H2O2的高效电合成及其电Fenton在难降解有机物降解中的应用

李磊, 白晶, 江盼宇, 张岩, 周廷生, 王嘉琛, 周昌辉, 李金花, 周保学

工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 131-143.

PDF(6498 KB)
PDF(6498 KB)
工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 131-143. DOI: 10.1016/j.eng.2023.02.005
研究论文
Article

H2O2的高效电合成及其电Fenton在难降解有机物降解中的应用

作者信息 +

Efficient H2O2 Electrosynthesis and Its Electro-Fenton Application for Refractory Organics Degradation

Author information +
History +

摘要

O2还原反应原位电合成H2O2的利用为难降解废水的传统芬顿处理提供了一种有前景的替代方案。然而,氧气传质效率低、阴极催化剂选择性差以及电子传递动力学缓慢仍然是其主要的工程障碍。在此,我们基于新型ZrO2/CMK-3/PTFE阴极的制备,提出了一种系统解决方案,旨在高效电合成H2O2并将其应用于电芬顿降解难降解有机物。采用聚四氟乙烯作为疏水改性剂以增强电极的O2传质,采用ZrO2对电极进行亲水改性以增强O2还原的选择性及电子传递,采用介孔碳CMK-3作为催化剂基底以提供催化活性位点。此外,还设计了一O2扩散室,以强化O2从疏水层向亲水层与反应界面的接触。研究结果表明,与相同条件下的传统气体扩散阴极相比,所制备的ZrO2/CMK-3/PTFE阴极的H2O2产率提高了约7.56倍。在−1.3 V vs. SHE(对应的电流密度为−252 mA·cm−2),H2O2的产率和法拉第效率分别高达125.98 mg·cm−2·h−1 (5674.04 mmol·g−1·h−1)和78.24%。高的H2O2产率确保了系统中充足的•OH产生,进而实现了优异的电芬顿性能,使难降解有机物的降解效率超过96%。这项研究基于原位高效电合成H2O2,为利用电芬顿技术高效处理难降解废水提供了一种新颖的工程解决方案。

Abstract

Hydrogen peroxide (H2O2) in situ electrosynthesis by O2 reduction reaction is a promising alternative to the conventional Fenton treatment of refractory wastewater. However, O2 mass transfer limitation, cathodic catalyst selectivity, and electron transfer in O2 reduction remain major engineering obstacles. Here, we have proposed a systematic solution for efficient H2O2 generation and its electro-Fenton (EF) application for refractory organic degradation based on the fabrication of a novel ZrO2/CMK-3/PTFE cathode, in which polytetrafluoroethylene (PTFE) acted as a hydrophobic modifier to strengthen the O2 mass transfer, ZrO2 was adopted as a hydrophilic modifier to enhance the electron transfer of O2 reduction, and mesoporous carbon CMK-3 was utilized as a catalyst substrate to provide catalytic active sites. Moreover, feasible mass transfer of O2 from the hydrophobic to the hydrophilic layer was designed to increase the contact between O2 and the reaction interface. The H2O2 yield of the ZrO2/CMK-3/PTFE cathode was significantly improved by approximately 7.56 times compared to that of the conventional gas diffusion cathode under the same conditions. The H2O2 generation rate and Faraday efficiency reached 125.98 mg·cm−2·h−1 (normalized to 5674.04 mmol·g−1·h−1 by catalyst loading) and 78.24% at −1.3 V versus standard hydrogen electrode (current density of −252 mA·cm−2), respectively. The high H2O2 yield ensured that sufficient OḢ was produced for excellent EF performance, resulting in a degradation efficiency of over 96% for refractory organics. This study offers a novel engineering solution for the efficient treatment of refractory wastewater using EF technology based on in situ high-yield H2O2 electrosynthesis.

关键词

过氧化氢 / 亲/疏水界面修饰 / 电芬顿 / 难降解有机物

Keywords

Hydrogen peroxide / Hydrophilic/hydrophobic interface modification / Electro-Fenton / Refractory organics

引用本文

导出引用
李磊, 白晶, 江盼宇. H2O2的高效电合成及其电Fenton在难降解有机物降解中的应用. Engineering. 2023, 30(11): 131-143 https://doi.org/10.1016/j.eng.2023.02.005

参考文献

[1]
W.Q. Chen, L.Y. Li, L. Li, W.H. Qiu, L. Tang, L. Xu, et al.. MoS2/ZIF-8 hybrid materials for environmental catalysis: solar-driven antibiotic-degradation engineering. Engineering, 5 (4) ( 2019), pp. 755-767
[2]
A. Deletic, H. Wang. Water pollution control for sustainable development. Engineering, 5 (5) ( 2019), pp. 839-840
[3]
L. Zha, J. Bai, C. Zhou, Y. Zhang, J. Li, P. Wang, et al.. Treatment of hazardous organic amine wastewater and simultaneous electricity generation using photocatalytic fuel cell based on TiO2/WO3 photoanode and Cu nanowires cathode. Chemosphere, 289 ( 2022), Article 133119
[4]
E. Brillas, I. Sirés, M.A. Oturan. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev, 109 (12) ( 2009), pp. 6570-6631 DOI: 10.1021/cr900136g
[5]
H. Su, C. Christodoulatos, B. Smolinski, P. Arienti, G. O’Connor, X. Meng. Advanced oxidation process for DNAN using UV/H2O2. Engineering, 5 (5) ( 2019), pp. 849-854
[6]
C. Flox, S. Ammar, C. Arias, E. Brillas, A.V. Vargas-Zavala, R. Abdelhedi. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl Catal B, 67 (1-2) ( 2006), pp. 93-104
[7]
W. Miao, Y. Wang, Y. Liu, H. Qin, C. Chu, S. Mao. Persulfate-induced three coordinate nitrogen (N3C) vacancies in defective carbon nitride for enhanced photocatalytic H2O2 evolution. Engineering, 25 (6) ( 2022), pp. 214-221
[8]
J.M. Campos-Martin, G. Blanco-Brieva, J.L. Fierro. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed Engl, 45 (42) ( 2006), pp. 6962-6984 DOI: 10.1002/anie.200503779
[9]
S. Gogoi, N. Karak. Solar-driven hydrogen peroxide production using polymer-supported carbon dots as heterogeneous catalyst. Nano-Micro Lett, 9 (4) ( 2017), p. 40
[10]
H. Piao, G. Choi, X. Jin, S.J. Hwang, Y.J. Song, S.P. Cho, et al.. Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett, 14 (1) ( 2022), p. 55
[11]
E. Brillas. Progress of homogeneous and heterogeneous electro-Fenton treatments of antibiotics in synthetic and real wastewaters. A critical review on the period 2017-2021. Sci Total Environ, 819 ( 2022), Article 153102
[12]
N. Barhoumi, N. Oturan, H. Olvera-Vargas, E. Brillas, A. Gadri, S. Ammar, et al.. Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment. Water Res, 94 ( 2016), pp. 52-61
[13]
L. Chen, J.W. Medlin, H. Grönbeck. On the reaction mechanism of direct H2O2 formation over Pd catalysts. ACS Catal, 11 (5) ( 2021), pp. 2735-2745 DOI: 10.1021/acscatal.0c05548
[14]
Q. Chang, P. Zhang, A.H.B. Mostaghimi, X. Zhao, S.R. Denny, J.H. Lee, et al.. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat Commun, 11 (1) ( 2020), p. 2178
[15]
Z. Sun, Y. Wang, L. Zhang, H. Wu, Y. Jin, Y. Li, et al.. Simultaneously realizing rapid electron transfer and mass transport in Jellyfish-like Mott-Schottky nanoreactors for oxygen reduction reaction. Adv Funct Mater, 30 (15) ( 2020), Article 1910482
[16]
H. Zhou, H. Zhang, Y. He, B. Huang, C. Zhou, G. Yao, et al.. Critical review of reductant-enhanced peroxide activation processes: trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions. Appl Catal B, 286 ( 2021), Article 119900
[17]
R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, et al.. Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett, 10 (1) ( 2018), p. 3
[18]
D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang. Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett, 10 (2) ( 2018), p. 29
[19]
Y. Xia, X. Zhao, C. Xia, Z.Y. Wu, P. Zhu, J.Y.T. Kim, et al.. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat Commun, 12 (1) ( 2021), p. 4225
[20]
L. Li, J. Bai, S. Chen, Y. Zhang, J. Li, T. Zhou, et al.. Enhanced O2̇- and OḢ via in situ generating H2O2 at activated graphite felt cathode for efficient photocatalytic fuel cell. Chem Eng J, 399 ( 2020), Article 125839
[21]
Z. Zhang, H. Meng, Y. Wang, L. Shi, X. Wang, S. Chai. Fabrication of graphene@graphite-based gas diffusion electrode for improving H2O2 generation in electro-Fenton process. Electrochim Acta, 260 ( 2018), pp. 112-120
[22]
G.F. Han, F. Li, W. Zou, M. Karamad, J.P. Jeon, S.W. Kim, et al.. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat Commun, 11 (1) ( 2020), p. 2209
[23]
H. Lan, W. He, A. Wang, R. Liu, H. Liu, J. Qu, et al.. An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the electro-Fenton mode: optimal operational conditions and the deposition of iron on cathode on electrode reusability. Water Res, 105 ( 2016), pp. 575-582
[24]
Y. Zhang, L. Liu, B. Van der Bruggen, F. Yang. Nanocarbon based composite electrodes and their application in microbial fuel cells. J Mater Chem A Mater Energy Sustain, 5 (25) ( 2017), pp. 12673-12698
[25]
Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew Chem Int Ed Engl, 54 (23) ( 2015), pp. 6837-6841 DOI: 10.1002/anie.201502396
[26]
P. Luo, Z. Pang, Z. Qin, T. Wei, S. Li, Y. Hu, et al.. Strategies for improving Co/Ni-based bimetal-organic framework to water splitting. Int J Hydrogen Energy, 45 (53) ( 2020), pp. 28240-28251
[27]
Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kühl, et al.. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal, 8 (4) ( 2018), pp. 2844-2856 DOI: 10.1021/acscatal.7b03464
[28]
Q. Zhang, M. Zhou, G. Ren, Y. Li, Y. Li, X. Du. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat Commun, 11 (1) ( 2020), p. 1731
[29]
J. Moreira, V.B Lima, L.A Goulart, M.R.V. Lanza. Electrosynthesis of hydrogen peroxide using modified gas diffusion electrodes (MGDE) for environmental applications: quinones and azo compounds employed as redox modifiers. Appl Catal B, 248 ( 2019), pp. 95-107
[30]
X. Lu, M. Zhou, Y. Li, P. Su, J. Cai, Y. Pan. Improving the yield of hydrogen peroxide on gas diffusion electrode modified with tert-butyl-anthraquinone on different carbon support. Electrochim Acta, 320 ( 2019), Article 134552
[31]
Z. Gu, J. Zhou, X. An, Q. Chen, C. Hu, H. Liu, et al.. A dual-biomimetic photocatalytic fuel cell for efficient electricity generation from degradation of refractory organic pollutants. Appl Catal B, 298 ( 2021), Article 120501
[32]
A. Xu, B. He, H. Yu, W. Han, J. Li, J. Shen, et al.. A facile solution to mature cathode modified by hydrophobic dimethyl silicon oil (DMS) layer for electro-Fenton processes: water proof and enhanced oxygen transport. Electrochim Acta, 308 ( 2019), pp. 158-166
[33]
Y. Sheng, Y. Zhao, X. Wang, R. Wang, T. Tang. Electrogeneration of H2O2 on a composite acetylene black-PTFE cathode consisting of a sheet active core and a dampproof coating. Electrochim Acta, 133 ( 2014), pp. 414-421
[34]
J.F. Carneiro, M.J. Paulo, M. Siaj, A.C. Tavares, M.R.V. Lanza. Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration. J Catal, 332 ( 2015), pp. 51-61
[35]
E.C. Paz, L.R. Aveiro, V.S. Pinheiro, F.M. Souza, V.B. Lima, F.L. Silva, et al.. Evaluation of H2O2 electrogeneration and decolorization of orange II azo dye using tungsten oxide nanoparticle-modified carbon. Appl Catal B, 232 ( 2018), pp. 436-445
[36]
W.R.P. Barros, Q. Wei, G. Zhang, S. Sun, M.R.V. Lanza, A.C. Tavares. Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on printex carbon and graphene. Electrochim Acta, 162 ( 2015), pp. 263-270
[37]
L.R. Aveiro, A.G.M. da Silva, V.S. Antonin, E.G. Candido, L.S. Parreira, R.S. Geonmonond, et al.. Carbon-supported MnO2 nanoflowers: introducing oxygen vacancies for optimized volcano-type electrocatalytic activities towards H2O2 generation. Electrochim Acta, 268 ( 2018), pp. 101-110
[38]
D. Zheng, X.N. Cao, X. Wang. Precise formation of a hollow carbon nitride structure with a Janus surface to promote water splitting by photoredox catalysis. Angew Chem Int Ed Engl, 55 (38) ( 2016), pp. 11512-11516 DOI: 10.1002/anie.201606102
[39]
J.F. Carneiro, L.C. Trevelin, A.S. Lima, G.N. Meloni, M. Bertotti, P. Hammer, et al.. Synthesis and characterization of ZrO2/C as electrocatalyst for oxygen reduction to H2O2. Electrocatalysis, 8 (3) ( 2017), pp. 189-195 DOI: 10.1007/s12678-017-0355-0
[40]
J.F. Carneiro, M.J. Paulo, M. Siaj, A.C. Tavares, M.R.V. Lanza. Zirconia on reduced graphene oxide sheets: synergistic catalyst with high selectivity for H2O2 electrogeneration. Chem Electro Chem, 4 (3) ( 2017), pp. 508-513 DOI: 10.1002/celc.201600760
[41]
M.S. Kronka, P.J.M. Cordeiro-Junior, L. Mira, A.J. dos Santos, G.V. Fortunato, M.R.V. Lanza. Sustainable microwave-assisted hydrothermal synthesis of carbon-supported ZrO2 nanoparticles for H2O2 electrogeneration. Mater Chem Phys, 267 ( 2021), Article 124575
[42]
V.S. Antonin, M.H.M.T. Assumpção, J.C.M. Silva, L.S. Parreira, M.R.V. Lanza, M.C. Santos. Synthesis and characterization of nanostructured electrocatalysts based on nickel and tin for hydrogen peroxide electrogeneration. Electrochim Acta, 109 ( 2013), pp. 245-251
[43]
O. Scialdone, A. Galia, C. Gattuso, S. Sabatino, B. Schiavo. Effect of air pressure on the electro-generation of H2O2 and the abatement of organic pollutants in water by electro-Fenton process. Electrochim Acta, 182 ( 2015), pp. 775-780
[44]
J. An, N. Li, Q. Zhao, Y. Qiao, S. Wang, C. Liao, et al.. Highly efficient electro-generation of H2O2 by adjusting liquid-gas-solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction. Water Res, 164 ( 2019), Article 114933
[45]
T. Zhou, L. Li, J. Li, J. Wang, J. Bai, L. Xia, et al.. Electrochemically reduced TiO2 photoanode coupled with oxygen vacancy-rich carbon quantum dots for synergistically improving photoelectrochemical performance. Chem Eng J, 425 ( 2021), Article 131770
[46]
J. Wang, T. Zhou, Y. Zhang, L. Li, C. Zhou, J. Bai, et al.. Type-II heterojunction CdIn2S4/BiVO4 coupling with CQDs to improve PEC water splitting performance synergistically. ACS Appl Mater Interfaces, 14 (40) ( 2022), pp. 45392-45402 DOI: 10.1021/acsami.2c12618
[47]
A. Moraes, M.H.M.T. Assumpção, F.C. Simões, V.S. Antonin, M.R.V. Lanza, P. Hammer, et al.. Surface and catalytical effects on treated carbon materials for hydrogen peroxide electrogeneration. Electrocatalysis, 7 (1) ( 2016), pp. 60-69 DOI: 10.1007/s12678-015-0279-5
[48]
F. Yu, M. Zhou, X. Yu. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochim Acta, 163 ( 2015), pp. 182-189
[49]
X. Mei, J. Bai, S. Chen, M. Zhou, P. Jiang, C. Zhou, et al.. Efficient SO2 removal and highly synergistic H2O2 production based on a novel dual-function photoelectrocatalytic system. Environ Sci Technol, 54 (18) ( 2020), pp. 11515-11525 DOI: 10.1021/acs.est.0c00886
[50]
H. Wang, M. Pan, H. Tan. Application of PTFE and nafion in the catalyst layer for PEMFC. Cell, 02 ( 2007), pp. 158-160
[51]
J.F. Carneiro, F.L. Silva, A.S. Martins, R.M.P. Dias, G.M. Titato, Á.J. Santos-Neto, et al.. Simultaneous degradation of hexazinone and diuron using ZrO2-nanostructured gas diffusion electrode. Chem Eng J, 351 ( 2018), pp. 650-659
[52]
S. Chen, T. Luo, K. Chen, Y. Lin, J. Fu, K. Liu, et al.. Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew Chem Int Ed Engl, 60 (30) ( 2021), pp. 16607-16614 DOI: 10.1002/anie.202104480
[53]
H. Yang, M. Zhou, W. Yang, G. Ren, L. Ma. Rolling-made gas diffusion electrode with carbon nanotube for electro-Fenton degradation of acetylsalicylic acid. Chemosphere, 206 ( 2018), pp. 439-446
[54]
X. Shi, Y. Zhang, S. Siahrostami, X. Zheng. Light-driven BiVO4-C fuel cell with simultaneous production of H2O2. Adv Energy Mater, 8 (23) ( 2018), p. 1801158
[55]
Q. Zhao, Y. Wang, W.H. Lai, F. Xiao, Y. Lyu, C. Liao, et al.. Approaching a high-rate and sustainable production of hydrogen peroxide: oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater. Energy Environ Sci, 14 (10) ( 2021), pp. 5444-5456 DOI: 10.1039/d1ee00878a
[56]
G. Zhang, S. Wang, S. Zhao, L. Fu, G. Chen, F. Yang. Oxidative degradation of azo dye by hydrogen peroxide electrogenerated in situ on anthraquinonemonosulphonate/polypyrrole composite cathode with heterogeneous CuO/γ-Al2O3 catalyst. Appl Catal B, 106 (3-4) ( 2011), pp. 370-378
[57]
X. Du, M.A. Oturan, M. Zhou, N. Belkessa, P. Su, J. Cai, et al.. Nanostructured electrodes for electrocatalytic advanced oxidation processes: from materials preparation to mechanisms understanding and wastewater treatment applications. Appl Catal B, 296 ( 2021), Article 120332
[58]
A. Yu, G. Ma, L. Zhu, R. Zhang, Y. Li, S. Yang, et al.. Conversion of CO2 to defective porous carbons in one electro-redox cycle for boosting electrocatalytic H2O2 production. Appl Catal B, 307 ( 2022), Article 121161
[59]
M. Jourshabani, M.R. Asrami, B.K. Lee. An efficient and unique route for the fabrication of highly condensed oxygen-doped carbon nitride for the photodegradation of synchronous pollutants and H2O2 production under ambient conditions. Appl Catal B, 302 ( 2022), Article 120839
[60]
P. Cao, X. Quan, K. Zhao, S. Chen, H. Yu, J. Niu. Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis. J Hazard Mater, 382 ( 2020), Article 121102
PDF(6498 KB)

Accesses

Citation

Detail

段落导航
相关文章

/