一种通过检测特定肠道菌群来评估人体肠道微生态平衡的方法

吴仲文, 潘厦厦, 袁音, 楼鹏程, Lorina Gordejeva, 倪硕, 朱晓飞, 刘博文, 吴凌云, 李兰娟, 李博

工程(英文) ›› 2023, Vol. 29 ›› Issue (10) : 110-119.

PDF(2910 KB)
PDF(2910 KB)
工程(英文) ›› 2023, Vol. 29 ›› Issue (10) : 110-119. DOI: 10.1016/j.eng.2023.03.007
研究论文
Article

一种通过检测特定肠道菌群来评估人体肠道微生态平衡的方法

作者信息 +

An Evaluation Method of Human Gut Microbial Homeostasis by Testing Specific Fecal Microbiota

Author information +
History +

Abstract

Research on microecology has been carried out with broad perspectives in recent decades, which has enabled a better understanding of the gut microbiota and its roles in human health and disease. It is of great significance to routinely acquire the status of the human gut microbiota; however, there is no method to evaluate the gut microbiome through small amounts of fecal microbes. In this study, we found ten predominant groups of gut bacteria that characterized the whole microbiome in the human gut from a large-sample Chinese cohort, constructed a real-time quantitative polymerase chain reaction (qPCR) method and developed a set of analytical approaches to detect these ten groups of predominant gut bacterial species with great maneuverability, efficiency, and quantitative features. Reference ranges for the ten predominant gut bacterial groups were established, and we found that the concentration and pairwise ratios of the ten predominant gut bacterial groups varied with age, indicating gut microbial dysbiosis. By comparing the detection results of liver cirrhosis (LC) patients with those of healthy control subjects, differences were then analyzed, and a classification model for the two groups was built by machine learning. Among the six established classification models, the model established by using the random forest algorithm achieved the highest area under the curve (AUC) value and sensitivity for predicting LC. This research enables easy, rapid, stable, and reliable testing and evaluation of the balance of the gut microbiota in the human body, which may contribute to clinical work.

Keywords

Gut microbiota / Machine learning / Microbial dysbiosis / Quantitative polymerase chain reaction / Chinese cohort

引用本文

导出引用
吴仲文, 潘厦厦, 袁音. 一种通过检测特定肠道菌群来评估人体肠道微生态平衡的方法. Engineering. 2023, 29(10): 110-119 https://doi.org/10.1016/j.eng.2023.03.007

参考文献

[1]
R.K. Weersma, A. Zhernakova, J. Fu. Interaction between drugs and the gut microbiome. Gut, 69 (8) ( 2020), pp. 1510-1519. DOI: 10.1136/gutjnl-2019-320204
[2]
R.E. Ley, D.A. Peterson, J.I. Gordon. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 124 (4) ( 2006), pp. 837-848
[3]
H. Brody. The gut microbiome. Nature, 577 (7792) ( 2020), p. S5. DOI: 10.1038/d41586-020-00194-2
[4]
T.S. Ghosh, S. Rampelli, I.B. Jeffery, A. Santoro, M. Neto, M. Capri, et al.. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut, 69 (7) ( 2020), pp. 1218-1228. DOI: 10.1136/gutjnl-2019-319654
[5]
M.J. Claesson, I.B. Jeffery, S. Conde, S.E. Power, E.M. O'Connor, S. Cusack, et al.. Gut microbiota composition correlates with diet and health in the elderly. Nature, 488 (7410) ( 2012), pp. 178-184. DOI: 10.1038/nature11319
[6]
M.J. Claesson, S. Cusack, O. O'Sullivan, R. Greene-Diniz, H. de Weerd, E. Flannery, et al.. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA, 108 (Suppl 1) ( 2011), pp. 4586-4591. DOI: 10.1073/pnas.1000097107
[7]
X. Zhang, H. Zhong, Y. Li, Z. Shi, H. Ren, Z. Zhang, et al.. Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nature Aging, 1 ( 2021), pp. 87-100
[8]
A. Burberry, M.F. Wells, F. Limone, A. Couto, K.S. Smith, J. Keaney, et al.. C9orf 72 suppresses systemic and neural inflammation induced by gut bacteria. Nature, 582 (7810) ( 2020), pp. 89-94. DOI: 10.1038/s41586-020-2288-7
[9]
A. Heintz-Buschart, P. Wilmes. Human gut microbiome: function matters. Trends Microbiol, 26 (7) ( 2018), pp. 563-574
[10]
W.H. Karasov, C. Martinez del Rio, E. Caviedes-Vidal. Ecological physiology of diet and digestive systems. Annu Rev Physiol, 73 ( 2011), pp. 69-93. DOI: 10.1146/annurev-physiol-012110-142152
[11]
F. Sommer, F. Backhed. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol, 11 (4) ( 2013), pp. 227-238. DOI: 10.1038/nrmicro2974
[12]
N. Kamada, S.U. Seo, G.Y. Chen, G. Nunez. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol, 13 (5) ( 2013), pp. 321-335. DOI: 10.1038/nri3430
[13]
P.M. Smith, W.S. Garrett. The gut microbiota and mucosal T cells. Front Microbiol, 2 ( 2011), p. 111
[14]
S. Kawamoto, T.H. Tran, M. Maruya, K. Suzuki, Y. Doi, Y. Tsutsui, et al.. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science, 336 (6080) ( 2012), pp. 485-489. DOI: 10.1126/science.1217718
[15]
N. Qin, F. Yang, A. Li, E. Prifti, Y. Chen, L. Shao, et al.. Alterations of the human gut microbiome in liver cirrhosis. Nature, 513 (7516) ( 2014), pp. 59-64. DOI: 10.1038/nature13568
[16]
F. Frost, T. Kacprowski, M. Ruhlemann, M. Pietzner, C. Bang, A. Franke, et al.. Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function. Gut, 70 (3) ( 2021), pp. 522-530. DOI: 10.1136/gutjnl-2020-322753
[17]
S.V. Lynch, O. Pedersen. The human intestinal microbiome in health and disease. N Engl J Med, 375 (24) ( 2016), pp. 2369-2379
[18]
B. Schnabl, D.A. Brenner. Interactions between the intestinal microbiome and liver diseases. Gastroenterology, 146 (6) ( 2014), pp. 1513-1524
[19]
J.S. Bajaj, D.M. Heuman, P.B. Hylemon, A.J. Sanyal, M.B. White, P. Monteith, et al.. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol, 60 (5) ( 2014), pp. 940-947
[20]
X. Yu, X. Zhang, H. Jin, Z. Wu, C. Yan, Z. Liu, et al.. Zhengganxifeng decoction affects gut microbiota and reduces blood pressure via renin-angiotensin system. Biol Pharm Bull, 42 (9) ( 2019), pp. 1482-1490. DOI: 10.1248/bpb.b19-00057
[21]
Y. Zhang, Y. Wang, B. Ke, J. Du. TMAO: how gut microbiota contributes to heart failure. Transl Res, 228 ( 2021), pp. 109-125. DOI: 10.3390/electronics10020109
[22]
H. Lu, Z. Wu, W. Xu, J. Yang, Y. Chen, L. Li. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microb Ecol, 61 (3) ( 2011), pp. 693-703. DOI: 10.1007/s00248-010-9801-8
[23]
Li L. Infectious microecology: theory and applications. Hangzhou: Zhejiang University Press; 2014.
[24]
J.S.Y. Low, S.E. Soh, Y.K. Lee, K.Y.C. Kwek, J.D. Holbrook, E.M. van der Beek, et al.. Ratio of Klebsiella/Bifidobacterium in early life correlates with later development of paediatric allergy. Benef Microbes, 8 (5) ( 2017), pp. 681-695. DOI: 10.3920/BM2017.0020
[25]
R.E. Ley, P.J. Turnbaugh, S. Klein, J.I. Gordon. Microbial ecology: human gut microbes associated with obesity. Nature, 444 (7122) ( 2006), pp. 1022-1023. DOI: 10.1038/4441022a
[26]
P.J. Turnbaugh, M. Hamady, T. Yatsunenko, B.L. Cantarel, A. Duncan, R.E. Ley, et al.. A core gut microbiome in obese and lean twins. Nature, 457 (7228) ( 2009), pp. 480-484. DOI: 10.1038/nature07540
[27]
J.J. Faith, J.L. Guruge, M. Charbonneau, S. Subramanian, H. Seedorf, A.L. Goodman, et al.. The long-term stability of the human gut microbiota. Science, 341 (6141) ( 2013), p. 1237439
[28]
J.M. Bender, F. Li, H. Adisetiyo, D. Lee, S. Zabih, L. Hung, et al.. Quantification of variation and the impact of biomass in targeted 16S rRNA gene sequencing studies. Microbiome, 6 (1) ( 2018), p. 155
[29]
J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, et al.. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490 (7418) ( 2012), pp. 55-60. DOI: 10.1038/nature11450
[30]
P. Lepage, M.C. Leclerc, M. Joossens, S. Mondot, H.M. Blottiere, J. Raes, et al.. A metagenomic insight into our gut's microbiome. Gut, 62 (1) ( 2013), pp. 146-158. DOI: 10.1136/gutjnl-2011-301805
[31]
R. Poretsky, R.L. Rodriguez, C. Luo, D. Tsementzi, K.T. Konstantinidis. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One, 9 (4) ( 2014), p. e93827. DOI: 10.1371/journal.pone.0093827
[32]
L. Tang, S. Gu, Y. Gong, B. Li, H. Lu, Q. Li, et al.. Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering, 6 (10) ( 2020), pp. 1178-1184
[33]
L. Breiman. Random forests. Mach Learn, 45 (1) ( 2001), pp. 5-32
[34]
J.H. Friedman. Greedy function approximation: a gradient boosting machine. Ann Stat, 29 (5) ( 2001), pp. 1189-1232
[35]
R.E.S. Yoav Freund. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci, 55 (1) ( 1997), pp. 119-139
[36]
T. Chen, C. Guestrin. XGBoost: a scalable tree boosting system. Assoc Comp Machinery ( 2016), pp. 785-794. DOI: 10.1145/2939672.2939785
[37]
C. Cortes, V. Vapnik. Support vector networks. Mach Learn, 20 (3) ( 1995), pp. 273-297
[38]
T.G. Dietterich. Ensemble methods in machine learning. Springer, Berlin Heidelberg ( 2000), pp. 1-15. DOI: 10.1007/3-540-45014-9_1
[39]
Q. Su, Q. Liu, R.I. Lau, J. Zhang, Z. Xu, Y.K. Yeoh, et al.. Faecal microbiome-based machine learning for multi-class disease diagnosis. Nat Commun, 13 (1) ( 2022), p. 6818
[40]
N.R. Shin, T.W. Whon, J.W. Bae. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol, 33 (9) ( 2015), pp. 496-503
[41]
M.F. Sun, Y.Q. Shen. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res Rev ( 2018), pp. 4553-4561. DOI: 10.1109/tsp.2018.2855658
[42]
L.V. Hooper, D.R. Littman, A.J. Macpherson. Interactions between the microbiota and the immune system. Science, 336 (6086) ( 2012), pp. 1268-1273. DOI: 10.1126/science.1223490
[43]
V.D. Badal, E.D. Vaccariello, E.R. Murray, K.E. Yu, R. Knight, D.V. Jeste, et al.. The gut microbiome, aging, and longevity: a systematic review. Nutrients, 12 (12) ( 2020)
[44]
E. Biagi, C. Franceschi, S. Rampelli, M. Severgnini, R. Ostan, S. Turroni, et al.. Gut microbiota and extreme longevity. Curr Biol, 26 (11) ( 2016), pp. 1480-1485
[45]
T. Wilmanski, C. Diener, N. Rappaport, S. Patwardhan, J. Wiedrick, J. Lapidus, et al.. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab, 3 (2) ( 2021), pp. 274-286. DOI: 10.1038/s42255-021-00348-0
[46]
Q. Yu, L. Yuan, J. Deng, Q. Yang. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria. Front Cell Infect Microbiol, 5 ( 2015), p. 26
[47]
X. Peng, A. Ed-Dra, Y. Song, M. Elbediwi, R.B. Nambiar, X. Zhou, et al.. Lacticaseibacillus rhamnosus alleviates intestinal inflammation and promotes microbiota-mediated protection against Salmonella fatal infections. Front Immunol, 13 ( 2022), p. 973224
[48]
N. Salazar, M. Gueimonde, R.G. de Los, P. Ruas-Madiedo. Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit Rev Food Sci Nutr, 56 (9) ( 2016), pp. 1440-1453. DOI: 10.1080/10408398.2013.770728
[49]
D. Parada Venegas, M.K. De la Fuente, G. Landskron, M.J. Gonzalez, R. Quera, G. Dijkstra, et al.. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol, 10 ( 2019), p. 277
[50]
D.R. Donohoe, N. Garge, X. Zhang, W. Sun, T.M. O'Connell, M.K. Bunger, et al.. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab, 13 (5) ( 2011), pp. 517-526
[51]
J. Park, M. Kim, S.G. Kang, A.H. Jannasch, B. Cooper, J. Patterson, et al.. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol, 8 (1) ( 2015), pp. 80-93. DOI: 10.1038/mi.2014.44
[52]
I. Laudadio, V. Fulci, F. Palone, L. Stronati, S. Cucchiara, C. Carissimi. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. OMICS, 22 (4) ( 2018), pp. 248-254. DOI: 10.1089/omi.2018.0013
[53]
S. Bartosch, A. Fite, G.T. Macfarlane, M.E. McMurdo. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol, 70 (6) ( 2004), pp. 3575-3581
[54]
Y. He, W. Wu, H.M. Zheng, P. Li, D. McDonald, H.F. Sheng, et al.. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med, 24 (10) ( 2018), pp. 1532-1535. DOI: 10.1038/s41591-018-0164-x
[55]
T. Yatsunenko, F.E. Rey, M.J. Manary, I. Trehan, M.G. Dominguez-Bello, M. Contreras, et al.. Human gut microbiome viewed across age and geography. Nature, 486 (7402) ( 2012), pp. 222-227. DOI: 10.1038/nature11053

This work was supported by the National Key Research and Development Program of China (2018YFC2000500), the Fundamental Research Funds for the Central Universities (2022ZFJH003), the Independent Task of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (2022zz22), the National Natural Science Foundation of China (81703430, 32170058, and 82200994), the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2019-I2M-5-045), and the Research Project of Jinan Microecological Biomedicine Shandong Laboratory (JNL-2022051B). Special thanks to KW Liu for self-confidence and spiritual support and Zhongnuo Gene, Inc., for bacteria detection and model establishment.

PDF(2910 KB)

Accesses

Citation

Detail

段落导航
相关文章

/