中国内蒙古高原沉积雪中微塑料的特征及其影响因素

于洪伟, 邵军荣, 贾华伟, 钢迪嘎, 马百文, 胡承志

工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 78-87.

PDF(2145 KB)
PDF(2145 KB)
工程(英文) ›› 2024, Vol. 37 ›› Issue (6) : 78-87. DOI: 10.1016/j.eng.2023.02.007
研究论文
Article

中国内蒙古高原沉积雪中微塑料的特征及其影响因素

作者信息 +

Characteristics and Influencing Factors of Microplastics in Snow in the Inner Mongolia Plateau, China

Author information +
History +

Highlight

• Substantial accumulation of MPs was observed in snow of the Mongolian Plateau, China.

• The pollution characteristics of MPs are influenced by the urban functional areas.

• The plastic residues may change the microbial community structures in snow.

• Alterations in the microbial function may be the result of changes in the microbial populations.

Abstract

Microplastics (MPs; < 5 mm) have become one of the most prominent global environmental pollution problems. MPs can spread to high altitudes through atmospheric transport and can be deposited by rainfall or snowfall, potentially threatening the structure and function of natural ecosystems. MPs in terrestrial and aquatic ecosystems alter the growth and functional characteristics of organisms. However, little attention has been given to the possible harm associated with MPs deposited in snow, particularly in the context of global climate warming. MPs collected from surface snow in the Inner Mongolia Plateau, China, were used for quantitative analysis and identification. The results showed that MPs were easily detected, and the related concentration was approximately (68 ± 10)-(199 ± 22) MPs·L−1 in snow samples. Fibers were the most common morphology, the polymer composition was largely varied, and the abundance and composition of MPs were linked to human activity to a great extent. High-throughput sequencing results showed that the composition and abundance of microorganisms also differed in snow samples from areas with different MP pollution characteristics, indicating a considerable difference in microbial functional diversity. MPs may have an interference effect on the individual growth and functional expression of microorganisms in snow. In addition, the results showed that functional living areas (e.g., landfills and suburban areas) in cities play an important role in the properties of MPs. For instance, the highest abundance of MPs was found in thermal power plants, whereas the abundance of polymers per sample was significantly lower in the suburban area. The MP contaminants hidden in snow can alter microbial structure and function and are therefore a potential threat to ecosystem health.

Keywords

Human activities / Snow / Microplastics / Microbial community / Urban function / Environmental effect

引用本文

导出引用
于洪伟, 邵军荣, 贾华伟. 中国内蒙古高原沉积雪中微塑料的特征及其影响因素. Engineering. 2024, 37(6): 78-87 https://doi.org/10.1016/j.eng.2023.02.007

参考文献

[1]
L. Mai, X.F. Sun, L.L. Xia, L.J. Bao, L.Y. Liu, E.Y. Zeng. Global riverine plastic outflows. Environ Sci Technol, 54 (16) (2020), pp. 10049-10056
[2]
Alimi J.M. Farner N. Tufenkji. Exposure of nanoplastics to freeze-thaw leads to aggregation and reduced transport in model groundwater environments. Water Res, 189 (2021), Article 116533
[3]
M. González-Pleiter, D. Velázquez, C. Edo, O. Carretero, J. Gago, Á. Barón-Sola, et al. Fibers spreading worldwide: microplastics and other anthropogenic litter in an Arctic freshwater lake. Sci Total Environ, 722 (2020), Article 137904
[4]
Y.C. Meng, F.J. Kelly, S.L. Wright. Advances and challenges of microplastic pollution in freshwater ecosystems: a UK perspective. Environ Pollut, 256 (2020), Article 113445
[5]
S. Allen, D. Allen, V.R. Phoenix, G. Le Roux, P. Durántez Jiménez, A. Simonneau, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci, 12 (2019), pp. 339-344
[6]
Y.L. Zhang, S.C. Kang, S. Allen, D. Allen, T.G. Gao, M. Sillanpaa. Atmospheric microplastics: a review on current status and perspectives. Earth Sci Rev, 203 (2020), Article 103118
[7]
J. Sun, Z. Peng, Z.R. Zhu, W. Fu, X. Dai, B.J. Ni. The atmospheric microplastics deposition contributes to microplastic pollution in urban waters. Water Res, 225 (2022), Article 119116
[8]
H. Dong, L. Wang, X. Wang, L. Xu, M. Chen, P. Gong, et al. Microplastics in a remote lake basin of the Tibetan Plateau: impacts of atmospheric transport and glacial melting. Environ Sci Technol, 55 (19) (2021), pp. 12951-12960
[9]
M. Bergmann, S. Mützel, S. Primpke, M.B. Tekman, J. Trachsel, G. Gerdts. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci Adv, 5(8):eaax1157 (2019)
[10]
P. Schwabl, S. Köppel, P. Königshofer, T. Bucsics, M. Trauner, T. Reiberger, et al. Detection of various microplastics in human stool: a prospective case series. Ann Intern Med, 171 (7) (2019), pp. 453-457
[11]
J. Nizamali, S.M. Mintenig, A.A. Koelmans. Assessing microplastic characteristics in bottled drinking water and air deposition samples using laser direct infrared imaging. J Hazard Mater, 441 (2023), Article 129942
[12]
Q. Chen, A. Allgeier, D. Yin, H. Hollert. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ Int, 130 (2019), Article 104938
[13]
M. Cabrera, G.M. Moulatlet, B.G. Valencia, L. Maisincho, R. Rodríguez-Barroso, G. Albendín, et al. Microplastics in a tropical Andean Glacier: a transportation process across the Amazon basin? Sci Total Environ, 805 (2022), Article 150334
[14]
G. Kalčíková, T. Skalar, G. Marolt, K.A. Jemec. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Res, 175 (2020), Article 115644
[15]
X. Wu, J. Pan, M. Li, Y. Li, M. Bartlam, Y. Wang. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res, 165 (2019), Article 114979
[16]
V. Kinigopoulou, I. Pashalidis, D. Kalderis, I. Anastopoulos. Microplastics as carriers of inorganic and organic contaminants in the environment: a review of recent progress. J Mol Liq, 350 (2022), Article 118580
[17]
J. Wang, X. Guo, J. Xue. Biofilm-developed microplastics as vectors of pollutants in aquatic environments. Environ Sci Technol, 55 (19) (2021), pp. 12780-12790
[18]
Mateos-Cárdenas F.N.A.M. van Pelt J. O’Halloran M.A.K. Jansen. Adsorption, uptake and toxicity of micro- and nanoplastics: effects on terrestrial plants and aquatic macrophytes. Environ Pollut, 284 (2021), Article 117183
[19]
M.K. Viršek, M.N. Lovšin, Š. Koren, A. Kržan, M. Peterlin. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar Pollut Bull, 125 (1-2) (2017), pp. 301-309
[20]
S. Savoca, T. Bottari, E. Fazio, M. Bonsignore, M. Mancuso, G.M. Luna, et al. Plastics occurrence in juveniles of Engraulis encrasicolus and Sardina pilchardus in the Southern Tyrrhenian Sea. Sci Total Environ, 718 (2020), Article 137457
[21]
R.M. Macieira, L.A.S. Oliveira, G.C. Cardozo-Ferreira, C.R. Pimentel, R. Andrades, J.L. Gasparini, et al. Microplastic and artificial cellulose microfibers ingestion by reef fishes in the Guarapari Islands, southwestern Atlantic. Mar Pollut Bull, 167 (2021), Article 112371
[22]
J. Zhou, H. Gui, C.C. Banfield, Y. Wen, H. Zang, M.A. Dippold, et al. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol Biochem, 156 (2021), Article 108211
[23]
H. Yu, W. Qi, X. Cao, J. Hu, Y. Li, J. Peng, et al. Microplastic residues in wetland ecosystems: do they truly threaten the plant-microbe-soil system? Environ Int, 156 (2021), Article 106708
[24]
X. Chen, X. Chen, Y. Zhao, H. Zhou, X. Xiong, C. Wu. Effects of microplastic biofilms on nutrient cycling in simulated freshwater systems. Sci Total Environ, 719 (2020), Article 137276
[25]
C. Sanz-Lázaro, N. Casado-Coy, A. Beltrán-Sanahuja. Biodegradable plastics can alter carbon and nitrogen cycles to a greater extent than conventional plastics in marine sediment. Sci Total Environ, 756 (2021), Article 143978
[26]
M.B. Sathicq, R. Sabatino, G. Corno, A. Di Cesare. Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems? Environ Pollut, 279 (2021), Article 116896
[27]
L. Mughini-Gras, A. Dorado-García, E. van Duijkeren, G. van den Bunt, C.M. Dierikx, M.J.M. Bonten, et al. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: a population-based modelling study. Lancet Planet Health, 3 (8) (2019), pp. e357-e369
[28]
W. Zhou, Y. Han, Y. Tang, W. Shi, X. Du, S. Sun, et al. Microplastics aggravate the bioaccumulation of two waterborne veterinary antibiotics in an edible bivalve species: potential mechanisms and implications for human health. Environ Sci Technol, 54 (13) (2020), pp. 8115-8122
[29]
L.A. Amaral-Zettler, E.R. Zettler, T.J. Mincer. Ecology of the plastisphere. Nat Rev Microbiol, 18 (3) (2020), pp. 139-151
[30]
R.J. Wright, G. Erni-Cassola, V. Zadjelovic, M. Latva, J.A. Christie-Oleza. Marine plastic debris: a new surface for microbial colonization. Environ Sci Technol, 54 (19) (2020), pp. 11657-11672
[31]
X. Zhu, W. Huang, M. Fang, Z. Liao, Y. Wang, L. Xu, et al. Airborne microplastic concentrations in five megacities of northern and southeast China. Environ Sci Technol, 55 (19) (2021), pp. 12871-12881
[32]
X. Sun, K. Wang, S. Kang, J. Guo, G. Zhang, J. Huang, et al. The role of melting alpine glaciers in mercury export and transport: an intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau. Environ Pollut, 220 (Pt B) (2017), pp. 936-945
[33]
D. Materić, E. Ludewig, D. Brunner, T. Röckmann, R. Holzinger. Nanoplastics transport to the remote, high-altitude Alps. Environ Pollut, 288 (2021), Article 117697
[34]
H. Ying, Y. Shan, H. Zhang, T. Yuan, W. Rihan, G. Deng. The effect of snow depth on spring wildfires on the Hulunbuir from2001-2018 based on MODIS. Remote Sens, 11 (3) (2019), p. 321
[35]
C. Zhu, M. Miller, N. Lusskin, B. Bergk Pinto, L. Maccario, M. Häggblom, et al. Snow microbiome functional analyses reveal novel aspects of microbial metabolism of complex organic compounds. MicrobiologyOpen, 9 (9) (2020), p. e1100
[36]
H. Yu, Y. Zhang, W. Tan. The “neighbor avoidance effect” of microplastics on bacterial and fungal diversity and communities in different soil horizons. Environ Sci Ecotechnol, 8 (2021), Article 100121
[37]
W. Li, Z. Wang, W. Li, Z. Li. Impacts of microplastics addition on sediment environmental properties, enzymatic activities and bacterial diversity. Chemosphere, 307 (Pt 3) (2022), Article 135836
[38]
K. Martin, P. Schumann, F.A. Rainey, B. Schuetze, I. Groth. Janibacter limosus gen. nov., sp. nov., a new actinomycete with meso-diaminopimelic acid in the cell wall. Int J Syst Bacteriol, 47 (2) (1997), pp. 529-534
[39]
M. Kanehisa, S. Goto. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28 (1) (2000), pp. 27-30
[40]
M. Gulshan, K. Yaku, K. Okabe, A. Mahmood, T. Sasaki, M. Yamamoto, et al. Overexpression of Nmnat 3 efficiently increases NAD and NGD levels and ameliorates age-associated insulin resistance. Aging Cell, 17 (4) (2018), p. e12798
[41]
T.D. Missihoun, H.H. Kirch, D. Bartels. T-DNA insertion mutants reveal complex expression patterns of the aldehyde dehydrogenase 3H1 locus in Arabidopsis thaliana. J Exp Bot, 63 (10) (2012), pp. 3887-3898
[42]
M. Kumar, X. Xiong, M. He, D.C.W. Tsang, J. Gupta, E. Khan, et al. Microplastics as pollutants in agricultural soils. Environ Pollut, 265 (Pt A) (2020), Article 114980
[43]
K.Y. Horiuchi, M.R. Harpel, L. Shen, Y. Luo, K.C. Rogers, R.A. Copeland. Mechanistic studies of reaction coupling in Glu-tRNAGln amidotransferase. Biochemistry, 40 (21) (2001), pp. 6450-6457
[44]
C.F. Higgins. ABC transporters: from microorganisms to man. Annu Rev Cell Biol, 8 (1) (1992), pp. 67-113
[45]
B.J. Adams, R.D. Bardgett, E. Ayres, D.H. Wall, J. Aislabie, S. Bamforth, et al. Diversity and distribution of Victoria Land biota. Soil Biol Biochem, 38 (10) (2006), pp. 3003-3018
[46]
B. Rothe, B. Rothe, P. Roggentin, R. Schauer. The sialidase gene from Clostridium septicum: cloning, sequencing, expression in Escherichia coli and identification of conserved sequences in sialidases and other proteins. Mol Gen Genet, 226 (1991), pp. 190-197
[47]
X. Yang, Q. He, F. Guo, X. Sun, J. Zhang, M. Chen, et al. Nanoplastics disturb nitrogen removal in constructed wetlands: responses of microbes and macrophytes. Environ Sci Technol, 54 (21) (2020), pp. 14007-14016
[48]
C. Li, Y. Gan, J. Dong, J. Fang, H. Chen, Q. Quan, et al. Impact of microplastics on microbial community in sediments of the Huangjinxia Reservoir-water source of a water diversion project in western China. Chemosphere, 253 (2020), Article 126740
[49]
J. Brahney, M. Hallerud, E. Heim, M. Hahnenberger, S. Sukumaran. Plastic rain in protected areas of the United States. Science, 368 (6496) (2020), pp. 1257-1260
[50]
Crosta B. De Felice D. Antonioli R. Chiarcos E. Perin M.A. Ortenzi, et al. Microplastic contamination of supraglacial debris differs among glaciers with different anthropic pressures. Sci Total Environ, 851 (Pt 2) (2022), Article 158301
[51]
M. Shen, W. Xiong, B. Song, C. Zhou, E. Almatrafi, G. Zeng, et al. Microplastics in landfill and leachate: occurrence, environmental behavior and removal strategies. Chemosphere, 305 (2022), Article 135325
[52]
Z. Yang, F. , H. Zhang, W. Wang, L. Shao, J. Ye, et al. Is incineration the terminator of plastics and microplastics? J Hazard Mater, 401 (2021), Article 123429
[53]
S. Padha, R. Kumar, A. Dhar, P. Sharma. Microplastic pollution in mountain terrains and foothills: a review on source, extraction, and distribution of microplastics in remote areas. Environ Res, 207 (2022), Article 112232
[54]
L. Miao, P. Wang, J. Hou, Y. Yao, Z. Liu, S. Liu, et al. Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci Total Environ, 650 (Pt 2) (2019), pp. 2395-2402
[55]
J.N. Huang, B. Wen, L. Miao, X. Liu, Z.J. Li, T.F. Ma, et al. Microplastics drive nitrification by enriching functional microorganisms in aquaculture pond waters. Chemosphere, 309 (Pt 1) (2022), Article 136646
[56]
L. Lin, E.G. Xu, M. Liu, Y. Yang, A. Zhou, B. Suyamud, et al. Microbiological processes of submicrometer plastics affecting submerged plant growth in a chronic exposure microcosm. Environ Sci Technol Lett, 10 (1) (2023), pp. 33-39
[57]
Y. Liu, W. Liu, X. Yang, J. Wang, H. Lin, Y. Yang. Microplastics are a hotspot for antibiotic resistance genes: progress and perspective. Sci Total Environ, 773 (2021), Article 145643
[58]
L. Ji, B. Tanunchai, S.F.M. Wahdan, M. Schädler, W. Purahong. Future climate change enhances the complexity of plastisphere microbial co-occurrence networks, but does not significantly affect the community assembly. Sci Total Environ, 844 (2022), Article 157016
PDF(2145 KB)

Accesses

Citation

Detail

段落导航
相关文章

/