[1] |
L. Mai, X.F. Sun, L.L. Xia, L.J. Bao, L.Y. Liu, E.Y. Zeng. Global riverine plastic outflows. Environ Sci Technol, 54 (16) (2020), pp. 10049-10056
|
[2] |
Alimi J.M. Farner N. Tufenkji. Exposure of nanoplastics to freeze-thaw leads to aggregation and reduced transport in model groundwater environments. Water Res, 189 (2021), Article 116533
|
[3] |
M. González-Pleiter, D. Velázquez, C. Edo, O. Carretero, J. Gago, Á. Barón-Sola, et al. Fibers spreading worldwide: microplastics and other anthropogenic litter in an Arctic freshwater lake. Sci Total Environ, 722 (2020), Article 137904
|
[4] |
Y.C. Meng, F.J. Kelly, S.L. Wright. Advances and challenges of microplastic pollution in freshwater ecosystems: a UK perspective. Environ Pollut, 256 (2020), Article 113445
|
[5] |
S. Allen, D. Allen, V.R. Phoenix, G. Le Roux, P. Durántez Jiménez, A. Simonneau, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci, 12 (2019), pp. 339-344
|
[6] |
Y.L. Zhang, S.C. Kang, S. Allen, D. Allen, T.G. Gao, M. Sillanpaa. Atmospheric microplastics: a review on current status and perspectives. Earth Sci Rev, 203 (2020), Article 103118
|
[7] |
J. Sun, Z. Peng, Z.R. Zhu, W. Fu, X. Dai, B.J. Ni. The atmospheric microplastics deposition contributes to microplastic pollution in urban waters. Water Res, 225 (2022), Article 119116
|
[8] |
H. Dong, L. Wang, X. Wang, L. Xu, M. Chen, P. Gong, et al. Microplastics in a remote lake basin of the Tibetan Plateau: impacts of atmospheric transport and glacial melting. Environ Sci Technol, 55 (19) (2021), pp. 12951-12960
|
[9] |
M. Bergmann, S. Mützel, S. Primpke, M.B. Tekman, J. Trachsel, G. Gerdts. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci Adv, 5(8):eaax1157 (2019)
|
[10] |
P. Schwabl, S. Köppel, P. Königshofer, T. Bucsics, M. Trauner, T. Reiberger, et al. Detection of various microplastics in human stool: a prospective case series. Ann Intern Med, 171 (7) (2019), pp. 453-457
|
[11] |
J. Nizamali, S.M. Mintenig, A.A. Koelmans. Assessing microplastic characteristics in bottled drinking water and air deposition samples using laser direct infrared imaging. J Hazard Mater, 441 (2023), Article 129942
|
[12] |
Q. Chen, A. Allgeier, D. Yin, H. Hollert. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ Int, 130 (2019), Article 104938
|
[13] |
M. Cabrera, G.M. Moulatlet, B.G. Valencia, L. Maisincho, R. Rodríguez-Barroso, G. Albendín, et al. Microplastics in a tropical Andean Glacier: a transportation process across the Amazon basin? Sci Total Environ, 805 (2022), Article 150334
|
[14] |
G. Kalčíková, T. Skalar, G. Marolt, K.A. Jemec. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Res, 175 (2020), Article 115644
|
[15] |
X. Wu, J. Pan, M. Li, Y. Li, M. Bartlam, Y. Wang. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res, 165 (2019), Article 114979
|
[16] |
V. Kinigopoulou, I. Pashalidis, D. Kalderis, I. Anastopoulos. Microplastics as carriers of inorganic and organic contaminants in the environment: a review of recent progress. J Mol Liq, 350 (2022), Article 118580
|
[17] |
J. Wang, X. Guo, J. Xue. Biofilm-developed microplastics as vectors of pollutants in aquatic environments. Environ Sci Technol, 55 (19) (2021), pp. 12780-12790
|
[18] |
Mateos-Cárdenas F.N.A.M. van Pelt J. O’Halloran M.A.K. Jansen. Adsorption, uptake and toxicity of micro- and nanoplastics: effects on terrestrial plants and aquatic macrophytes. Environ Pollut, 284 (2021), Article 117183
|
[19] |
M.K. Viršek, M.N. Lovšin, Š. Koren, A. Kržan, M. Peterlin. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar Pollut Bull, 125 (1-2) (2017), pp. 301-309
|
[20] |
S. Savoca, T. Bottari, E. Fazio, M. Bonsignore, M. Mancuso, G.M. Luna, et al. Plastics occurrence in juveniles of Engraulis encrasicolus and Sardina pilchardus in the Southern Tyrrhenian Sea. Sci Total Environ, 718 (2020), Article 137457
|
[21] |
R.M. Macieira, L.A.S. Oliveira, G.C. Cardozo-Ferreira, C.R. Pimentel, R. Andrades, J.L. Gasparini, et al. Microplastic and artificial cellulose microfibers ingestion by reef fishes in the Guarapari Islands, southwestern Atlantic. Mar Pollut Bull, 167 (2021), Article 112371
|
[22] |
J. Zhou, H. Gui, C.C. Banfield, Y. Wen, H. Zang, M.A. Dippold, et al. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol Biochem, 156 (2021), Article 108211
|
[23] |
H. Yu, W. Qi, X. Cao, J. Hu, Y. Li, J. Peng, et al. Microplastic residues in wetland ecosystems: do they truly threaten the plant-microbe-soil system? Environ Int, 156 (2021), Article 106708
|
[24] |
X. Chen, X. Chen, Y. Zhao, H. Zhou, X. Xiong, C. Wu. Effects of microplastic biofilms on nutrient cycling in simulated freshwater systems. Sci Total Environ, 719 (2020), Article 137276
|
[25] |
C. Sanz-Lázaro, N. Casado-Coy, A. Beltrán-Sanahuja. Biodegradable plastics can alter carbon and nitrogen cycles to a greater extent than conventional plastics in marine sediment. Sci Total Environ, 756 (2021), Article 143978
|
[26] |
M.B. Sathicq, R. Sabatino, G. Corno, A. Di Cesare. Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems? Environ Pollut, 279 (2021), Article 116896
|
[27] |
L. Mughini-Gras, A. Dorado-García, E. van Duijkeren, G. van den Bunt, C.M. Dierikx, M.J.M. Bonten, et al. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: a population-based modelling study. Lancet Planet Health, 3 (8) (2019), pp. e357-e369
|
[28] |
W. Zhou, Y. Han, Y. Tang, W. Shi, X. Du, S. Sun, et al. Microplastics aggravate the bioaccumulation of two waterborne veterinary antibiotics in an edible bivalve species: potential mechanisms and implications for human health. Environ Sci Technol, 54 (13) (2020), pp. 8115-8122
|
[29] |
L.A. Amaral-Zettler, E.R. Zettler, T.J. Mincer. Ecology of the plastisphere. Nat Rev Microbiol, 18 (3) (2020), pp. 139-151
|
[30] |
R.J. Wright, G. Erni-Cassola, V. Zadjelovic, M. Latva, J.A. Christie-Oleza. Marine plastic debris: a new surface for microbial colonization. Environ Sci Technol, 54 (19) (2020), pp. 11657-11672
|
[31] |
X. Zhu, W. Huang, M. Fang, Z. Liao, Y. Wang, L. Xu, et al. Airborne microplastic concentrations in five megacities of northern and southeast China. Environ Sci Technol, 55 (19) (2021), pp. 12871-12881
|
[32] |
X. Sun, K. Wang, S. Kang, J. Guo, G. Zhang, J. Huang, et al. The role of melting alpine glaciers in mercury export and transport: an intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau. Environ Pollut, 220 (Pt B) (2017), pp. 936-945
|
[33] |
D. Materić, E. Ludewig, D. Brunner, T. Röckmann, R. Holzinger. Nanoplastics transport to the remote, high-altitude Alps. Environ Pollut, 288 (2021), Article 117697
|
[34] |
H. Ying, Y. Shan, H. Zhang, T. Yuan, W. Rihan, G. Deng. The effect of snow depth on spring wildfires on the Hulunbuir from2001-2018 based on MODIS. Remote Sens, 11 (3) (2019), p. 321
|
[35] |
C. Zhu, M. Miller, N. Lusskin, B. Bergk Pinto, L. Maccario, M. Häggblom, et al. Snow microbiome functional analyses reveal novel aspects of microbial metabolism of complex organic compounds. MicrobiologyOpen, 9 (9) (2020), p. e1100
|
[36] |
H. Yu, Y. Zhang, W. Tan. The “neighbor avoidance effect” of microplastics on bacterial and fungal diversity and communities in different soil horizons. Environ Sci Ecotechnol, 8 (2021), Article 100121
|
[37] |
W. Li, Z. Wang, W. Li, Z. Li. Impacts of microplastics addition on sediment environmental properties, enzymatic activities and bacterial diversity. Chemosphere, 307 (Pt 3) (2022), Article 135836
|
[38] |
K. Martin, P. Schumann, F.A. Rainey, B. Schuetze, I. Groth. Janibacter limosus gen. nov., sp. nov., a new actinomycete with meso-diaminopimelic acid in the cell wall. Int J Syst Bacteriol, 47 (2) (1997), pp. 529-534
|
[39] |
M. Kanehisa, S. Goto. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28 (1) (2000), pp. 27-30
|
[40] |
M. Gulshan, K. Yaku, K. Okabe, A. Mahmood, T. Sasaki, M. Yamamoto, et al. Overexpression of Nmnat 3 efficiently increases NAD and NGD levels and ameliorates age-associated insulin resistance. Aging Cell, 17 (4) (2018), p. e12798
|
[41] |
T.D. Missihoun, H.H. Kirch, D. Bartels. T-DNA insertion mutants reveal complex expression patterns of the aldehyde dehydrogenase 3H1 locus in Arabidopsis thaliana. J Exp Bot, 63 (10) (2012), pp. 3887-3898
|
[42] |
M. Kumar, X. Xiong, M. He, D.C.W. Tsang, J. Gupta, E. Khan, et al. Microplastics as pollutants in agricultural soils. Environ Pollut, 265 (Pt A) (2020), Article 114980
|
[43] |
K.Y. Horiuchi, M.R. Harpel, L. Shen, Y. Luo, K.C. Rogers, R.A. Copeland. Mechanistic studies of reaction coupling in Glu-tRNAGln amidotransferase. Biochemistry, 40 (21) (2001), pp. 6450-6457
|
[44] |
C.F. Higgins. ABC transporters: from microorganisms to man. Annu Rev Cell Biol, 8 (1) (1992), pp. 67-113
|
[45] |
B.J. Adams, R.D. Bardgett, E. Ayres, D.H. Wall, J. Aislabie, S. Bamforth, et al. Diversity and distribution of Victoria Land biota. Soil Biol Biochem, 38 (10) (2006), pp. 3003-3018
|
[46] |
B. Rothe, B. Rothe, P. Roggentin, R. Schauer. The sialidase gene from Clostridium septicum: cloning, sequencing, expression in Escherichia coli and identification of conserved sequences in sialidases and other proteins. Mol Gen Genet, 226 (1991), pp. 190-197
|
[47] |
X. Yang, Q. He, F. Guo, X. Sun, J. Zhang, M. Chen, et al. Nanoplastics disturb nitrogen removal in constructed wetlands: responses of microbes and macrophytes. Environ Sci Technol, 54 (21) (2020), pp. 14007-14016
|
[48] |
C. Li, Y. Gan, J. Dong, J. Fang, H. Chen, Q. Quan, et al. Impact of microplastics on microbial community in sediments of the Huangjinxia Reservoir-water source of a water diversion project in western China. Chemosphere, 253 (2020), Article 126740
|
[49] |
J. Brahney, M. Hallerud, E. Heim, M. Hahnenberger, S. Sukumaran. Plastic rain in protected areas of the United States. Science, 368 (6496) (2020), pp. 1257-1260
|
[50] |
Crosta B. De Felice D. Antonioli R. Chiarcos E. Perin M.A. Ortenzi, et al. Microplastic contamination of supraglacial debris differs among glaciers with different anthropic pressures. Sci Total Environ, 851 (Pt 2) (2022), Article 158301
|
[51] |
M. Shen, W. Xiong, B. Song, C. Zhou, E. Almatrafi, G. Zeng, et al. Microplastics in landfill and leachate: occurrence, environmental behavior and removal strategies. Chemosphere, 305 (2022), Article 135325
|
[52] |
Z. Yang, F. Lü, H. Zhang, W. Wang, L. Shao, J. Ye, et al. Is incineration the terminator of plastics and microplastics? J Hazard Mater, 401 (2021), Article 123429
|
[53] |
S. Padha, R. Kumar, A. Dhar, P. Sharma. Microplastic pollution in mountain terrains and foothills: a review on source, extraction, and distribution of microplastics in remote areas. Environ Res, 207 (2022), Article 112232
|
[54] |
L. Miao, P. Wang, J. Hou, Y. Yao, Z. Liu, S. Liu, et al. Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci Total Environ, 650 (Pt 2) (2019), pp. 2395-2402
|
[55] |
J.N. Huang, B. Wen, L. Miao, X. Liu, Z.J. Li, T.F. Ma, et al. Microplastics drive nitrification by enriching functional microorganisms in aquaculture pond waters. Chemosphere, 309 (Pt 1) (2022), Article 136646
|
[56] |
L. Lin, E.G. Xu, M. Liu, Y. Yang, A. Zhou, B. Suyamud, et al. Microbiological processes of submicrometer plastics affecting submerged plant growth in a chronic exposure microcosm. Environ Sci Technol Lett, 10 (1) (2023), pp. 33-39
|
[57] |
Y. Liu, W. Liu, X. Yang, J. Wang, H. Lin, Y. Yang. Microplastics are a hotspot for antibiotic resistance genes: progress and perspective. Sci Total Environ, 773 (2021), Article 145643
|
[58] |
L. Ji, B. Tanunchai, S.F.M. Wahdan, M. Schädler, W. Purahong. Future climate change enhances the complexity of plastisphere microbial co-occurrence networks, but does not significantly affect the community assembly. Sci Total Environ, 844 (2022), Article 157016
|