[1] |
Y. Bian, Y. Tian, K. Tang, W. Li, L. Zhao, Y. Yang, et al.. Sustainable solar evaporation from solute surface via energy downconversion. Glob Chall, 5 (1) ( 2021), p. 2000077
|
[2] |
A.J. Jamieson, L.S.R. Brooks, W.D.K. Reid, S.B. Piertney, B.E. Narayanaswamy, T.D. Linley. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. R Soc Open Sci, 6 (2) ( 2019), p. 180667 DOI: 10.1098/rsos.180667
|
[3] |
R.A. Falconer. Water security: why we need global solutions. Engineering, 16 ( 2022), pp. 13-15
|
[4] |
W. Zhou, X. Zhang, X. Gong, M. Ding, J. Yu, S. Zhang, et al.. Environmentally friendly polyamide nanofiber membranes with interconnective amphiphobic channels for seawater desalination. ACS Appl Mater Interfaces, 14 (30) ( 2022), pp. 35287-35296 DOI: 10.1021/acsami.2c12061
|
[5] |
J. Yoon, H.J. Kwon, S. Kang, E. Brack, J. Han. Portable seawater desalination system for generating drinkable water in remote locations. Environ Sci Technol, 56 (10) ( 2022), pp. 6733-6743 DOI: 10.1021/acs.est.1c08466
|
[6] |
W. Yao, X. Zhu, Z. Xu, R.A. Davis, G. Liu, H. Zhong, et al.. Loofah sponge-derived hygroscopic photothermal absorber for all-weather atmospheric water harvesting. ACS Appl Mater Interfaces, 14 (3) ( 2022), pp. 4680-4689 DOI: 10.1021/acsami.1c20576
|
[7] |
M. Elimelech, W.A. Phillip. The future of seawater desalination: energy, technology, and the environment. Science, 333 (6043) ( 2011), pp. 712-717 DOI: 10.1126/science.1200488
|
[8] |
H. Liu, Z. Huang, K. Liu, X. Hu, J. Zhou. Interfacial solar-to-heat conversion for desalination. Adv Energy Mater, 9 (21) ( 2019), p. 1900310
|
[9] |
P. Zhang, Q. Liao, H. Yao, Y. Huang, H. Cheng, L. Qu. Direct solar steam generation system for clean water production. Energy Stor Mater, 18 ( 2019), pp. 429-446
|
[10] |
Y. Yang, R. Zhao, T. Zhang, K. Zhao, P. Xiao, Y. Ma, et al.. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano, 12 (1) ( 2018), pp. 829-835 DOI: 10.1021/acsnano.7b08196
|
[11] |
M. Gao, L. Zhu, C.K. Peh, G.W. Ho. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energ Environ Sci, 12 (3) ( 2019), pp. 841-864 DOI: 10.1039/c8ee01146j
|
[12] |
Z. Xie, Y. Duo, Z. Lin, T. Fan, C. Xing, L. Yu, et al.. The rise of 2d photothermal materials beyond graphene for clean water production. Adv Sci, 7 (5) ( 2020), p. 1902236
|
[13] |
X. Zhou, Y. Guo, F. Zhao, G. Yu. Hydrogels as an emerging material platform for solar water purification. Acc Chem Res, 52 (11) ( 2019), pp. 3244-3253 DOI: 10.1021/acs.accounts.9b00455
|
[14] |
L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater Horiz, 5 (3) ( 2018), pp. 323-343 DOI: 10.1039/c7mh01064h
|
[15] |
L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy, 57 ( 2019), pp. 507-518
|
[16] |
Y. Zhang, T. Xiong, D.K. Nandakumar, S.C. Tan. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv Sci, 7 (9) ( 2020), Article 1903478
|
[17] |
X. Hu, J. Zhu. Tailoring aerogels and related 3D macroporous monoliths for interfacial solar vapor generation. Adv Funct Mater, 30 (3) ( 2020), p. 1907234
|
[18] |
L. Zhang, X. Li, Y. Zhong, A. Leroy, Z. Xu, L. Zhao, et al.. Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nat Commun, 13 (1) ( 2022), p. 849 DOI: 10.1130/b35818.1
|
[19] |
T. Li, H. Liu, X. Zhao, G. Chen, J. Dai, G. Pastel, et al.. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv Funct Mater, 28 (16) ( 2018), p. 1707134
|
[20] |
Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu, X. Yang. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano, 15 (6) ( 2021), pp. 10366-10376 DOI: 10.1021/acsnano.1c02578
|
[21] |
H. Liang, Q. Liao, N. Chen, Y. Liang, G. Lv, P. Zhang, et al.. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew Chem Int Ed Engl, 58 (52) ( 2019), pp. 19041-19046 DOI: 10.1002/anie.201911457
|
[22] |
J. Li, X. Wang, Z. Lin, N. Xu, X. Li, J. Liang, et al.. Over 10 kg·m-2·h-1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule, 4 (4) ( 2020), pp. 928-937
|
[23] |
P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, et al.. Solar-driven interfacial evaporation. Nat Energy, 3 (12) ( 2018), pp. 1031-1041 DOI: 10.1038/s41560-018-0260-7
|
[24] |
Z. Li, C. Wang, J. Su, S. Ling, W. Wang, M. An. Fast-growing field of interfacial solar steam generation: evolutional materials, engineered architectures, and synergistic applications. Sol RRL, 3 (3) ( 2019), p. 1800206
|
[25] |
Y. Li, X. Jin, Y. Zheng, W. Li, F. Zheng, W. Wang, et al.. Tunable water delivery in carbon-coated fabrics for high-efficiency solar vapor generation. ACS Appl Mater Interfaces, 11 (50) ( 2019), pp. 46938-46946 DOI: 10.1021/acsami.9b17360
|
[26] |
Z. Li, J. Zhang, S. Zang, C. Yang, Y. Liu, F. Jing, et al.. Engineering controllable water transport of biosafety cuttlefish juice solar absorber toward remarkably enhanced solar-driven gas-liquid interfacial evaporation. Nano Energy, 73 ( 2020), p. 104834
|
[27] |
Z. Wang, X. Wu, F. He, S. Peng, Y. Li. Confinement capillarity of thin coating for boosting solar-driven water evaporation. Adv Funct Mater, 31 (22) ( 2021), p. 2011114
|
[28] |
R. Zhu, M. Liu, Y. Hou, D. Wang, L. Zhang, D. Wang, et al.. Mussel-inspired photothermal synergetic system for clean water production using full-spectrum solar energy. Chem Eng J, 423 ( 2021), p. 129099
|
[29] |
J. Tang, T. Zheng, Z. Song, Y. Shao, N. Li, K. Jia, et al.. Realization of low latent heat of a solar evaporator via regulating the water state in wood channels. ACS Appl Mater Interfaces, 12 (16) ( 2020), pp. 18504-18511 DOI: 10.1021/acsami.0c01261
|
[30] |
C. Zhang, P. Xiao, F. Ni, J. Gu, J. Chen, Y. Nie, et al.. Breathable and superhydrophobic photothermic fabric enables efficient interface energy management via confined heating strategy for sustainable seawater evaporation. Chem Eng J, 428 ( 2022), p. 131142
|
[31] |
T. Li, Q. Fang, X. Xi, Y. Chen, F. Liu. Ultra-robust carbon fibers for multi-media purification via solar-evaporation. J Mater Chem A Mater Energy Sustain, 7 (2) ( 2019), pp. 586-593 DOI: 10.1039/c8ta08829b
|
[32] |
Q. Fang, T. Li, H. Lin, R. Jiang, F. Liu. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resistance. ACS Appl Energy Mater, 2 (6) ( 2019), pp. 4354-4361 DOI: 10.1021/acsaem.9b00562
|
[33] |
H. Li, Y. He, Y. Hu, X. Wang. Commercially available activated carbon fiber felt enables efficient solar steam generation. ACS Appl Mater Interfaces, 10 (11) ( 2018), pp. 9362-9368 DOI: 10.1021/acsami.7b18071
|
[34] |
Z. Yu, S. Cheng, C. Li, L. Li, J. Yang. Highly efficient solar vapor generator enabled by a 3D hierarchical structure constructed with hydrophilic carbon felt for desalination and wastewater treatment. ACS Appl Mater Interfaces, 11 (35) ( 2019), pp. 32038-32045 DOI: 10.1021/acsami.9b08480
|
[35] |
H.W. Zhou, L. Mishnaevsky Jr, H.Y. Yi, Y.Q. Liu, X. Hu, A. Warrier, et al.. Carbon fiber/carbon nanotube reinforced hierarchical composites: effect of CNT distribution on shearing strength. Compos B Eng, 88 ( 2016), pp. 201-211
|
[36] |
A. Ma, Y. Chen, Y. Liu, J. Gui, Y. Yu. Reduced graphene oxide/carbon fiber composite membrane for self-floating solar-thermal steam production. Chem Res Chin Univ, 36 (4) ( 2020), pp. 699-702 DOI: 10.1007/s40242-020-0195-y
|
[37] |
Y. Pang, J. Zhang, R. Ma, Z. Qu, E. Lee, T. Luo. Solar-thermal water evaporation: a review. ACS Energy Lett, 5 (2) ( 2020), pp. 437-456 DOI: 10.1021/acsenergylett.9b02611
|
[38] |
Z. Xu, Z. Li, Y. Jiang, G. Xu, M. Zhu, W.C. Law, et al.. Recent advances in solar-driven evaporation systems. J Mater Chem A Mater Energy Sustain, 8 (48) ( 2020), pp. 25571-25600 DOI: 10.1039/d0ta08869b
|
[39] |
N. Xu, J. Li, Y. Wang, C. Fang, X. Li, Y. Wang, et al.. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci Adv, 5 (7) ( 2019), p. eaaw7013
|
[40] |
N. Xu, H. Zhang, Z. Lin, J. Li, G. Liu, X. Li, et al.. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl Sci Rev, 8 (10) ( 2021), p. nwab065
|
[41] |
L. Zhou, X. Li, G.W. Ni, S. Zhu, J. Zhu. The revival of thermal utilization from the Sun: interfacial solar vapor generation. Natl Sci Rev, 6 (3) ( 2019), pp. 562-578 DOI: 10.1093/nsr/nwz030
|
[42] |
G. Ni, S.H. Zandavi, S.M. Javid, S.V. Boriskina, T.A. Cooper, G. Chen. A salt-rejecting floating solar still for low-cost desalination. Energy Environ Sci, 11 (6) ( 2018), pp. 1510-1519 DOI: 10.1039/c8ee00220g
|
[43] |
Q. Zhang, X. Xiao, G. Zhao, H. Yang, H. Cheng, L. Qu, et al.. An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination. J Mater Chem A Mater Energy Sustain, 9 (17) ( 2021), pp. 10945-10952 DOI: 10.1039/d1ta01295a
|