[1] |
A. Schwegmann, F. Brombacher. Host-directed drug targeting of factors hijacked by pathogens. Sci Signal, 1 (29) (2008), p. re8
|
[2] |
D. Huang, J.J. Luo, X. OuYang, L. Song. Subversion of host cell signaling: the arsenal of rickettsial species. Front Cell Infect Mi, 12 (2022), p. 995933
|
[3] |
E.S. Seilie, W.J. Bubeck. Staphylococcus aureus pore-forming toxins: the interface of pathogen and host complexity. Semin Cell Dev Biol, 72 (2017), pp. 101-116
|
[4] |
G.A. Wilke, W.J. Bubeck. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci USA, 107 (30) ( 2010), pp. 13473-13478. DOI: 10.1073/pnas.1001815107
|
[5] |
S. Virreira Winter, A. Zychlinsky, B.W. Bardoel. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity. Sci Rep, 6 (1) (2016), p. 24242
|
[6] |
I. Inoshima, N. Inoshima, G.A. Wilke, M.E. Powers, K.M. Frank, Y. Wang, et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med, 17 (10) ( 2011), pp. 1310-1314. DOI: 10.1038/nm.2451
|
[7] |
M.E. Powers, H.K. Kim, Y. Wang, W.J. Bubeck. ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis, 206 (3) ( 2012), pp. 352-356. DOI: 10.1093/infdis/jis192
|
[8] |
K.A. Becker, B. Fahsel, H. Kemper, J. Mayeres, C. Li, B. Wilker, et al. Staphylococcus aureus alpha-toxin disrupts endothelial-cell tight junctions via acid sphingomyelinase and ceramide. Infect Immun, 86 (1) ( 2017), p. e00606-17. DOI: 10.1128/IAI.00606-17
|
[9] |
K. Reiss, P. Saftig. The “A Disintegrin And Metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol, 20 (2) (2009), pp. 126-137
|
[10] |
T. Isozaki, B.J. Rabquer, J.H. Ruth, G.K. Haines, A.E. Koch. Rheumatism, ADAM-10 is overexpressed in rheumatoid arthritis synovial tissue and mediates angiogenesis. Arthritis Rheum, 65 (1) ( 2013), pp. 98-108. DOI: 10.1002/art.37755
|
[11] |
P. Vandenabeele, L. Galluzzi, T. Vanden Berghe, G. Kroemer. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol, 11 (10) ( 2010), pp. 700-714. DOI: 10.1038/nrm2970
|
[12] |
Z. Cai, A. Zhang, S. Choksi, W. Li, T. Li, X.M. Zhang, et al. Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration. Cell Res, 26 (8) ( 2016), pp. 886-900. DOI: 10.1038/cr.2016.87
|
[13] |
K. Kitur, D. Parker, P. Nieto, D.S. Ahn, T.S. Cohen, S. Chung, et al. Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage. PLoS Pathog, 11 (4) ( 2015), p. e1004820. DOI: 10.1371/journal.ppat.1004820
|
[14] |
X. Han, S. Sun, Y. Sun, Q. Song, J. Zhu, N. Song, et al. Small molecule-driven NLRP 3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy, 15 (11) ( 2019), pp. 1860-1881. DOI: 10.1080/15548627.2019.1596481
|
[15] |
J.I. Odegaard, R.R. Ricardo-Gonzalez, M.H. Goforth, C.R. Morel, V. Subramanian, L. Mukundan, et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature, 447 (7148) ( 2007), pp. 1116-1120. DOI: 10.1038/nature05894
|
[16] |
I. Pineda-Torra, M. Gage, A. de Juan, O.M. Pello. Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages. Methods Mol Biol, 1339 ( 2015), pp. 101-109. DOI: 10.1007/978-1-4939-2929-0_6
|
[17] |
I. Wiegand, K. Hilpert, R.E.W. Hancock. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc, 3 (2) ( 2008), pp. 163-175. DOI: 10.1038/nprot.2007.521
|
[18] |
L. Münzenmayer, T. Geiger, E. Daiber, B. Schulte, S.E. Autenrieth, M. Fraunholz, et al. Influence of Sae-regulated and Agr-regulated factors on the escape of Staphylococcus aureus from human macrophages. Cell Microbiol, 18 (8) ( 2016), pp. 1172-1183. DOI: 10.1111/cmi.12577
|
[19] |
O. Trott, A.J. Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31 (2) ( 2010), pp. 455-461. DOI: 10.1002/jcc.21334
|
[20] |
G. Murphy. Regulation of the proteolytic disintegrin metalloproteinases, the ‘Sheddases’. Semin Cell Dev Biol, 20 (2) (2009), pp. 138-145
|
[21] |
J. Fu, M. Zhou, M.A. Gritsenko, E.S. Nakayasu, L. Song, Z.Q. Luo. Legionella pneumophila modulates host energy metabolism by ADP-ribosylation of ADP/ATP translocases. eLife, 11 (2022), p. 11
|
[22] |
D. Parker, A. Prince. Staphylococcus aureus induces type I IFN signaling in dendritic cells via TLR9. J Immunol, 189 (8) ( 2012), pp. 4040-4046. DOI: 10.4049/jimmunol.1201055
|
[23] |
J.C. Leemans, N.P. Juffermans, S. Florquin, N. van Rooijen, M.J. Vervoordeldonk, A. Verbon, et al. Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. J Immunol, 166 (7) ( 2001), pp. 4604-4611. DOI: 10.4049/jimmunol.166.7.4604
|
[24] |
J. Zuegg, C. Muldoon, G. Adamson, D. McKeveney, G. Le Thanh, R. Premraj, et al. Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity. Nat Commun, 6 (1) (2015), p. 7719
|
[25] |
C. Manach, A. Scalbert, C. Morand, C. Rémésy, L. Jiménez. Polyphenols: food sources and bioavailability. Am J Clin Nutr, 79 (5) ( 2004), pp. 727-747. DOI: 10.1093/ajcn/79.5.727
|
[26] |
M. Mullooly, P.M. McGowan, S.A. Kennedy, S.F. Madden, J. Crown, N. O’ Donovan, et al. ADAM10: a new player in breast cancer progression?. Br J Cancer, 113 (6) ( 2015), pp. 945-951. DOI: 10.1038/bjc.2015.288
|
[27] |
T. Maretzky, K. Reiss, A. Ludwig, J. Buchholz, F. Scholz, E. Proksch, et al. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proc Natl Acad Sci USA, 102 (26) ( 2005), pp. 9182-9187. DOI: 10.1073/pnas.0500918102
|
[28] |
Y.M. Soe, S. Bedoui, T.P. Stinear, A. Hachani. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol, 23 (5) (2021), p. e13317
|
[29] |
A.L. Samson, Y. Zhang, N.D. Geoghegan, X.J. Gavin, K.A. Davies, M.J. Mlodzianoski, et al. MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat Commun, 11 (1) (2020), p. 3151
|
[30] |
M. Yabal, N. Müller, H. Adler, N. Knies, C.J. Groß, R.B. Damgaard, et al. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep, 7 (6) (2014), pp. 1796-1808
|
[31] |
D. Ming, D. Wang, F. Cao, H. Xiang, D. Mu, J. Cao, et al. Kaempferol inhibits the primary attachment phase of biofilm formation in Staphylococcus aureus. Front Microbiol, 8 (2017), p. 2263
|
[32] |
W.J. Kaiser, H. Sridharan, C. Huang, P. Mandal, J.W. Upton, P.J. Gough, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem, 288 (43) (2013), pp. 31268-31279
|
[33] |
F.K.M. Chan, N.F. Luz, K. Moriwaki. Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol, 33 (1) ( 2015), pp. 79-106. DOI: 10.1146/annurev-immunol-032414-112248
|
[34] |
R.P. Ramachandran, C. Spiegel, Y. Keren, T. Danieli, N. Melamed-Book, R.R. Pal, et al. Mitochondrial targeting of the enteropathogenic Escherichia coli map triggers calcium mobilization, ADAM10-MAP kinase signaling, and host cell apoptosis. MBio, 11 (5) (2020), p. e01397-20
|
[35] |
A. Ruiz-Garcia, S. Lopez-Lopez, J.J. Garcia-Ramirez, V. Baladron, M.J. Ruiz-Hidalgo, L. Lopez-Sanz, et al. The tetraspanin TSPAN33 controls TLR-triggered macrophage activation through modulation of NOTCH signaling. J Immunol, 197 (8) ( 2016), pp. 3371-3381. DOI: 10.4049/jimmunol.1600421
|
[36] |
L. Czaplewski, R. Bax, M. Clokie, M. Dawson, H. Fairhead, V.A. Fischetti, et al. Alternatives to antibiotics—a pipeline portfolio review. Lancet Infect Dis, 16 (2) (2016), pp. 239-251
|
[37] |
B.J. Berube, W.J. Bubeck. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins, 5 (6) ( 2013), pp. 1140-1166. DOI: 10.3390/toxins5061140
|
[38] |
V.C. Tam, R. Suen, P.M. Treuting, A. Armando, R. Lucarelli, N. Gorrochotegui-Escalante, et al. PPARα exacerbates necroptosis, leading to increased mortality in postinfluenza bacterial superinfection. Proc Natl Acad Sci USA, 117 (27) ( 2020), pp. 15789-15798. DOI: 10.1073/pnas.2006343117
|
[39] |
E. Reboud, S. Bouillot, S. Patot, B. Béganton, I. Attrée, P. Huber. Pseudomonas aeruginosa ExlA and Serratia marcescens ShlA trigger cadherin cleavage by promoting calcium influx and ADAM10 activation. PLoS Pathog, 13 (8) ( 2017), p. e1006579. DOI: 10.1371/journal.ppat.1006579
|
[40] |
N. González-Juarbe, R.P. Gilley, C.A. Hinojosa, K.M. Bradley, A. Kamei, G. Gao, et al. Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia. PLoS Pathog, 11 (12) ( 2015), p. e1005337. DOI: 10.1371/journal.ppat.1005337
|
[41] |
S. Wetzel, L. Seipold, P. Saftig. The metalloproteinase ADAM10: a useful therapeutic target?. Biochim Biophys Acta Mol Cell Res, 1864 (11 11 Pt B) (2017), pp. 2071-2081
|
[42] |
X. Han, S. Zhao, H. Song, T. Xu, Q. Fang, G. Hu, et al. Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: implications in Parkinson’s disease. Redox Biol, 41 (2021), p. 101911
|
[43] |
N. Kim, H.J. Lee. Target enzymes considered for the treatment of Alzheimer’s disease and Parkinson’s disease. BioMed Res Int, 2020 (2020), p. 2010728
|