[1] |
W.L. Yuan, L. He, G.H. Tao, J.M. Shreeve. Materials-genome approach to energetic materials. Acc Mater Res, 2 (9) (2021), pp. 692-696
|
[2] |
S. Du, S. Zhang, L. Wang, J. Lin, L. Du. Polymer genome approach: a new method for research and development of polymers. Acta Polym Sin, 53 (6) (2022), pp. 592-607. [Chinese]
|
[3] |
J. Xie, Y. Su, D. Zhang, Q. Feng. A vision of materials genome engineering in China. Engineering, 10 (2022), pp. 10-12
|
[4] |
H. Doan Tran, C. Kim, L. Chen, A. Chandrasekaran, R. Batra, S. Venkatram, et al. Machine-learning predictions of polymer properties with polymer genome. J Appl Phys, 128 (17) (2020), Article 171104
|
[5] |
C. Gao, X. Min, M. Fang, T. Tao, X. Zheng, Y. Liu, et al. Innovative materials science via machine learning. Adv Funct Mater, 32 (1) (2022), Article 2108044
|
[6] |
B.A. Rizkin, R.L. Hartman. Supervised machine learning for prediction of zirconocene-catalyzed α-olefin polymerization. Chem Eng Sci, 210 (2019), Article 115224
|
[7] |
P. Xu, H. Chen, M. Li, W. Lu. New opportunity: machine learning for polymer materials design and discovery. Adv Theory Simul, 5 (5) (2022), Article 2100565
|
[8] |
A. Agrawal, A. Choudhary. Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater, 4 (5) (2016), Article 053208
|
[9] |
C. Wang, H. Fu, L. Jiang, D. Xue, J. Xie. A property-oriented design strategy for high performance copper alloys via machine learning. npj Comput Mater, 5 (2019), Article 87
|
[10] |
J. Xiong, S.Q. Shi, T.Y. Zhang. Machine learning of phases and mechanical properties in complex concentrated alloys. J Mater Sci Technol, 87 (2021), pp. 133-142
|
[11] |
J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 596 (7873) (2021), pp. 583-589
|
[12] |
H. Zhao, X. Li, Y. Zhang, L.S. Schadler, W. Chen, L.C. Brinson. Perspective: NanoMine: a material genome approach for polymer nanocomposites analysis and design. APL Mater, 4 (5) (2016), Article 053204
|
[13] |
A. Mannodi-Kanakkithodi, A. Chandrasekaran, C. Kim, T.D. Huan, G. Pilania, V. Botu, et al. Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond. Mater Today, 21 (7) (2018), pp. 785-796
|
[14] |
V. Sharma, C. Wang, R.G. Lorenzini, R. Ma, Q. Zhu, D.W. Sinkovits, et al. Rational design of all organic polymer dielectrics. Nat Commun, 5 (1) (2014), Article 4845
|
[15] |
J. Zhu, M. Chu, Z. Chen, L. Wang, J. Lin, L. Du. Rational design of heat-resistant polymers with low curing energies by a materials genome approach. Chem Mater, 32 (11) (2020), pp. 4527-4535
|
[16] |
G. Gao, S. Zhang, L. Wang, J. Lin, H. Qi, J. Zhu, et al. Developing highly tough, heat-resistant blend thermosets based on silicon-containing arylacetylene: a material genome approach. ACS Appl Mater Interfaces, 12 (24) (2020), pp. 27587-27597
|
[17] |
S. Zhang, S. Du, L. Wang, J. Lin, L. Du, X. Xu, et al. Design of silicon-containing arylacetylene resins aided by machine learning enhanced materials genome approach. Chem Eng J, 448 (15) (2022), Article 137643
|
[18] |
A. Mannodi-Kanakkithodi, G. Pilania, T.D. Huan, T. Lookman, R. Ramprasad. Machine learning strategy for accelerated design of polymer dielectrics. Sci Rep, 6 (1) (2016), Article 20952
|
[19] |
L. Chen, C. Kim, R. Batra, J.P. Lightstone, C. Wu, Z. Li, et al. Frequency-dependent dielectric constant prediction of polymers using machine learning. npj Comput Mater, 6 (2020), Article 61
|
[20] |
D. Weininger. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci, 28 (1) (1988), pp. 31-36
|
[21] |
Z. Wu, B. Ramsundar, E.N. Feinberg, J. Gomes, C. Geniesse, A.S. Pappu, et al. MoleculeNet: a benchmark for molecular machine learning. Chem Sci, 9 (2) (2018), pp. 513-530
|
[22] |
X. Song, L. Lv, W. Sun, J. Zhang. A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct Multidiscipl Optim, 60 (3) (2019), pp. 965-981
|
[23] |
M. Raissi, P. Perdikaris, G.E. Karniadakis. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys, 378 (2019), pp. 686-707
|
[24] |
R. van de Schoot, S. Depaoli, R. King, B. Kramer, K. Märtens, M.G. Tadesse, et al. Bayesian statistics and modelling. Nat Rev Methods Primers, 1 (1) (2021), Article 1
|
[25] |
T.S. Lin, C.W. Coley, H. Mochigase, H.K. Beech, W. Wang, Z. Wang, et al. BigSMILES: a structurally-based line notation for describing macromolecules. ACS Cent Sci, 5 (9) (2019), pp. 1523-1531
|
[26] |
Y. Hu, W. Zhao, L. Wang, J. Lin, L. Du. Machine-learning-assisted design of highly tough thermosetting polymers. ACS Appl Mater Interfaces, 14 (49) (2022), pp. 55004-55016
|
[27] |
J.G. Ethier, R.K. Casukhela, J.J. Latimer, M.D. Jacobsen, A.B. Shantz, R.A. Vaia. Deep learning of binary solution phase behavior of polystyrene. ACS Macro Lett, 10 (6) (2021), pp. 749-754
|
[28] |
P. Shetty, R. Ramprasad. Machine-guided polymer knowledge extraction using natural language processing: the example of named entity normalization. J Chem Inf Model, 61 (11) (2021), pp. 5377-5385
|
[29] |
S. Wu, Y. Kondo, M. Kakimoto, B. Yang, H. Yamada, I. Kuwajima, et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Comput Mater, 5 (2019), Article 66
|
[30] |
P.G. Boyd, Y. Lee, B. Smit. Computational development of the nanoporous materials genome. Nat Rev Mater, 2 (8) (2017), Article 17037
|