[1] |
L. Yang, C. Wang, L. Zhang, W. Dai, Y. Chu, J. Xu, et al. Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion. Nat Commun, 12 (2021), pp. 4661-4671.
|
[2] |
P. Del Campo, M.T. Navarro, S.K. Shaikh, M.D. Khokhar, F. Aljumah, C. Martinez, et al. Propene production by butene cracking. Descriptors for zeolite catalysts. ACS Catal, 10 (20) (2020), pp. 11878-11891.
|
[3] |
S. Liu, Y. He, H. Zhang, Z. Chen, E. Lv, J. Ren, et al. Design and synthesis of Ga-doped ZSM-22 zeolites as highly selective and stable catalysts for n-dodecane isomerization. Catal Sci Technol, 9 (11) (2019), pp. 2812-2827.
|
[4] |
Y. Liu, E. Barath, H. Shi, J. Hu, D.M. Camaioni, J.A. Lercher. Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nat Catal, 1 (2) (2018), pp. 141-147.
|
[5] |
Y. Li, J. Yu. Emerging applications of zeolites in catalysis, separation and host-guest assembly. Nat Rev Mater, 6 (12) (2021), pp. 1156-1174.
|
[6] |
A.J. Jones, E. Iglesia. The strength of bronsted acid sites in microporous aluminosilicates. ACS Catal, 5 (10) (2015), pp. 5741-5755.
|
[7] |
A.A. Arvidsson, P.N. Plessow, F. Studt, A. Hellman. Influence of acidity on the methanol-to-DME reaction in zeotypes: a first principles-based microkinetic study. J Phys Chem C, 124 (27) (2020), pp. 14658-14663.
|
[8] |
A.J. Jones, R.T. Carr, S.I. Zones, E. Iglesia. Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. J Catal, 312 (2014), pp. 58-68.
|
[9] |
Z. Shi, M. Neurock, A. Bhan. Methanol-to-olefins catalysis on HSSZ-13 and HSAPO-34 and its relationship to acid strength. ACS Catal, 11 (3) (2021), pp. 1222-1232.
|
[10] |
D. Yang, C. Sararuk, H. Wang, S.J. Zhang, Z.X. Li, C.S. Li. Effect of metal ion in bulk VPO in aldol condensation of formaldehyde and methyl acetate to methyl acrylate. Ind Eng Chem Res, 57 (1) (2018), pp. 93-100.
|
[11] |
B.H. Wang, B.M. Ge, J. Zhu, L.N. Wang. Process optimization study on the carbonylation of methyl acetate. Chin J Chem Eng, 26 (9) (2018), pp. 1937-1942.
|
[12] |
P. Dunås, L.C. Murfin, O.J. Nilsson, N. Jame, S.E. Lewis, N. Kann. Azulene functionalization by iron-mediated addition to a cyclohexadiene scaffold. J Org Chem, 85 (21) (2020), pp. 13453-13465.
|
[13] |
C. Portilho Trentini, B.T.F. de Mello, V. Ferreira Cabral, C. da Silva. Crambe seed oil: extraction and reaction with dimethyl carbonate under pressurized conditions. J Supercrit Fluids, 159 (2020), Article 104780.
|
[14] |
W. Zhou, J. Kang, K. Cheng, S. He, J. Shi, C. Zhou, et al. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether. Angew Chem Int Ed, 57 (37) (2018), pp. 12012-12016.
|
[15] |
M. Boronat, C. Martínez-Sánchez, D. Law, A. Corma. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO. J Am Chem Soc, 130 (48) (2008), pp. 16316-16323.
|
[16] |
A. Bhan, A.D. Allian, G.J. Sunley, D.J. Law, E. Iglesia. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls. J Am Chem Soc, 129 (16) (2007), pp. 4919-4924.
|
[17] |
H. Ham, H.S. Jung, H.S. Kim, J. Kim, S.J. Cho, W.B. Lee, et al. Gas-phase carbonylation of dimethyl ether on the stable seed-derived ferrierite. ACS Catal, 10 (9) (2020), pp. 5135-5146.
|
[18] |
M. Lusardi, T.T. Chen, M. Kale, J.H. Kang, M. Neurock, M.E. Davis. Carbonylation of dimethyl ether to methyl acetate over SSZ-13. ACS Catal, 10 (1) (2020), pp. 842-851.
|
[19] |
X. Feng, J. Yao, H. Li, Y. Fang, Y. Yoneyama, G. Yang, et al. A brand new zeolite catalyst for carbonylation reaction. Chem Commun, 55 (8) (2019), pp. 1048-1051.
|
[20] |
Z. Xiong, E. Zhan, M. Li, W. Shen. DME carbonylation over a HSUZ-4 zeolite. Chem Commun, 56 (23) (2020), pp. 3401-4344.
|
[21] |
H.B. Shen, Y. Li, S.Y. Huang, K. Cai, Z.Z. Cheng, J. Lv, et al. The carbonylation of dimethyl ether catalyzed by supported heteropoly acids: the role of Brønsted acid properties. Catal Today, 330 (2019), pp. 117-123.
|
[22] |
K. Cai, Y. Li, H. Shen, Z. Cheng, S. Huang, Y. Wang, et al. A density functional theory study on the mechanism of dimethyl ether carbonylation over heteropolyacids catalyst. Front Chem Sci Eng, 15 (2) (2021), pp. 319-329.
|
[23] |
K. Cai, S. Huang, Y. Li, Z. Cheng, J. Lv, X. Ma. Influence of acid strength on the reactivity of dimethyl ether carbonylation over H-MOR. ACS Sustain Chem Eng, 7 (2) (2019), pp. 2027-2034.
|
[24] |
D. Verboekend, M. Milina, J. Perez-Ramirez. Hierarchical silicoaluminophosphates by postsynthetic modification: influence of topology, composition, and silicon distribution. Chem Mater, 26 (15) (2014), pp. 4552-4562.
|
[25] |
V. Machado, J. Rocha, A.P. Carvalho, A. Martins. Modification of MCM-22 zeolite through sequential post-synthesis treatments. Implications on the acidic and catalytic behaviour. Appl Catal A, 445-446 (2012), pp. 329-338.
|
[26] |
P. Gao, Q. Wang, J. Xu, G. Qi, C. Wang, X. Zhou, et al. Brønsted/Lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, as studied by solid-state NMR spectroscopy. ACS Catal, 8 (1) (2018), pp. 69-74.
|
[27] |
Z. Yu, S. Li, Q. Wang, A. Zheng, X. Jun, L. Chen, et al. Brønsted/Lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy. J Phys Chem C, 115 (45) (2011), pp. 22320-22327.
|
[28] |
S. Li, A. Zheng, Y. Su, H. Zhang, L. Chen, J. Yang, et al. Brønsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J Am Chem Soc, 129 (36) (2007), pp. 11161-11171.
|
[29] |
H.J. Cho, P. Dornath, W. Fan. Synthesis of hierarchical Sn-MFI as Lewis acid catalysts for isomerization of cellulosic sugars. ACS Catal, 4 (6) (2014), pp. 2029-2037.
|
[30] |
B. Tang, W. Dai, G. Wu, N. Guan, L. Li, M. Hunger. Improved postsynthesis strategy to Sn-beta zeolites as Lewis acid catalysts for the ring-opening hydration of epoxides. ACS Catal, 4 (8) (2014), pp. 2801-2810.
|
[31] |
Y. Injongkol, T. Maihom, P. Treesukul, J. Sirijaraensre, B. Boekfa, J. Limtrakul. Theoretical study on the reaction mechanism of hydrogenation of furfural to furfuryl alcohol on Lewis acidic BEA zeolites: effects of defect structure and tetravalent metals substitution. Phys Chem Chem Phys, 19 (35) (2017), pp. 24042-24048.
|
[32] |
Y. Li, S. Huang, Z. Cheng, K. Cai, L. Li, E. Milan, et al. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of bronsted acids. Appl Catal B, 256 (2019), Article 117777.
|
[33] |
J.S. Bates, B.C. Bukowski, J.W. Harris, J. Greeley, R. Gounder. Distinct catalytic reactivity of Sn substituted in framework locations and at defect grain boundaries in Sn-zeolites. ACS Catal, 9 (7) (2019), pp. 6146-6168.
|
[34] |
J.W. Harris, M.J. Cordon, J.R. Di Iorio, J.C. Vega-Vila, F.H. Ribeiro, R. Gounder. Titration and quantification of open and closed Lewis acid sites in Sn-beta zeolites that catalyze glucose isomerization. J Catal, 335 (2016), pp. 141-154.
|
[35] |
L. Qi, Y. Zhang, M.A. Conrad, C.K. Russell, J. Miller, A.T. Bell. Ethanol conversion to butadiene over isolated zinc and yttrium sites grafted onto dealuminated beta zeolite. J Am Chem Soc, 142 (34) (2020), pp. 14674-14687.
|
[36] |
M.M. Antunes, S. Lima, P. Neves, A.L. Magalhaes, E. Fazio, A. Fernandes, et al. One-pot conversion of furfural to useful bio-products in the presence of a Sn, Al-containing zeolite beta catalyst prepared via post-synthesis routes. J Catal, 329 (2015), pp. 522-537.
|
[37] |
V. Petranovskii, V. Gurin, R. Machorro. Spectroscopic observation and ab initio simulation of copper clusters in zeolites. Catal Today, 107-108 (2005), pp. 892-900.
|
[38] |
J. Dijkmans, M. Dusselier, D. Gabriels, K. Houthoofd, P.C.M.M. Magusin, S. Huang, et al. Cooperative catalysis for multistep biomass conversion with Sn/Al beta zeolite. ACS Catal, 5 (2) (2015), pp. 928-940.
|
[39] |
C. Paris, M. Moliner, A. Corma. Metal-containing zeolites as efficient catalysts for the transformation of highly valuable chiral biomass-derived products. Green Chem, 15 (8) (2013), pp. 2101-2109.
|
[40] |
W. Dai, C. Wang, B. Tang, G. Wu, N. Guan, Z. Xie, et al. Lewis acid catalysis confined in zeolite cages as a strategy for sustainable heterogeneous hydration of epoxides. ACS Catal, 6 (5) (2016), pp. 2955-2964.
|
[41] |
E. Yuan, W. Dai, G. Wu, N. Guan, M. Hunger, L. Li. Facile synthesis of Sn-containing MFI zeolites as versatile solid acid catalysts. Microporous Mesoporous Mater, 270 (2018), pp. 265-273.
|
[42] |
J.M. Campelo, D. Luna, R. Luque, J.M. Marinas, A.A. Romero, J.J. Calvino, et al. Synthesis of acidic Al-MCM-48: influence of the Si/Al ratio, degree of the surfactant hydroxyl exchange, and post-treatment in NH4F solution. J Catal, 230 (2) (2005), pp. 327-338.
|
[43] |
X. Yang, Y. Liu, X. Li, J. Ren, L. Zhou, T. Lu, et al. Synthesis of Sn-containing nanosized beta zeolite as efficient catalyst for transformation of glucose to methyl lactate. ACS Sustain Chem Eng, 6 (7) (2018), pp. 8256-8265.
|
[44] |
R. Anquetil, J. Saussey, J.C. Lavalley. Confinement effect on the interaction of hydroxy groups contained in the side pockets of H-mordenite with nitriles; a FT-IR study. Phys Chem Chem Phys, 1 (4) (1999), pp. 555-560.
|
[45] |
W. Daniell, N.Y. Topsoe, H. Knozinger. An FTIR study of the surface acidity of USY zeolites: comparison of CO, CD3CN, and C5H5N probe molecules. Langmuir, 17 (20) (2001), pp. 6233-6239.
|
[46] |
R. Otomo, R. Kosugi, Y. Kamiya, T. Tatsumi, T. Yokoi. Modification of Sn-beta zeolite: characterization of acidic/basic properties and catalytic performance in Baeyer-Villiger oxidation. Catal Sci Technol, 6 (8) (2016), pp. 2787-2795.
|
[47] |
G. Qi, Q. Wang, J. Xu, Q. Wu, C. Wang, X. Zhao, et al. Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy. Commun Chem, 1 (1) (2018), p. 22.
|
[48] |
A.V. Yakimov, Y.G. Kolyagin, S. Tolborg, P.N.R. Vennestrøm, I.I. Ivanova. 119Sn MAS NMR study of the interaction of probe molecules with Sn-BEA: the origin of penta- and hexacoordinated tin formation. J Phys Chem C, 120 (49) (2016), pp. 28083-28092.
|
[49] |
M. Wang, S. Huang, J. Lu, Z. Cheng, Y. Li, S. Wang, et al. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether. Chin J Catal, 37 (9) (2016), pp. 1530-1537.
|
[50] |
C.A. Emeis. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal, 141 (2) (1993), pp. 347-354.
|
[51] |
J. Xu, A. Zheng, X. Wang, G. Qi, J. Su, J. Du, et al. Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: insight from solid-state NMR and theoretical calculations. Chem Sci, 3 (10) (2012), pp. 2932-2940.
|
[52] |
D.H. Barich, J.B. Nicholas, T. Xu, J.F. Haw. Theoretical and experimental study of the 13C chemical shift tensors of acetone complexed with Brønsted and Lewis acids. J Am Chem Soc, 120 (47) (1998), pp. 12342-12350.
|
[53] |
S. Li, S.J. Huang, W. Shen, H. Zhang, H. Fang, A. Zheng, et al. Probing the spatial proximities among acid sites in dealuminated H-Y zeolite by solid-state NMR spectroscopy. J Phys Chem C, 112 (37) (2008), pp. 14486-14494.
|
[54] |
L.K. Ono, C.B. Roldan. Size effects on the desorption of O2 from Au2O3/Au0 nanoparticles supported on SiO2: a TPD study. J Phys Chem C, 112 (47) (2008), pp. 18543-18550.
|
[55] |
K. Cao, D. Fan, L. Li, B. Fan, L. Wang, D. Zhu, et al. Insights into the pyridine-modified MOR zeolite catalysts for DME carbonylation. ACS Catal, 10 (5) (2020), pp. 3372-3380.
|
[56] |
P. Cheung, A. Bhan, G.J. Sunley, D.J. Law, E. Iglesia. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites. J Catal, 245 (1) (2007), pp. 110-123.
|
[57] |
B.J. Li, J. Xu, B. Han, X.M. Wang, G.D. Qi, Z.F. Zhang, et al. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy. J Phys Chem C, 117 (11) (2013), pp. 5840-5847.
|
[58] |
D.B. Rasmussen, J.M. Christensen, B. Temel, F. Studt, P.G. Moses, J. Rossmeisl, et al. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite. Angew Chem Int Ed, 54 (25) (2015), pp. 7261-7264.
|
[59] |
H. Zhou, W.L. Zhu, L. Shi, H.C. Liu, S.P. Liu, Y.M. Ni, et al. In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite. J Mol Catal Chem, 417 (2016), pp. 1-9.
|
[60] |
Y. Li, S.Y. Huang, Z.Z. Cheng, S.P. Wang, Q.F. Ge, X.B. Ma. Synergy between Cu and Brønsted acid sites in carbonylation of dimethyl ether over Cu/H-MOR. J Catal, 365 (2018), pp. 440-449.
|