中国钢铁工业减污降碳协同控制技术发展与展望

朱廷钰, 刘霄龙, 王新东, 贺泓

工程(英文) ›› 2023, Vol. 31 ›› Issue (12) : 37-49.

PDF(2112 KB)
PDF(2112 KB)
工程(英文) ›› 2023, Vol. 31 ›› Issue (12) : 37-49. DOI: 10.1016/j.eng.2023.02.014
Review

中国钢铁工业减污降碳协同控制技术发展与展望

作者信息 +

Technical Development and Prospect for Collaborative Reduction of Pollution and Carbon Emissions from Iron and Steel Industry in China

Author information +
History +

Abstract

As the largest steel-producing country, China’s steel industry has experienced rapid development in terms of production level and quality. Owing to the high consumption of coal in the iron and steel industry, air pollutants and carbon dioxide (CO2) show similar emission properties in flue gas. In view of the collaborative reduction of pollution and carbon emissions, the emission standards for pollutants and carbon were first analyzed, suggesting that carbon emission standards for the iron and steel industry should be accelerated. A collaborative technology system for the reduction of pollution and carbon emissions from the iron and steel industry in China is demonstrated, consisting of ① optimization of present ultra-low emission technology, ② low-carbon innovation for present production processes, ③ steel production process reengineering, and ④ carbon capture, utilization, and storage (CCUS). Finally, the technical prospect for collaborative reduction of pollution and carbon emissions from the iron and steel industry in China is suggested to support high-quality green development in this industry.

Keywords

Iron and steel industry / Pollution / Carbon emissions / Collaborative reduction

引用本文

导出引用
朱廷钰, 刘霄龙, 王新东. 中国钢铁工业减污降碳协同控制技术发展与展望. Engineering. 2023, 31(12): 37-49 https://doi.org/10.1016/j.eng.2023.02.014

参考文献

[1]
Y. Liu, H. Li, J. Guan, S. Feng, S. Guo. The impact of Chinese steel product prices based on the midstream industry chain. Resour Policy, 63 ( 2019), Article 101415
[2]
H. Dong, Y. Liu, L. Wang, X. Li, Z. Tian, Y. Huang, et al.. Roadmap of China steel industry in the past 70 years. Ironmak Steelmak, 46 (10) ( 2019), pp. 922-927
CrossRef ADS Google scholar
[3]
S. Zeng, B. Su, M. Zhang, Y. Gao, J. Liu, S. Luo, et al.. Analysis and forecast of China’s energy consumption structure. Energy Policy, 159 ( 2021), Article 112630
[4]
R.K. Sinha, N.D. Chaturvedi. A graphical dual objective approach for minimizing energy consumption and carbon emission in production planning. J Clean Prod, 171 ( 2018), pp. 312-321
[5]
B. Clemens. Changing environmental strategies over time: an empirical study of the steel industry in the United States. J Environ Manage, 62 (2) ( 2001), pp. 221-231
[6]
C. Feng, R. Zhu, G. Wei, K. Dong, J. Dong. Typical case of carbon capture and utilization in Chinese iron and steel enterprises: CO2 emission analysis. J Clean Prod, 363 ( 2022), Article 132528
[7]
J. Liu, S. Wang, H. Yi, X. Tang, Z. Li, Q. Yu, et al.. Air pollutant emission and reduction potentials from the sintering process of the iron and steel industry in China in 2017. Environ Pollut, 307 ( 2022), Article 119512
[8]
J.P. Birat. Society, materials, and the environment: the case of steel. Metals, 10 (3) ( 2020), p. 331 DOI: 10.3390/met10030331
[9]
R. Yin, Z. Liu, F. Shangguan. Thoughts on the implementation path to a carbon peak and carbon neutrality in China’s steel industry. Engineering, 7 (12) ( 2021), pp. 1680-1683
[10]
GB 28662-2012: Emission standard of air pollutants for sintering and pelletizing of iron and steel industry. Chinese standard. Beijing: Standards Press of China; 2012. Chinese.
[11]
S. Ma, Z. Wen, J. Chen. Scenario analysis of sulfur dioxide emissions reduction potential in China’s iron and steel industry. J Ind Ecol, 16 (4)( 2012), pp. 506-517
CrossRef ADS Google scholar
[12]
L. Cui, K. Ba, F. Li, Q. Wang, Q. Ma, X. Yuan, et al.. Life cycle assessment of ultra-low treatment for steel industry sintering flue gas emissions. Sci Total Environ, 725 ( 2020), Article 138292
[13]
Y. Yang, W. Xu, Y. Wang, J. Shen, Y. Wang, Z. Geng, et al.. Progress of CCUS technology in the iron and steel industry and the suggestion of the integrated application schemes for China. Chem Eng J, 450 ( 2022), Article 138438
[14]
N.L. Briggs, C.M. Long. Critical review of black carbon and elemental carbon source apportionment in Europe and the United States. Atmos Environ, 144 ( 2016), pp. 409-427
[15]
R. Hu, Q. Zhang. Study of a low-carbon production strategy in the metallurgical industry in China. Energy, 90 ( 2015), pp. 1456-1467
[16]
W. Xu, B. Wan, T. Zhu, M. Shao. CO2 emissions from China’s iron and steel industry. J Clean Prod, 139 ( 2016), pp. 1504-1511
[17]
DB 13/2169-2018: Ultra-low emission standards for air pollutants in iron and steel industry. Chinese standard. Shijiazhuang: Department of Ecology and Environment of Hebei Province; 2018.[Chinese].
[18]
2001/80/EC: Directive 2001/80/EC of the European Parliament and of the Council of 23 October 2001 on the limitation of emissions of certain pollutants into the air from large combustion plants. European: the European Parliament and the Council of the European Union; 2001.
[19]
Ministry of the Environment Government of Japan.Air pollution control law. Japanese standard. Tokyo: Ministry of the Environment Government of Japan; 2001. Japanese.
[20]
GB 16171-2012: Emission standard of pollutants for coking chemical industry. Chinese standard. Beijing: Standards Press of China; 2012. Chinese.
[21]
DB 13/2863-2018: Local standards for ultra-low emission of air pollutants from the coking chemical industry.Chinese standard. Shijiazhuang: Department of Ecology and Environment of Hebei Province; 2018. Chinese.
[22]
GB 28664-2012: Emission standard of air pollutants for steel smelt industry. Chinese standard. Beijing: Standards Press of China; 2012. Chinese.
[23]
GB 28665-2012: Emission standard of air pollutants for steel rolling industry. Chinese standard. Beijing: Standards Press of China; 2012. Chinese.
[24]
K.M.R. Taufique, K.S. Nielsen, T. Dietz, R. Shwom, P.C. Stern, M.P. Vandenbergh. Revisiting the promise of carbon labelling. Nat Clim Chang, 12 (2) ( 2022), pp. 132-140 DOI: 10.1038/s41558-021-01271-8
[25]
GB/T 32151.5-2015: Requirements of the greenhouse gas emission accounting and reporting—Part 5: iron and steel production enterprise. Chinese standard. Beijing: Standards Press of China; 2015. Chinese.
[26]
GB/T 33755-2017: Technical specification at the project level for assessment of greenhouse gas emission reductions—utilization of waste energy in iron and steel industry. Chinese standard. Beijing: Standards Press of China; 2017. Chinese.
[27]
RB/T 251-2018: Technical specification for green house gas emission verification of iron and steel production enterprises. Chinese standard. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China; 2018. Chinese.
[28]
M. Gan, Z. Ji, X. Fan, Y. Zhao, X. Chen, Y. Fan. Insight into the high proportion application of biomass fuel in iron ore sintering through CO-containing flue gas recirculation. J Clean Prod, 232 ( 2019), pp. 1335-1347
[29]
B. Yang, Z. Li, Q. Huang, M. Chen, L. Xu, Y. Shen, et al.. Synergetic removal of elemental mercury and NO over TiCe0.25Sn0.25Ox catalysts from flue gas: performance and mechanism study. Chem Eng J, 360 ( 2019), pp. 990-1002
[30]
S. Li, X. Chen, F. Wang, Z. Xie, Z. Hao, L. Liu, et al.. Promotion effect of Ni doping on the oxygen resistance property of Fe/CeO2 catalyst for CO-SCR reaction: activity test and mechanism investigation. J Hazard Mater, 431 ( 2022), Article 128622
[31]
D. Wang, Q. Chen, X. Zhang, C. Gao, B. Wang, X. Huang, et al.. Multipollutant Control (MPC) of flue gas from stationary sources using SCR technology: a critical review. Environ Sci Technol, 55 (5) ( 2021), pp. 2743-2766 DOI: 10.1021/acs.est.0c07326
[32]
F. Liu, M. Cai, X. Liu, T. Zhu, Y. Zou. O3 oxidation combined with semi-dry method for simultaneous desulfurization and denitrification of sintering/pelletizing flue gas. J Environ Sci (China), 104 ( 2021), pp. 253-263 DOI: 10.3390/wevj12040253
[33]
C. Zhang, J. Zhang, Y. Shen, J. He, W. Qu, J. Deng, et al.. Synergistic catalytic elimination of NOx and chlorinated organics: cooperation of acid sites. Environ Sci Technol, 56 (6) ( 2022), pp. 3719-3728 DOI: 10.1021/acs.est.1c08009
[34]
H. Jiao, H. Wang, B. Li, Z. Huang, Z. Chen, Z. Wei. Collaborative removal of NO and toluene in flue gas driven by aerobic denitrifying biotrickling filter. Fuel, 324 ( 2022), Article 124519
[35]
M.A. Quader, S. Ahmed, R.A.R. Ghazilla, S. Ahmed, M. Dahari. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renew Sustain Energy Rev, 50 ( 2015), pp. 594-614
[36]
Q. Zhang, Y. Li, J. Xu, G. Jia. Carbon element flow analysis and CO2 emission reduction in iron and steel works. J Clean Prod, 172 ( 2018), pp. 709-723
[37]
X. Liu, R. Peng, C. Bai, Y. Chi, H. Li, P. Guo. Technological roadmap towards optimal decarbonization development of China’s iron and steel industry. Sci Total Environ, 850 ( 2022), Article 157701
[38]
X. Li, X. Wang, L. Wang, P. Ning, Y. Ma, L. Zhong, et al.. Efficient removal of carbonyl sulfur and hydrogen sulfide from blast furnace gas by one-step catalytic process with modified activated carbon. Appl Surf Sci, 579 (2022), Article 152189
[39]
O. Taichman, V. Kaplan, E. Wachtel, I. Lubomirsky. Thermal decomposition of COS to CO and sulfur: byproducts of flue gas scrubbing. Solid Fuel Chem, 56 (1) ( 2022), pp. 21-28 DOI: 10.3103/s0361521922010074
[40]
C. Lanzerstorfer, W. Preitschopf, R. Neuhold, C. Feilmayr. Emissions and removal of gaseous pollutants from the top-gas of a blast furnace. ISIJ Int, 59 (3) ( 2019), pp. 590-595 DOI: 10.2355/isijinternational.isijint-2018-591
[41]
L.E. Kallinikos, E.I. Farsari, D.N. Spartinos, N.G. Papayannakos. Simulation of the operation of an industrial wet flue gas desulfurization system. Fuel Process Technol, 91 (12) ( 2010), pp. 1794-1802
[42]
R. Cao, P. Ning, X. Wang, L. Wang, Y. Ma, Y. Xie, et al.. Low-temperature hydrolysis of carbonyl sulfide in blast furnace gas using Al2O3-based catalysts with high oxidation resistance. Fuel, 310 ( 2022), Article 122295
[43]
R.T.J. Porter, P.D. Cobden, H. Mahgerefteh. Novel process design and techno-economic simulation of methanol synthesis from blast furnace gas in an integrated steelworks CCUS system. J CO2 Util, 66 ( 2022), Article 102278
[44]
S. Renda, D. Barba, V. Palma. Recent solutions for efficient carbonyl sulfide hydrolysis: a review. Ind Eng Chem Res, 61 (17) ( 2022), pp. 5685-5697 DOI: 10.1021/acs.iecr.2c00649
[45]
S. Hu, J. Gu, K. Li, J. Liang, Y. Xue, X. Min, et al.. Boosting COS catalytic hydrolysis performance over Zn-Al oxide derived from ZnAl hydrotalcite-like compound modified via the dopant of rare earth metals and the replacement of precipitation base. Appl Surf Sci, 599 ( 2022), Article 154016
[46]
X. Wang, Y. Ma, P. Ning, J. Qiu, X. Ren, Z. Li, et al.. Adsorption of carbonyl sulfide on modified activated carbon under low-oxygen content conditions. Adsorption, 20 (4) ( 2014), pp. 623-630
[47]
X. Sun, H. Ruan, X. Song, L. Sun, K. Li, P. Ning, et al.. Research into the reaction process and the effect of reaction conditions on the simultaneous removal of H2S, COS and CS2 at low temperature. RSC Adv, 8 (13) ( 2018), pp. 6996-7004 DOI: 10.1039/c7ra12086a
[48]
Y. Mei, J. Dai, X. Wang, Y. Nie, D. He. Novel low-temperature H2S removal technology by developing yellow phosphorus and phosphate rock slurry as absorbent. J Hazard Mater, 413 ( 2021), Article 125386
[49]
I.W. Siriwardane, R. Udangawa, R.M. de Silva, A.R. Kumarasinghe, R.G. Acres, A. Hettiarachchi, et al.. Synthesis and characterization of nano magnesium oxide impregnated granular activated carbon composite for H2S removal applications. Mater Des, 136 ( 2017), pp. 127-136
[50]
A. Ryzhikov, V. Hulea, D. Tichit, C. Leroi, D. Anglerot, B. Coq, et al.. Methyl mercaptan and carbonyl sulfide traces removal through adsorption and catalysis on zeolites and layered double hydroxides. Appl Catal A Gen, 397 (1-2) ( 2011), pp. 218-224
[51]
S. Sumathi, S. Bhatia, K.T. Lee, A.R. Mohamed. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx. J Hazard Mater, 176 (1-3) ( 2010), pp. 1093-1096
[52]
J. Shao, Q. Ma, Z. Wang, H. Tang, T. He, Y. Zhu, et al.. A superior liquid phase catalyst for enhanced absorption of NO2 together with SO2 after low temperature ozone oxidation for flue gas treatment. Fuel, 247 ( 2019), pp. 1-9
[53]
B. Li, H. Wu, X. Liu, T. Zhu, F. Liu, X. Zhao. Simultaneous removal of SO2 and NO using a novel method with red mud as absorbent combined with O3 oxidation. J Hazard Mater, 392 ( 2020), Article 122270
[54]
J. Xu, G. Chen, F. Guo, J. Xie. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NOx with ammonia. Chem Eng J, 353 ( 2018), pp. 507-518
[55]
A.F. Suarez-Corredor, M.U. Bäbler, L. Olsson, M. Skoglundh, B. Westerberg. Characterization method for gas flow reactor experiments—NH3 adsorption on vanadium-based SCR catalysts. Ind Eng Chem Res, 60 (30) ( 2021), pp. 11399-11411 DOI: 10.1021/acs.iecr.1c01480
[56]
T. Xu, X. Liu, T. Zhu, C. Feng, Y. Hu, M. Tian. New insights into the influence mechanism of H2O and SO2 on Pt-W/Ti catalysts for CO oxidation. Catal Sci Technol, 12 (5) ( 2022), pp. 1574-1585 DOI: 10.1039/d1cy01984h
[57]
C. Feng, X. Liu, T. Zhu, Y. Hu, M. Tian. Catalytic oxidation of CO over Pt/TiO2 with low Pt loading: the effect of H2O and SO2. Appl Catal A Gen, 622 ( 2021), Article 118218
[58]
Q. Wang, E. Wang, O.P. Chionoso. Numerical simulation of the synergistic effect of combustion for the hydrochar/coal blends in a blast furnace. Energy, 238 ( 2022), Article 121722
[59]
C. Feng, X. Liu, T. Zhu, M. Tian. Catalytic oxidation of CO on noble metal-based catalysts. Environ Sci Pollut Res Int, 28 (20) ( 2021), pp. 24847-24871 DOI: 10.1007/s11356-021-13008-3
[60]
S. Royer, D. Duprez. Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem, 3 (1) ( 2011), pp. 24-65 DOI: 10.1002/cctc.201000378
[61]
S. Dey, G.C. Dhal, D. Mohan, R. Prasad. Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review. Adv Compos Hybrid Mater, 2 (4) ( 2019), pp. 626-656 DOI: 10.1007/s42114-019-00126-3
[62]
G.V. Mamontov, V.V. Dutov, V.I. Sobolev, O.V. Vodyankina. Effect of transition metal oxide additives on the activity of an Ag/SiO2 catalyst in carbon monoxide oxidation. Kinet Catal, 54 (4) ( 2013), pp. 487-491
[63]
J. Zhu, Q. Gao. Mesoporous M CO2O4 (M=Cu, Mn and Ni) spinels: structural replication, characterization and catalytic application in CO oxidation. Microporous Mesoporous Mater, 124 (1-3) ( 2009), pp. 144-152
[64]
J. Lee, I. Song, D.H. Kim. Suppressed strong metal-support interactions in platinum on sulfated titania and their influence on the oxidation of carbon monoxide. ChemCatChem, 10 (6) ( 2018), pp. 1258-1262
[65]
M.S. Wilburn, W.S. Epling. SO2 adsorption and desorption characteristics of Pd and Pt catalysts: precious metal crystallite size dependence. Appl Catal A Gen, 534 ( 2017), pp. 85-93
[66]
G.C. Dhal, D. Mohan, R. Prasad. Preparation and application of effective different catalysts for simultaneous control of diesel soot and NOx emissions: an overview. Catal Sci Technol, 7 (9) ( 2017), pp. 1803-1825
[67]
H.N. Sharma, Y. Sun, E.A. Glascoe. Microkinetic modeling of H2SO4 formation on Pt based diesel oxidation catalysts. Appl Catal B, 220 ( 2018), pp. 348-355
[68]
W. Zhang, S. Qi, G. Pantaleo, L.F. Liotta. WO3-V2O5 active oxides for NOx SCR by NH3: preparation methods, catalysts’ composition, and deactivation mechanism—a review. Catalysts, 9 (6) ( 2019), p. 527 DOI: 10.3390/catal9060527
[69]
W. Shan, H. Song. Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature. Catal Sci Technol, 5 (9) ( 2015), pp. 4280-4288
[70]
D. Damma, P. Ettireddy, B. Reddy, P. Smirniotis. A review of low temperature NH3-SCR for removal of NOx. Catalysts, 9 (4) ( 2019), p. 349 DOI: 10.3390/catal9040349
[71]
M. Li, S. Sakong, A. Groß. In search of the active sites for the selective catalytic reduction on tungsten-doped vanadia monolayer catalysts supported by TiO2. ACS Catal, 11 (12) ( 2021), pp. 7411-7421 DOI: 10.1021/acscatal.1c01406
[72]
L. Florentino-Madiedo, E. Díaz-Faes, C. Barriocanal. Reactivity of biomass containing briquettes for metallurgical coke production. Fuel Process Technol, 193 ( 2019), pp. 212-220
[73]
J.O.L. Wendt, W.P. Linak, P.W. Groff, R.K. Srivastava. Hybrid SNCR-SCR technologies for NOx control: modeling and experiment. AICHE, 47 (11) ( 2001), pp. 2603-2617
[74]
D. Lin, L. Zhang, Z. Liu, B. Wang, Y. Han. Progress of selective catalytic reduction denitrification catalysts at wide temperature in carbon neutralization. Front Chem, 10 ( 2022), Article 946133
[75]
X. Wang, B. Yu, R. An, F. Sun, S. Xu. An integrated analysis of China’s iron and steel industry towards carbon neutrality. Appl Energy, 322 ( 2022), Article 119453
[76]
R. Hu, C. Zhang. Discussion on energy conservation strategies for steel industry: based on a Chinese firm. J Clean Prod, 166 ( 2017), pp. 66-80
[77]
Q. Yue, X. Chai, Y. Zhang, Q. Wang, H. Wang, F. Zhao, et al.. Analysis of iron and steel production paths on the energy demand and carbon emission in China’s iron and steel industry. Environ Dev Sustain ( 2022), pp. 1-21 DOI: 10.1504/ijemr.2022.10050092
[78]
Y. Chen, Y. Fang, W. Feng, Y. Zhang, G.X. Zhao. How to minimise the carbon emission of steel building products from a cradle-to-site perspective: a systematic review of recent global research. J Clean Prod, 368 ( 2022), Article 133156
[79]
C. Li, Q. Han, T. Zhu, W. Xu. Catalytic NO reduction by CO over Ca-Fe oxides in the presence of O2 with sintering flue gas circulation. Ind Eng Chem Res, 59 (47) ( 2020), pp. 20624-22069 DOI: 10.1021/acs.iecr.0c03843
[80]
X. Fan, G. Wong, M. Gan, X. Chen, Z. Yu, Z. Ji. Establishment of refined sintering flue gas recirculation patterns for gas pollutant reduction and waste heat recycling. J Clean Prod, 235 ( 2019), pp. 1549-1558
[81]
Y. Chen, Z. Guo, G. Feng. NOx reduction by coupling combustion with recycling flue gas in iron ore sintering process. Int J Miner Metall Mater, 18 (4) ( 2011), pp. 390-396 DOI: 10.1007/s12613-011-0452-7
[82]
W. Lv, Z. Sun, Z. Su. Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study. J Clean Prod, 233 ( 2019), pp. 1314-1321
[83]
G. Danloy, A. Berthelemot, M. Grant, J. Borlée, D. Sert, J. van der Stel, et al.. ULCOS-pilot testing of the low-CO2 blast furnace process at the experimental BF in Luleå. Rev Metall, 106 (1) ( 2009), pp. 1-8 DOI: 10.1051/metal/2009008
[84]
E. Bellevrat, P. Menanteau. Introducing carbon constraint in the steel sector: ULCOS scenarios and economic modeling. Rev Metall, 106 (9) ( 2009), pp. 318-324 DOI: 10.1051/metal/2009059
[85]
P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh, R. Todd. Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption, 14 (4-5) ( 2008), pp. 575-582 DOI: 10.1007/s10450-008-9128-7
[86]
K.N. Pai, V. Prasad, A. Rajendran. Practically achievable process performance limits for pressure-vacuum swing adsorption-based postcombustion CO2 capture. ACS Sustain Chem Eng, 9 (10) ( 2021), pp. 3838-3849 DOI: 10.1021/acssuschemeng.0c08933
[87]
J. Tang, M. Chu, F. Li, C. Feng, Z. Liu, Y. Zhou. Development and progress on hydrogen metallurgy. Int J Miner Metall Mater, 27 (6) ( 2020), pp. 713-723 DOI: 10.1007/s12613-020-2021-4
[88]
F. Li, M. Chu, J. Tang, Z. Liu, J. Guo, R. Yan, et al.. Thermodynamic performance analysis and environmental impact assessment of an integrated system for hydrogen generation and steelmaking. Energy, 241 ( 2022), Article 122922
[89]
J. Zhao, H. Zuo, Y. Wang, J. Wang, Q. Xue. Review of green and low-carbon ironmaking technology. Ironmak Steelmak, 47 (3)( 2020), pp. 296-306
CrossRef ADS Google scholar
[90]
Y. Chen, H. Zuo. Review of hydrogen-rich ironmaking technology in blast furnace. Ironmak Steelmak, 48 (6)( 2021), pp. 749-768
CrossRef ADS Google scholar
[91]
P. Jin, Z. Jiang, C. Bao, S. Hao, X. Zhang. The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace. Resour Conserv Recy, 117 ( 2017), pp. 58-65
[92]
W.R. Morrow III, A. Hasanbeigi, J. Sathaye, T. Xu. Assessment of energy efficiency improvement and CO2 emission reduction potentials in India’s cement and iron steel industries. J Clean Prod, 65 ( 2014), pp. 131-141
[93]
W. Uribe-Soto, J.F. Portha, J.M. Commenge, L. Falk. A review of thermochemical processes and technologies to use steelworks off-gases. Renew Sustain Energy Rev, 74 ( 2017), pp. 809-823
[94]
S. Li, H. Zhang, J. Nie, R. Dewil, J. Baeyens, Y. Deng. The direct reduction of iron ore with hydrogen. Sustainability, 13 (16) ( 2021), p. 8866 DOI: 10.3390/su13168866
[95]
C. Zhang, L. Vladislav, R. Xu, G. Sergey, K. Jiao, J. Zhang, et al.. Blast furnace hydrogen-rich metallurgy-research on efficiency injection of natural gas and pulverized coal. Fuel, 311 ( 2022), Article 122412
[96]
L. Holappa. A general vision for reduction of energy consumption and CO2 emissions from the steel industry. Metals, 10 (9) ( 2020), p. 1117 DOI: 10.3390/met10091117
[97]
K. Meijer, M. Denys, J. Lasar, J.P. Birat, G. Still, B. Overmaat. ULCOS: ultra-low CO2 steelmaking. Ironmak Steelmak, 36 (4) ( 2009), pp. 249-251
[98]
X. Zhang, K. Jiao, J. Zhang, Z. Guo. A review on low carbon emissions projects of steel industry in the world. J Clean Prod, 306 ( 2021), Article 127259
[99]
X. Yu, Z. Hu, Y. Shen. Modeling of hydrogen shaft injection in ironmaking blast furnaces. Fuel, 302 ( 2021), Article 121092
[100]
H. Dai, Y. Su, L. Kuang, J. Liu, D. Gu, C. Zou. Contemplation on China’s energy-development strategies and initiatives in the context of its carbon neutrality goal. Engineering, 7 (12) ( 2021), pp. 1684-1687
[101]
H. Na, J. Sun, Z. Qiu, Y. Yuan, T. Du. Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process. Energy, 257 ( 2022), Article 124822
[102]
E.A. Cano-Plata, A.J. Ustariz-Farfan, O.J. Soto-Marin. Electric arc furnace model in distribution systems. IEEE T Ind Appl, 51 (5) ( 2015), pp. 4313-4320
[103]
E. Hajidavalloo, A. Alagheband. Thermal analysis of sponge iron preheating using waste energy of EAF. J Mater Process Tech, 208 (1-3) ( 2008), pp. 336-341
[104]
R. Janzen, M. Davis, A. Kumar. Evaluating long-term greenhouse gas mitigation opportunities through carbon capture, utilization, and storage in the oil sands. Energy, 209 ( 2020), Article 118364
[105]
M. Flores-Granobles, M. Saeys. Minimizing CO2 emissions with renewable energy: a comparative study of emerging technologies in the steel industry. Energy Environ Sci, 13 (7) ( 2020), pp. 1923-1932 DOI: 10.1039/d0ee00787k
[106]
W. Chen, X. Yin, D. Ma. A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions. Appl Energy, 136 ( 2014), pp. 1174-1183
[107]
C.C. Cormos. Evaluation of reactive absorption and adsorption systems for post-combustion CO2 capture applied to iron and steel industry. Appl Therm Eng, 105 ( 2016), pp. 56-64
[108]
W. Jiang, X. Luo, H. Gao, Z. Liang, B. Liu, P. Tontiwachwuthikul, et al.. A comparative kinetics study of CO2 absorption into aqueous DEEA/MEA and DMEA/MEA blended solutions. AIChE J, 64 (4) ( 2018), pp. 1350-1358 DOI: 10.1002/aic.16024
[109]
T. Kuramochi, A. Ramírez, W. Turkenburg, A. Faaij. Effect of CO2 capture on the emissions of air pollutants from industrial processes. Int J Greenh Gas Control, 10 ( 2012), pp. 310-328
[110]
M. Abdul Quader, S. Ahmed, S.Z. Dawal, Y. Nukman. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO) steelmaking (ULCOS) program. Renew Sustain Energy Rev, 55 ( 2016), pp. 537-549
[111]
H. Mikulčić, I. Ridjan Skov, D.F. Dominković, S.R. Wan Alwi, Z.A. Manan, R. Tan, et al.. Flexible carbon capture and utilization technologies in future energy systems and the utilization pathways of captured CO2. Renew Sustain Energy Rev, 114 ( 2019), Article 109338
[112]
S.G. García, V.R. Montequín, R.L. Fernández, F.O. Fernández. Evaluation of the synergies in cogeneration with steel waste gases based on life cycle assessment: a combined coke oven and steelmaking gas case study. J Clean Prod, 217 ( 2019), pp. 576-583
[113]
M. Dębowski, M. Krzemieniewski, M. Zieliński, J. Kazimierowicz. Immobilized microalgae-based photobioreactor for CO2 capture (IMC-CO2PBR): efficiency estimation, technological parameters, and prototype concept. Atmos, 12 (8) ( 2021), p. 1031 DOI: 10.3390/atmos12081031
[114]
J.C.A. Braun, L.M. Colla. Use of microalgae for the development of biofertilizers and biostimulants. Bioenerg Res ( 2022), pp. 1-23 DOI: 10.1515/ael-2018-0024
[115]
R. Zhang, S. Chen, S. Hu, Y. Zhao, B. Zhang, R. Wang. Numerical simulation and laboratory experiments of CO2 sequestration and being as cushion gas in underground natural gas storage reservoirs. J Nat Gas Sci Eng, 85 ( 2021), Article 103714
[116]
L. Zhang, Y. Song, J. Shi, Q. Shen, D. Hu, Q. Gao, et al.. Frontiers of CO2 capture and utilization (CCU) towards carbon neutrality. Adv Atmos Sci, 39 (8) ( 2022), pp. 1252-1270 DOI: 10.1007/s00376-022-1467-x
PDF(2112 KB)

Accesses

Citation

Detail

段落导航
相关文章

/