp. 490-550
[29]
J. Liao, S. Zhang, Z. Wang, X. Song, D. Zhang, R. Kumar, et al.. Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. Green Synth Catal, 1 (2) ( 2020), pp. 121-133
[30]
L. Gao, L. Lai, B. Ye, M. Liu, D. Cheng, M. Jiang, et al.. Continuous-flow synthesis of N,N′-bis(2,2,6,6-tetramethyl-4-piperidinyl)-1,6-hexanediamine (DTMPA) in a micro fixed-bed reactor. J Flow Chem, 12 (4) ( 2022), pp. 419-427
[31]
M. Jiang, X.W. Ni. Reactive crystallization of paracetamol in a continuous oscillatory baffled reactor. Org Process Res Dev, 23 (5) ( 2019), pp. 882-890
[32]
V.R.L.J. Bloemendal, M.A.C.H. Janssen, J.C.M. van Hest, F.P.J.T. Rutjes. Continuous one-flow multi-step synthesis of active pharmaceutical ingredients. React Chem Eng, 5 (7) ( 2020), pp. 1186-1197
PDF(2090 KB)

Accesses

Citation

Detail

段落导航
相关文章

/