[1] |
R.K. Weersma, A. Zhernakova, J. Fu. Interaction between drugs and the gut microbiome. Gut, 69 (8) ( 2020), pp. 1510-1519. DOI: 10.1136/gutjnl-2019-320204
|
[2] |
R.E. Ley, D.A. Peterson, J.I. Gordon. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 124 (4) ( 2006), pp. 837-848
|
[3] |
|
[4] |
T.S. Ghosh, S. Rampelli, I.B. Jeffery, A. Santoro, M. Neto, M. Capri, et al.. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut, 69 (7) ( 2020), pp. 1218-1228. DOI: 10.1136/gutjnl-2019-319654
|
[5] |
M.J. Claesson, I.B. Jeffery, S. Conde, S.E. Power, E.M. O'Connor, S. Cusack, et al.. Gut microbiota composition correlates with diet and health in the elderly. Nature, 488 (7410) ( 2012), pp. 178-184. DOI: 10.1038/nature11319
|
[6] |
M.J. Claesson, S. Cusack, O. O'Sullivan, R. Greene-Diniz, H. de Weerd, E. Flannery, et al.. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA, 108 (Suppl 1) ( 2011), pp. 4586-4591. DOI: 10.1073/pnas.1000097107
|
[7] |
X. Zhang, H. Zhong, Y. Li, Z. Shi, H. Ren, Z. Zhang, et al.. Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nature Aging, 1 ( 2021), pp. 87-100
|
[8] |
A. Burberry, M.F. Wells, F. Limone, A. Couto, K.S. Smith, J. Keaney, et al.. C9orf 72 suppresses systemic and neural inflammation induced by gut bacteria. Nature, 582 (7810) ( 2020), pp. 89-94. DOI: 10.1038/s41586-020-2288-7
|
[9] |
A. Heintz-Buschart, P. Wilmes. Human gut microbiome: function matters. Trends Microbiol, 26 (7) ( 2018), pp. 563-574
|
[10] |
W.H. Karasov, C. Martinez del Rio, E. Caviedes-Vidal. Ecological physiology of diet and digestive systems. Annu Rev Physiol, 73 ( 2011), pp. 69-93. DOI: 10.1146/annurev-physiol-012110-142152
|
[11] |
F. Sommer, F. Backhed. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol, 11 (4) ( 2013), pp. 227-238. DOI: 10.1038/nrmicro2974
|
[12] |
N. Kamada, S.U. Seo, G.Y. Chen, G. Nunez. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol, 13 (5) ( 2013), pp. 321-335. DOI: 10.1038/nri3430
|
[13] |
P.M. Smith, W.S. Garrett. The gut microbiota and mucosal T cells. Front Microbiol, 2 ( 2011), p. 111
|
[14] |
S. Kawamoto, T.H. Tran, M. Maruya, K. Suzuki, Y. Doi, Y. Tsutsui, et al.. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science, 336 (6080) ( 2012), pp. 485-489. DOI: 10.1126/science.1217718
|
[15] |
N. Qin, F. Yang, A. Li, E. Prifti, Y. Chen, L. Shao, et al.. Alterations of the human gut microbiome in liver cirrhosis. Nature, 513 (7516) ( 2014), pp. 59-64. DOI: 10.1038/nature13568
|
[16] |
F. Frost, T. Kacprowski, M. Ruhlemann, M. Pietzner, C. Bang, A. Franke, et al.. Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function. Gut, 70 (3) ( 2021), pp. 522-530. DOI: 10.1136/gutjnl-2020-322753
|
[17] |
S.V. Lynch, O. Pedersen. The human intestinal microbiome in health and disease. N Engl J Med, 375 (24) ( 2016), pp. 2369-2379
|
[18] |
B. Schnabl, D.A. Brenner. Interactions between the intestinal microbiome and liver diseases. Gastroenterology, 146 (6) ( 2014), pp. 1513-1524
|
[19] |
J.S. Bajaj, D.M. Heuman, P.B. Hylemon, A.J. Sanyal, M.B. White, P. Monteith, et al.. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol, 60 (5) ( 2014), pp. 940-947
|
[20] |
X. Yu, X. Zhang, H. Jin, Z. Wu, C. Yan, Z. Liu, et al.. Zhengganxifeng decoction affects gut microbiota and reduces blood pressure via renin-angiotensin system. Biol Pharm Bull, 42 (9) ( 2019), pp. 1482-1490. DOI: 10.1248/bpb.b19-00057
|
[21] |
Y. Zhang, Y. Wang, B. Ke, J. Du. TMAO: how gut microbiota contributes to heart failure. Transl Res, 228 ( 2021), pp. 109-125. DOI: 10.3390/electronics10020109
|
[22] |
H. Lu, Z. Wu, W. Xu, J. Yang, Y. Chen, L. Li. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microb Ecol, 61 (3) ( 2011), pp. 693-703. DOI: 10.1007/s00248-010-9801-8
|
[23] |
Li L. Infectious microecology: theory and applications. Hangzhou: Zhejiang University Press; 2014.
|
[24] |
J.S.Y. Low, S.E. Soh, Y.K. Lee, K.Y.C. Kwek, J.D. Holbrook, E.M. van der Beek, et al.. Ratio of Klebsiella/Bifidobacterium in early life correlates with later development of paediatric allergy. Benef Microbes, 8 (5) ( 2017), pp. 681-695. DOI: 10.3920/BM2017.0020
|
[25] |
R.E. Ley, P.J. Turnbaugh, S. Klein, J.I. Gordon. Microbial ecology: human gut microbes associated with obesity. Nature, 444 (7122) ( 2006), pp. 1022-1023. DOI: 10.1038/4441022a
|
[26] |
P.J. Turnbaugh, M. Hamady, T. Yatsunenko, B.L. Cantarel, A. Duncan, R.E. Ley, et al.. A core gut microbiome in obese and lean twins. Nature, 457 (7228) ( 2009), pp. 480-484. DOI: 10.1038/nature07540
|
[27] |
J.J. Faith, J.L. Guruge, M. Charbonneau, S. Subramanian, H. Seedorf, A.L. Goodman, et al.. The long-term stability of the human gut microbiota. Science, 341 (6141) ( 2013), p. 1237439
|
[28] |
J.M. Bender, F. Li, H. Adisetiyo, D. Lee, S. Zabih, L. Hung, et al.. Quantification of variation and the impact of biomass in targeted 16S rRNA gene sequencing studies. Microbiome, 6 (1) ( 2018), p. 155
|
[29] |
J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, et al.. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490 (7418) ( 2012), pp. 55-60. DOI: 10.1038/nature11450
|
[30] |
P. Lepage, M.C. Leclerc, M. Joossens, S. Mondot, H.M. Blottiere, J. Raes, et al.. A metagenomic insight into our gut's microbiome. Gut, 62 (1) ( 2013), pp. 146-158. DOI: 10.1136/gutjnl-2011-301805
|
[31] |
R. Poretsky, R.L. Rodriguez, C. Luo, D. Tsementzi, K.T. Konstantinidis. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One, 9 (4) ( 2014), p. e93827. DOI: 10.1371/journal.pone.0093827
|
[32] |
L. Tang, S. Gu, Y. Gong, B. Li, H. Lu, Q. Li, et al.. Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering, 6 (10) ( 2020), pp. 1178-1184
|
[33] |
L. Breiman. Random forests. Mach Learn, 45 (1) ( 2001), pp. 5-32
|
[34] |
J.H. Friedman. Greedy function approximation: a gradient boosting machine. Ann Stat, 29 (5) ( 2001), pp. 1189-1232
|
[35] |
R.E.S. Yoav Freund. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci, 55 (1) ( 1997), pp. 119-139
|
[36] |
T. Chen, C. Guestrin. XGBoost: a scalable tree boosting system. Assoc Comp Machinery ( 2016), pp. 785-794. DOI: 10.1145/2939672.2939785
|
[37] |
C. Cortes, V. Vapnik. Support vector networks. Mach Learn, 20 (3) ( 1995), pp. 273-297
|
[38] |
T.G. Dietterich. Ensemble methods in machine learning. Springer, Berlin Heidelberg ( 2000), pp. 1-15. DOI: 10.1007/3-540-45014-9_1
|
[39] |
Q. Su, Q. Liu, R.I. Lau, J. Zhang, Z. Xu, Y.K. Yeoh, et al.. Faecal microbiome-based machine learning for multi-class disease diagnosis. Nat Commun, 13 (1) ( 2022), p. 6818
|
[40] |
N.R. Shin, T.W. Whon, J.W. Bae. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol, 33 (9) ( 2015), pp. 496-503
|
[41] |
M.F. Sun, Y.Q. Shen. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res Rev ( 2018), pp. 4553-4561. DOI: 10.1109/tsp.2018.2855658
|
[42] |
L.V. Hooper, D.R. Littman, A.J. Macpherson. Interactions between the microbiota and the immune system. Science, 336 (6086) ( 2012), pp. 1268-1273. DOI: 10.1126/science.1223490
|
[43] |
V.D. Badal, E.D. Vaccariello, E.R. Murray, K.E. Yu, R. Knight, D.V. Jeste, et al.. The gut microbiome, aging, and longevity: a systematic review. Nutrients, 12 (12) ( 2020)
|
[44] |
E. Biagi, C. Franceschi, S. Rampelli, M. Severgnini, R. Ostan, S. Turroni, et al.. Gut microbiota and extreme longevity. Curr Biol, 26 (11) ( 2016), pp. 1480-1485
|
[45] |
T. Wilmanski, C. Diener, N. Rappaport, S. Patwardhan, J. Wiedrick, J. Lapidus, et al.. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab, 3 (2) ( 2021), pp. 274-286. DOI: 10.1038/s42255-021-00348-0
|
[46] |
Q. Yu, L. Yuan, J. Deng, Q. Yang. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria. Front Cell Infect Microbiol, 5 ( 2015), p. 26
|
[47] |
X. Peng, A. Ed-Dra, Y. Song, M. Elbediwi, R.B. Nambiar, X. Zhou, et al.. Lacticaseibacillus rhamnosus alleviates intestinal inflammation and promotes microbiota-mediated protection against Salmonella fatal infections. Front Immunol, 13 ( 2022), p. 973224
|
[48] |
N. Salazar, M. Gueimonde, R.G. de Los, P. Ruas-Madiedo. Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit Rev Food Sci Nutr, 56 (9) ( 2016), pp. 1440-1453. DOI: 10.1080/10408398.2013.770728
|
[49] |
D. Parada Venegas, M.K. De la Fuente, G. Landskron, M.J. Gonzalez, R. Quera, G. Dijkstra, et al.. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol, 10 ( 2019), p. 277
|
[50] |
D.R. Donohoe, N. Garge, X. Zhang, W. Sun, T.M. O'Connell, M.K. Bunger, et al.. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab, 13 (5) ( 2011), pp. 517-526
|
[51] |
J. Park, M. Kim, S.G. Kang, A.H. Jannasch, B. Cooper, J. Patterson, et al.. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol, 8 (1) ( 2015), pp. 80-93. DOI: 10.1038/mi.2014.44
|
[52] |
I. Laudadio, V. Fulci, F. Palone, L. Stronati, S. Cucchiara, C. Carissimi. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. OMICS, 22 (4) ( 2018), pp. 248-254. DOI: 10.1089/omi.2018.0013
|
[53] |
S. Bartosch, A. Fite, G.T. Macfarlane, M.E. McMurdo. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol, 70 (6) ( 2004), pp. 3575-3581
|
[54] |
Y. He, W. Wu, H.M. Zheng, P. Li, D. McDonald, H.F. Sheng, et al.. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med, 24 (10) ( 2018), pp. 1532-1535. DOI: 10.1038/s41591-018-0164-x
|
[55] |
T. Yatsunenko, F.E. Rey, M.J. Manary, I. Trehan, M.G. Dominguez-Bello, M. Contreras, et al.. Human gut microbiome viewed across age and geography. Nature, 486 (7402) ( 2012), pp. 222-227. DOI: 10.1038/nature11053
|