[1] |
H.L. Van Soest, M.G.J. den Elzen, D.P. van Vuuren. Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nat Commun, 12 (1) ( 2021), p. 2140
|
[2] |
A. Devi, S. Bajar, H. Kour, R. Kothari, D. Pant, A. Singh. Lignocellulosic biomass valorization for bioethanol production: a circular bioeconomy approach. BioEnergy Res, 15 (4) ( 2022), pp. 1820-1841. DOI: 10.1007/s12155-022-10401-9
|
[3] |
T. Zhang. Taking on all of the biomass for conversion. Science, 367 (6484) ( 2020), pp. 1305-1306. DOI: 10.1126/science.abb1463
|
[4] |
Q. Tu, A. Parvatker, M. Garedew, C. Harris, M. Eckelman, J.B. Zimmerman, et al.. Electrocatalysis for chemical and fuel production: investigating climate change mitigation potential and economic feasibility. Environ Sci Technol, 55 (5) ( 2021), pp. 3240-3249. DOI: 10.1021/acs.est.0c07309
|
[5] |
L. Shuai, M.T. Amiri, Y.M. Questell-Santiago, F. Héroguel, Y. Li, H. Kim, et al.. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 354 (6310) ( 2016), pp. 329-333. DOI: 10.1126/science.aaf7810
|
[6] |
J.S. Luterbacher, J.M. Rand, D.M. Alonso, J. Han, J.T. Youngquist, C.T. Maravelias, et al.. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science, 343 (6168) ( 2014), pp. 277-280. DOI: 10.1126/science.1246748
|
[7] |
E.L. Kunkes, D.A. Simonetti, R.M. West, J.C. Serrano-Ruiz, C.A. Gärtner, J.A. Dumesic. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 322 (5900) ( 2008), pp. 417-421. DOI: 10.1126/science.1159210
|
[8] |
Z. Sun, G. Bottari, A. Afanasenko, M.C.A. Stuart, P.J. Deuss, B. Fridrich, et al.. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat Catal, 1 (1) ( 2018), pp. 82-92
|
[9] |
T. Bridgwater. Thermochemical and biochemical biomass conversion activities. Biomass Bioenergy, 2 (1-6) ( 1992), pp. 307-318
|
[10] |
D. Lee, H. Nam, M.W. Seo, S.H. Lee, D. Tokmurzin, S. Wang, et al.. Recent progress in the catalytic thermochemical conversion process of biomass for biofuels. Chem Eng J, 447 ( 2022), Article 137501
|
[11] |
F. Jiang, D. Cao, Y. Zhang, S. Hu, X. Huang, Y. Ding, et al.. Combustion of the banana pseudo-stem hydrochar by the high-pressure CO2-hydrothermolysis: thermal conversion, kinetic, and emission analyses. Fuel, 331 ( 2023), Article 125798
|
[12] |
S. Wang, G. Dai, H. Yang, Z. Luo. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Pror Energy Combust Sci, 62 ( 2017), pp. 33-86
|
[13] |
M.S. Mettler, A.D. Paulsen, D.G. Vlachos, P.J. Dauenhauer. The chain length effect in pyrolysis: bridging the gap between glucose and cellulose. Green Chem, 14 (5) ( 2012), pp. 1284-1288. DOI: 10.1039/c2gc35184f
|
[14] |
X. Zhou, W. Li, R. Mabon, L.J. Broadbelt. A mechanistic model of fast pyrolysis of hemicellulose. Energy Environ Sci, 11 (5) ( 2018), pp. 1240-1260. DOI: 10.1039/c7ee03208k
|
[15] |
S. Wang, K. Wang, Q. Liu, Y. Gu, Z. Luo, K. Cen, et al.. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv, 27 (5) ( 2009), pp. 562-567
|
[16] |
S. Wu, D. Shen, J. Hu, H. Zhang, R. Xiao. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy, 90 ( 2016), pp. 209-217
|
[17] |
D.M. Keown, G. Favas, J. Hayashi, C.Z. Li. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash. Bioresour Technol, 96 (14) ( 2005), pp. 1570-1577
|
[18] |
A. Devi, A. Singh, S. Bajar, D. Pant, Z.U. Din. Ethanol from lignocellulosic biomass: an in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. J Environ Chem Eng, 9 (5) ( 2021), Article 105798
|
[19] |
Y. Huang, Y. Hu, J.I. Hayashi, Y. Fang. Interactions between volatiles and char during pyrolysis of biomass: reactive species determining and reaction over functionalized carbon nanotubes. Energy Fuels, 30 (7) ( 2016), pp. 5758-5765. DOI: 10.1021/acs.energyfuels.6b00725
|
[20] |
S. Liu, Y. Wu, J. Zhang, W. Gao, J. Zhou, Y. Huang, et al.. Volatile-char interactions during biomass pyrolysis: a case study of a lignin model compound and functionalized graphitized carbon nanotubes. Energy Fuels, 33 (11) ( 2019), pp. 11339-11345. DOI: 10.1021/acs.energyfuels.9b03247
|
[21] |
Y. Huang, S. Kudo, O. Masek, K. Norinaga, J.I. Hayashi. Simultaneous maximization of the char yield and volatility of oil from biomass pyrolysis. Energy Fuels, 27 (1) ( 2013), pp. 247-254. DOI: 10.1021/ef301366x
|
[22] |
Y. Huang, S. Kudo, K. Norinaga, M. Amaike, J.I. Hayashi. Selective production of light oil by biomass pyrolysis with feedstock-mediated recycling of heavy oil. Energy Fuels, 26 (1) ( 2012), pp. 256-264. DOI: 10.1021/ef2011673
|
[23] |
Y. Huang, Y. Gao, H. Zhou, H. Sun, J. Zhou, S. Zhang. Pyrolysis of palm kernel shell with internal recycling of heavy oil. Bioresour Technol, 272 ( 2019), pp. 77-82
|
[24] |
W. Wang, R. Lemaire, A. Bensakhria, D. Luart. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J Anal Appl Pyrolysis, 163 ( 2022), Article 105479
|
[25] |
S. Zhang, Y. Song, Y.C. Song, Q. Yi, L. Dong, T.T. Li, et al.. An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part III: effects of inorganic species in char on the reforming of tars from wood and agricultural wastes. Fuel, 183 ( 2016), pp. 177-184
|
[26] |
N. Jendoubi, F. Broust, J.M. Commandre, G. Mauviel, M. Sardin, J. Lédé. Inorganics distribution in bio oils and char produced by biomass fast pyrolysis: the key role of aerosols. J Anal Appl Pyrolysis, 92 (1) ( 2011), pp. 59-67
|
[27] |
M.S. Mettler, D.G. Vlachos, P.J. Dauenhauer. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ Sci, 5 (7) ( 2012), pp. 7797-7809. DOI: 10.1039/c2ee21679e
|
[28] |
W. Deng, X. Wang, C.H. Lam, Z. Xiong, H. Han, J. Xu, et al.. Evolution of coke structures during electrochemical upgrading of bio-oil. Fuel Process Technol, 225 ( 2022), Article 107036
|
[29] |
W. Deng, X. Wang, S.S.A. Syed-Hassan, C.H. Lam, X. Hu, Z. Xiong, et al.. Polymerization during low-temperature electrochemical upgrading of bio-oil: effects of interactions among bio-oil fractions. Energy, 251 ( 2022), Article 123944
|
[30] |
G. Xiao, Z. Xiong, S.S.A. Syed-Hassan, L. Ma, J. Xu, L. Jiang, et al.. Coke formation during the pyrolysis of bio-oil: further understanding on the evolution of radicals. Appl Energy Combust Sci, 9 ( 2022), Article 100050
|
[31] |
Z. Xiong, S.S.A. Syed-Hassan, X. Hu, J. Guo, J. Qiu, X. Zhao, et al.. Pyrolysis of the aromatic-poor and aromatic-rich fractions of bio-oil: characterization of coke structure and elucidation of coke formation mechanism. Appl Energy, 239 ( 2019), pp. 981-990
|
[32] |
B. Li, X. Xie, L. Zhang, D. Lin, S. Wang, S. Wang, et al.. Coke formation during rapid quenching of volatile vapors from fast pyrolysis of cellulose. Fuel, 306 ( 2021), Article 121658
|
[33] |
H. Zeghioud, L. Fryda, H. Djelal, A. Assadi, A. Kane. A comprehensive review of biochar in removal of organic pollutants from wastewater: characterization, toxicity, activation/functionalization and influencing treatment factors. J Water Process Eng, 47 ( 2022), Article 102801
|
[34] |
K. Abhishek, A. Shrivastava, V. Vimal, A.K. Gupta, S.K. Bhujbal, J.K. Biswas, et al.. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: a state-of-the-art review. Sci Total Environ, 853 ( 2022), Article 158562
|
[35] |
F. Jiang, D. Cao, S. Hu, Y. Wang, Y. Zhang, X. Huang, et al.. High-pressure carbon dioxide-hydrothermal enhance yield and methylene blue adsorption performance of banana pseudo-stem activated carbon. Bioresour Technol, 354 ( 2022), Article 127137
|
[36] |
Y. Huang, B. Li, D. Liu, X. Xie, H. Zhang, H. Sun, et al.. Fundamental advances in biomass autothermal/oxidative pyrolysis: a review. ACS Sustain Chem Eng, 8 (32) ( 2020), pp. 11888-11905. DOI: 10.1021/acssuschemeng.0c04196
|
[37] |
B. Li, J. Tang, X. Xie, J. Wei, D. Xu, L. Shi, et al.. Char structure evolution during molten salt pyrolysis of biomass: effect of temperature. Fuel, 331 ( 2023), Article 125747
|