[1] |
W.Q. Chen, L.Y. Li, L. Li, W.H. Qiu, L. Tang, L. Xu, et al.. MoS2/ZIF-8 hybrid materials for environmental catalysis: solar-driven antibiotic-degradation engineering. Engineering, 5 (4) ( 2019), pp. 755-767
|
[2] |
A. Deletic, H. Wang. Water pollution control for sustainable development. Engineering, 5 (5) ( 2019), pp. 839-840
|
[3] |
L. Zha, J. Bai, C. Zhou, Y. Zhang, J. Li, P. Wang, et al.. Treatment of hazardous organic amine wastewater and simultaneous electricity generation using photocatalytic fuel cell based on TiO2/WO3 photoanode and Cu nanowires cathode. Chemosphere, 289 ( 2022), Article 133119
|
[4] |
E. Brillas, I. Sirés, M.A. Oturan. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev, 109 (12) ( 2009), pp. 6570-6631 DOI: 10.1021/cr900136g
|
[5] |
H. Su, C. Christodoulatos, B. Smolinski, P. Arienti, G. O’Connor, X. Meng. Advanced oxidation process for DNAN using UV/H2O2. Engineering, 5 (5) ( 2019), pp. 849-854
|
[6] |
C. Flox, S. Ammar, C. Arias, E. Brillas, A.V. Vargas-Zavala, R. Abdelhedi. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl Catal B, 67 (1-2) ( 2006), pp. 93-104
|
[7] |
W. Miao, Y. Wang, Y. Liu, H. Qin, C. Chu, S. Mao. Persulfate-induced three coordinate nitrogen (N3C) vacancies in defective carbon nitride for enhanced photocatalytic H2O2 evolution. Engineering, 25 (6) ( 2022), pp. 214-221
|
[8] |
J.M. Campos-Martin, G. Blanco-Brieva, J.L. Fierro. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed Engl, 45 (42) ( 2006), pp. 6962-6984 DOI: 10.1002/anie.200503779
|
[9] |
S. Gogoi, N. Karak. Solar-driven hydrogen peroxide production using polymer-supported carbon dots as heterogeneous catalyst. Nano-Micro Lett, 9 (4) ( 2017), p. 40
|
[10] |
H. Piao, G. Choi, X. Jin, S.J. Hwang, Y.J. Song, S.P. Cho, et al.. Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett, 14 (1) ( 2022), p. 55
|
[11] |
E. Brillas. Progress of homogeneous and heterogeneous electro-Fenton treatments of antibiotics in synthetic and real wastewaters. A critical review on the period 2017-2021. Sci Total Environ, 819 ( 2022), Article 153102
|
[12] |
N. Barhoumi, N. Oturan, H. Olvera-Vargas, E. Brillas, A. Gadri, S. Ammar, et al.. Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment. Water Res, 94 ( 2016), pp. 52-61
|
[13] |
L. Chen, J.W. Medlin, H. Grönbeck. On the reaction mechanism of direct H 2O 2 formation over Pd catalysts. ACS Catal, 11 (5) ( 2021), pp. 2735-2745 DOI: 10.1021/acscatal.0c05548
|
[14] |
Q. Chang, P. Zhang, A.H.B. Mostaghimi, X. Zhao, S.R. Denny, J.H. Lee, et al.. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat Commun, 11 (1) ( 2020), p. 2178
|
[15] |
Z. Sun, Y. Wang, L. Zhang, H. Wu, Y. Jin, Y. Li, et al.. Simultaneously realizing rapid electron transfer and mass transport in Jellyfish-like Mott-Schottky nanoreactors for oxygen reduction reaction. Adv Funct Mater, 30 (15) ( 2020), Article 1910482
|
[16] |
H. Zhou, H. Zhang, Y. He, B. Huang, C. Zhou, G. Yao, et al.. Critical review of reductant-enhanced peroxide activation processes: trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions. Appl Catal B, 286 ( 2021), Article 119900
|
[17] |
R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, et al.. Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett, 10 (1) ( 2018), p. 3
|
[18] |
D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang. Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett, 10 (2) ( 2018), p. 29
|
[19] |
Y. Xia, X. Zhao, C. Xia, Z.Y. Wu, P. Zhu, J.Y.T. Kim, et al.. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat Commun, 12 (1) ( 2021), p. 4225
|
[20] |
L. Li, J. Bai, S. Chen, Y. Zhang, J. Li, T. Zhou, et al.. Enhanced O2̇- and OḢ via in situ generating H2O2 at activated graphite felt cathode for efficient photocatalytic fuel cell. Chem Eng J, 399 ( 2020), Article 125839
|
[21] |
Z. Zhang, H. Meng, Y. Wang, L. Shi, X. Wang, S. Chai. Fabrication of graphene@graphite-based gas diffusion electrode for improving H2O2 generation in electro-Fenton process. Electrochim Acta, 260 ( 2018), pp. 112-120
|
[22] |
G.F. Han, F. Li, W. Zou, M. Karamad, J.P. Jeon, S.W. Kim, et al.. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat Commun, 11 (1) ( 2020), p. 2209
|
[23] |
H. Lan, W. He, A. Wang, R. Liu, H. Liu, J. Qu, et al.. An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the electro-Fenton mode: optimal operational conditions and the deposition of iron on cathode on electrode reusability. Water Res, 105 ( 2016), pp. 575-582
|
[24] |
Y. Zhang, L. Liu, B. Van der Bruggen, F. Yang. Nanocarbon based composite electrodes and their application in microbial fuel cells. J Mater Chem A Mater Energy Sustain, 5 (25) ( 2017), pp. 12673-12698
|
[25] |
Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew Chem Int Ed Engl, 54 (23) ( 2015), pp. 6837-6841 DOI: 10.1002/anie.201502396
|
[26] |
P. Luo, Z. Pang, Z. Qin, T. Wei, S. Li, Y. Hu, et al.. Strategies for improving Co/Ni-based bimetal-organic framework to water splitting. Int J Hydrogen Energy, 45 (53) ( 2020), pp. 28240-28251
|
[27] |
Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kühl, et al.. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal, 8 (4) ( 2018), pp. 2844-2856 DOI: 10.1021/acscatal.7b03464
|
[28] |
Q. Zhang, M. Zhou, G. Ren, Y. Li, Y. Li, X. Du. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat Commun, 11 (1) ( 2020), p. 1731
|
[29] |
J. Moreira, V.B Lima, L.A Goulart, M.R.V. Lanza. Electrosynthesis of hydrogen peroxide using modified gas diffusion electrodes (MGDE) for environmental applications: quinones and azo compounds employed as redox modifiers. Appl Catal B, 248 ( 2019), pp. 95-107
|
[30] |
X. Lu, M. Zhou, Y. Li, P. Su, J. Cai, Y. Pan. Improving the yield of hydrogen peroxide on gas diffusion electrode modified with tert-butyl-anthraquinone on different carbon support. Electrochim Acta, 320 ( 2019), Article 134552
|
[31] |
Z. Gu, J. Zhou, X. An, Q. Chen, C. Hu, H. Liu, et al.. A dual-biomimetic photocatalytic fuel cell for efficient electricity generation from degradation of refractory organic pollutants. Appl Catal B, 298 ( 2021), Article 120501
|
[32] |
A. Xu, B. He, H. Yu, W. Han, J. Li, J. Shen, et al.. A facile solution to mature cathode modified by hydrophobic dimethyl silicon oil (DMS) layer for electro-Fenton processes: water proof and enhanced oxygen transport. Electrochim Acta, 308 ( 2019), pp. 158-166
|
[33] |
Y. Sheng, Y. Zhao, X. Wang, R. Wang, T. Tang. Electrogeneration of H2O2 on a composite acetylene black-PTFE cathode consisting of a sheet active core and a dampproof coating. Electrochim Acta, 133 ( 2014), pp. 414-421
|
[34] |
J.F. Carneiro, M.J. Paulo, M. Siaj, A.C. Tavares, M.R.V. Lanza. Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration. J Catal, 332 ( 2015), pp. 51-61
|
[35] |
E.C. Paz, L.R. Aveiro, V.S. Pinheiro, F.M. Souza, V.B. Lima, F.L. Silva, et al.. Evaluation of H2O2 electrogeneration and decolorization of orange II azo dye using tungsten oxide nanoparticle-modified carbon. Appl Catal B, 232 ( 2018), pp. 436-445
|
[36] |
W.R.P. Barros, Q. Wei, G. Zhang, S. Sun, M.R.V. Lanza, A.C. Tavares. Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on printex carbon and graphene. Electrochim Acta, 162 ( 2015), pp. 263-270
|
[37] |
L.R. Aveiro, A.G.M. da Silva, V.S. Antonin, E.G. Candido, L.S. Parreira, R.S. Geonmonond, et al.. Carbon-supported MnO2 nanoflowers: introducing oxygen vacancies for optimized volcano-type electrocatalytic activities towards H2O2 generation. Electrochim Acta, 268 ( 2018), pp. 101-110
|
[38] |
D. Zheng, X.N. Cao, X. Wang. Precise formation of a hollow carbon nitride structure with a Janus surface to promote water splitting by photoredox catalysis. Angew Chem Int Ed Engl, 55 (38) ( 2016), pp. 11512-11516 DOI: 10.1002/anie.201606102
|
[39] |
J.F. Carneiro, L.C. Trevelin, A.S. Lima, G.N. Meloni, M. Bertotti, P. Hammer, et al.. Synthesis and characterization of ZrO 2/C as electrocatalyst for oxygen reduction to H 2O 2. Electrocatalysis, 8 (3) ( 2017), pp. 189-195 DOI: 10.1007/s12678-017-0355-0
|
[40] |
J.F. Carneiro, M.J. Paulo, M. Siaj, A.C. Tavares, M.R.V. Lanza. Zirconia on reduced graphene oxide sheets: synergistic catalyst with high selectivity for H 2O 2 electrogeneration. Chem Electro Chem, 4 (3) ( 2017), pp. 508-513 DOI: 10.1002/celc.201600760
|
[41] |
M.S. Kronka, P.J.M. Cordeiro-Junior, L. Mira, A.J. dos Santos, G.V. Fortunato, M.R.V. Lanza. Sustainable microwave-assisted hydrothermal synthesis of carbon-supported ZrO2 nanoparticles for H2O2 electrogeneration. Mater Chem Phys, 267 ( 2021), Article 124575
|
[42] |
V.S. Antonin, M.H.M.T. Assumpção, J.C.M. Silva, L.S. Parreira, M.R.V. Lanza, M.C. Santos. Synthesis and characterization of nanostructured electrocatalysts based on nickel and tin for hydrogen peroxide electrogeneration. Electrochim Acta, 109 ( 2013), pp. 245-251
|
[43] |
O. Scialdone, A. Galia, C. Gattuso, S. Sabatino, B. Schiavo. Effect of air pressure on the electro-generation of H2O2 and the abatement of organic pollutants in water by electro-Fenton process. Electrochim Acta, 182 ( 2015), pp. 775-780
|
[44] |
J. An, N. Li, Q. Zhao, Y. Qiao, S. Wang, C. Liao, et al.. Highly efficient electro-generation of H2O2 by adjusting liquid-gas-solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction. Water Res, 164 ( 2019), Article 114933
|
[45] |
T. Zhou, L. Li, J. Li, J. Wang, J. Bai, L. Xia, et al.. Electrochemically reduced TiO2 photoanode coupled with oxygen vacancy-rich carbon quantum dots for synergistically improving photoelectrochemical performance. Chem Eng J, 425 ( 2021), Article 131770
|
[46] |
J. Wang, T. Zhou, Y. Zhang, L. Li, C. Zhou, J. Bai, et al.. Type-II heterojunction CdIn 2S 4/BiVO 4 coupling with CQDs to improve PEC water splitting performance synergistically. ACS Appl Mater Interfaces, 14 (40) ( 2022), pp. 45392-45402 DOI: 10.1021/acsami.2c12618
|
[47] |
A. Moraes, M.H.M.T. Assumpção, F.C. Simões, V.S. Antonin, M.R.V. Lanza, P. Hammer, et al.. Surface and catalytical effects on treated carbon materials for hydrogen peroxide electrogeneration. Electrocatalysis, 7 (1) ( 2016), pp. 60-69 DOI: 10.1007/s12678-015-0279-5
|
[48] |
F. Yu, M. Zhou, X. Yu. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochim Acta, 163 ( 2015), pp. 182-189
|
[49] |
X. Mei, J. Bai, S. Chen, M. Zhou, P. Jiang, C. Zhou, et al.. Efficient SO 2 removal and highly synergistic H 2O 2 production based on a novel dual-function photoelectrocatalytic system. Environ Sci Technol, 54 (18) ( 2020), pp. 11515-11525 DOI: 10.1021/acs.est.0c00886
|
[50] |
H. Wang, M. Pan, H. Tan. Application of PTFE and nafion in the catalyst layer for PEMFC. Cell, 02 ( 2007), pp. 158-160
|
[51] |
J.F. Carneiro, F.L. Silva, A.S. Martins, R.M.P. Dias, G.M. Titato, Á.J. Santos-Neto, et al.. Simultaneous degradation of hexazinone and diuron using ZrO2-nanostructured gas diffusion electrode. Chem Eng J, 351 ( 2018), pp. 650-659
|
[52] |
S. Chen, T. Luo, K. Chen, Y. Lin, J. Fu, K. Liu, et al.. Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew Chem Int Ed Engl, 60 (30) ( 2021), pp. 16607-16614 DOI: 10.1002/anie.202104480
|
[53] |
H. Yang, M. Zhou, W. Yang, G. Ren, L. Ma. Rolling-made gas diffusion electrode with carbon nanotube for electro-Fenton degradation of acetylsalicylic acid. Chemosphere, 206 ( 2018), pp. 439-446
|
[54] |
X. Shi, Y. Zhang, S. Siahrostami, X. Zheng. Light-driven BiVO4-C fuel cell with simultaneous production of H2O2. Adv Energy Mater, 8 (23) ( 2018), p. 1801158
|
[55] |
Q. Zhao, Y. Wang, W.H. Lai, F. Xiao, Y. Lyu, C. Liao, et al.. Approaching a high-rate and sustainable production of hydrogen peroxide: oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater. Energy Environ Sci, 14 (10) ( 2021), pp. 5444-5456 DOI: 10.1039/d1ee00878a
|
[56] |
G. Zhang, S. Wang, S. Zhao, L. Fu, G. Chen, F. Yang. Oxidative degradation of azo dye by hydrogen peroxide electrogenerated in situ on anthraquinonemonosulphonate/polypyrrole composite cathode with heterogeneous CuO/γ-Al2O3 catalyst. Appl Catal B, 106 (3-4) ( 2011), pp. 370-378
|
[57] |
X. Du, M.A. Oturan, M. Zhou, N. Belkessa, P. Su, J. Cai, et al.. Nanostructured electrodes for electrocatalytic advanced oxidation processes: from materials preparation to mechanisms understanding and wastewater treatment applications. Appl Catal B, 296 ( 2021), Article 120332
|
[58] |
A. Yu, G. Ma, L. Zhu, R. Zhang, Y. Li, S. Yang, et al.. Conversion of CO2 to defective porous carbons in one electro-redox cycle for boosting electrocatalytic H2O2 production. Appl Catal B, 307 ( 2022), Article 121161
|
[59] |
M. Jourshabani, M.R. Asrami, B.K. Lee. An efficient and unique route for the fabrication of highly condensed oxygen-doped carbon nitride for the photodegradation of synchronous pollutants and H2O2 production under ambient conditions. Appl Catal B, 302 ( 2022), Article 120839
|
[60] |
P. Cao, X. Quan, K. Zhao, S. Chen, H. Yu, J. Niu. Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis. J Hazard Mater, 382 ( 2020), Article 121102
|