规模化制造芯鞘纱线基太阳能界面蒸发系统的供液调控和海水淡化性能

肖杏芳, 潘露琪, 陈涛, 王满玉, 任李培, 陈贝, 王迎奥, 张骞, 徐卫林

工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 153-160.

PDF(2571 KB)
PDF(2571 KB)
工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 153-160. DOI: 10.1016/j.eng.2023.03.015
研究论文
Article

规模化制造芯鞘纱线基太阳能界面蒸发系统的供液调控和海水淡化性能

作者信息 +

Scalable Core-Sheath Yarn for Boosting Solar Interfacial Desalination Through Engineering Controllable Water Supply

Author information +
History +

Highlight

• Core-sheath photothermal yarns were fabricated via scalable two-dimensional braiding.

• Water transport could be controlled through adjusting the number of the core fiber.

• The optimized device exhibited excellent and stable desalination simultaneously.

• Industrial weaving methods ensure the device scalable fabrication.

摘要

调控太阳能界面蒸发系统的供液量增强局域热效应是提高其效率的有效途径。然而,由于海水淡化过程中容易盐结晶导致阻塞,在控制供液量实现局域加热过程中存在结盐的临界点,在本研究中,利用简便、可尺寸化的编织技术制备了可调控供液速率的芯鞘结构基光热纱线,实现稳定、高效的太阳能界面蒸发同时防止盐结晶。芯-鞘结构纱线由莫代尔纤维作为芯,碳纤维作为鞘。由于芯-鞘的结构设计,在碳纤维内部的超亲水莫代尔纤维可实现高效的液体输送。芯鞘结构纱线中碳纤维将芯纱完全包裹覆盖使得其编织物在整个太阳光波段具有较高的吸光性(92%)。在一个太阳光(1 kW·m−2)下,通过调节芯鞘纱线内莫代尔纱线的股数,可以使此系统的蒸发速率达到2.12 kg·m−2·h−1,能量转换效率达93.7%。实际应用测试表明,此太阳能界面光热系统可以在5%(质量分数)的NaCl溶液中保持高效稳定的海水淡化性能。

Abstract

Tailoring water supply to achieve confined heating has proven to be an effective strategy for boosting solar interfacial evaporation rates. However, because of salt clogging during desalination, a critical point of constriction occurs when controlling the water rate for confined heating. In this study, we demonstrate a facile and scalable weaving technique for fabricating core-sheath photothermal yarns that facilitate controlled water supply for stable and efficient interfacial solar desalination. The core-sheath yarn comprises modal fibers as the core and carbon fibers as the sheaths. Because of the core-sheath design, remarkable liquid pumping can be enabled in the carbon fiber bundle of the dispersed super-hydrophilic modal fibers. Our woven fabrics absorb a high proportion (92%) of the electromagnetic radiation in the solar spectrum because of the weaving structure and the carbon fiber sheath. Under one-sun (1 kW·m−2) illumination, our woven fabric device can achieve the highest evaporation rate (of 2.12 kg·m−2·h−1 with energy conversion efficiency: 93.7%) by regulating the number of core-sheath yarns. Practical application tests demonstrate that our device can maintain high and stable desalination performance in a 5 wt% NaCl solution.

关键词

太阳能界面海水淡化 / 光热纱线 / 可调控供液 / 芯鞘纱 / 盐阻塞

Keywords

Interfacial solar desalination / Photothermal yarn / Tunable water supply / Core-sheath yarn / Salt clogging

引用本文

导出引用
肖杏芳, 潘露琪, 陈涛. 规模化制造芯鞘纱线基太阳能界面蒸发系统的供液调控和海水淡化性能. Engineering. 2023, 30(11): 153-160 https://doi.org/10.1016/j.eng.2023.03.015

参考文献

[1]
Y. Bian, Y. Tian, K. Tang, W. Li, L. Zhao, Y. Yang, et al.. Sustainable solar evaporation from solute surface via energy downconversion. Glob Chall, 5 (1) ( 2021), p. 2000077
[2]
A.J. Jamieson, L.S.R. Brooks, W.D.K. Reid, S.B. Piertney, B.E. Narayanaswamy, T.D. Linley. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. R Soc Open Sci, 6 (2) ( 2019), p. 180667 DOI: 10.1098/rsos.180667
[3]
R.A. Falconer. Water security: why we need global solutions. Engineering, 16 ( 2022), pp. 13-15
[4]
W. Zhou, X. Zhang, X. Gong, M. Ding, J. Yu, S. Zhang, et al.. Environmentally friendly polyamide nanofiber membranes with interconnective amphiphobic channels for seawater desalination. ACS Appl Mater Interfaces, 14 (30) ( 2022), pp. 35287-35296 DOI: 10.1021/acsami.2c12061
[5]
J. Yoon, H.J. Kwon, S. Kang, E. Brack, J. Han. Portable seawater desalination system for generating drinkable water in remote locations. Environ Sci Technol, 56 (10) ( 2022), pp. 6733-6743 DOI: 10.1021/acs.est.1c08466
[6]
W. Yao, X. Zhu, Z. Xu, R.A. Davis, G. Liu, H. Zhong, et al.. Loofah sponge-derived hygroscopic photothermal absorber for all-weather atmospheric water harvesting. ACS Appl Mater Interfaces, 14 (3) ( 2022), pp. 4680-4689 DOI: 10.1021/acsami.1c20576
[7]
M. Elimelech, W.A. Phillip. The future of seawater desalination: energy, technology, and the environment. Science, 333 (6043) ( 2011), pp. 712-717 DOI: 10.1126/science.1200488
[8]
H. Liu, Z. Huang, K. Liu, X. Hu, J. Zhou. Interfacial solar-to-heat conversion for desalination. Adv Energy Mater, 9 (21) ( 2019), p. 1900310
[9]
P. Zhang, Q. Liao, H. Yao, Y. Huang, H. Cheng, L. Qu. Direct solar steam generation system for clean water production. Energy Stor Mater, 18 ( 2019), pp. 429-446
[10]
Y. Yang, R. Zhao, T. Zhang, K. Zhao, P. Xiao, Y. Ma, et al.. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano, 12 (1) ( 2018), pp. 829-835 DOI: 10.1021/acsnano.7b08196
[11]
M. Gao, L. Zhu, C.K. Peh, G.W. Ho. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energ Environ Sci, 12 (3) ( 2019), pp. 841-864 DOI: 10.1039/c8ee01146j
[12]
Z. Xie, Y. Duo, Z. Lin, T. Fan, C. Xing, L. Yu, et al.. The rise of 2d photothermal materials beyond graphene for clean water production. Adv Sci, 7 (5) ( 2020), p. 1902236
[13]
X. Zhou, Y. Guo, F. Zhao, G. Yu. Hydrogels as an emerging material platform for solar water purification. Acc Chem Res, 52 (11) ( 2019), pp. 3244-3253 DOI: 10.1021/acs.accounts.9b00455
[14]
L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater Horiz, 5 (3) ( 2018), pp. 323-343 DOI: 10.1039/c7mh01064h
[15]
L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy, 57 ( 2019), pp. 507-518
[16]
Y. Zhang, T. Xiong, D.K. Nandakumar, S.C. Tan. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv Sci, 7 (9) ( 2020), Article 1903478
[17]
X. Hu, J. Zhu. Tailoring aerogels and related 3D macroporous monoliths for interfacial solar vapor generation. Adv Funct Mater, 30 (3) ( 2020), p. 1907234
[18]
L. Zhang, X. Li, Y. Zhong, A. Leroy, Z. Xu, L. Zhao, et al.. Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nat Commun, 13 (1) ( 2022), p. 849 DOI: 10.1130/b35818.1
[19]
T. Li, H. Liu, X. Zhao, G. Chen, J. Dai, G. Pastel, et al.. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv Funct Mater, 28 (16) ( 2018), p. 1707134
[20]
Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu, X. Yang. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano, 15 (6) ( 2021), pp. 10366-10376 DOI: 10.1021/acsnano.1c02578
[21]
H. Liang, Q. Liao, N. Chen, Y. Liang, G. Lv, P. Zhang, et al.. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew Chem Int Ed Engl, 58 (52) ( 2019), pp. 19041-19046 DOI: 10.1002/anie.201911457
[22]
J. Li, X. Wang, Z. Lin, N. Xu, X. Li, J. Liang, et al.. Over 10 kg·m-2·h-1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule, 4 (4) ( 2020), pp. 928-937
[23]
P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, et al.. Solar-driven interfacial evaporation. Nat Energy, 3 (12) ( 2018), pp. 1031-1041 DOI: 10.1038/s41560-018-0260-7
[24]
Z. Li, C. Wang, J. Su, S. Ling, W. Wang, M. An. Fast-growing field of interfacial solar steam generation: evolutional materials, engineered architectures, and synergistic applications. Sol RRL, 3 (3) ( 2019), p. 1800206
[25]
Y. Li, X. Jin, Y. Zheng, W. Li, F. Zheng, W. Wang, et al.. Tunable water delivery in carbon-coated fabrics for high-efficiency solar vapor generation. ACS Appl Mater Interfaces, 11 (50) ( 2019), pp. 46938-46946 DOI: 10.1021/acsami.9b17360
[26]
Z. Li, J. Zhang, S. Zang, C. Yang, Y. Liu, F. Jing, et al.. Engineering controllable water transport of biosafety cuttlefish juice solar absorber toward remarkably enhanced solar-driven gas-liquid interfacial evaporation. Nano Energy, 73 ( 2020), p. 104834
[27]
Z. Wang, X. Wu, F. He, S. Peng, Y. Li. Confinement capillarity of thin coating for boosting solar-driven water evaporation. Adv Funct Mater, 31 (22) ( 2021), p. 2011114
[28]
R. Zhu, M. Liu, Y. Hou, D. Wang, L. Zhang, D. Wang, et al.. Mussel-inspired photothermal synergetic system for clean water production using full-spectrum solar energy. Chem Eng J, 423 ( 2021), p. 129099
[29]
J. Tang, T. Zheng, Z. Song, Y. Shao, N. Li, K. Jia, et al.. Realization of low latent heat of a solar evaporator via regulating the water state in wood channels. ACS Appl Mater Interfaces, 12 (16) ( 2020), pp. 18504-18511 DOI: 10.1021/acsami.0c01261
[30]
C. Zhang, P. Xiao, F. Ni, J. Gu, J. Chen, Y. Nie, et al.. Breathable and superhydrophobic photothermic fabric enables efficient interface energy management via confined heating strategy for sustainable seawater evaporation. Chem Eng J, 428 ( 2022), p. 131142
[31]
T. Li, Q. Fang, X. Xi, Y. Chen, F. Liu. Ultra-robust carbon fibers for multi-media purification via solar-evaporation. J Mater Chem A Mater Energy Sustain, 7 (2) ( 2019), pp. 586-593 DOI: 10.1039/c8ta08829b
[32]
Q. Fang, T. Li, H. Lin, R. Jiang, F. Liu. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resistance. ACS Appl Energy Mater, 2 (6) ( 2019), pp. 4354-4361 DOI: 10.1021/acsaem.9b00562
[33]
H. Li, Y. He, Y. Hu, X. Wang. Commercially available activated carbon fiber felt enables efficient solar steam generation. ACS Appl Mater Interfaces, 10 (11) ( 2018), pp. 9362-9368 DOI: 10.1021/acsami.7b18071
[34]
Z. Yu, S. Cheng, C. Li, L. Li, J. Yang. Highly efficient solar vapor generator enabled by a 3D hierarchical structure constructed with hydrophilic carbon felt for desalination and wastewater treatment. ACS Appl Mater Interfaces, 11 (35) ( 2019), pp. 32038-32045 DOI: 10.1021/acsami.9b08480
[35]
H.W. Zhou, L. Mishnaevsky Jr, H.Y. Yi, Y.Q. Liu, X. Hu, A. Warrier, et al.. Carbon fiber/carbon nanotube reinforced hierarchical composites: effect of CNT distribution on shearing strength. Compos B Eng, 88 ( 2016), pp. 201-211
[36]
A. Ma, Y. Chen, Y. Liu, J. Gui, Y. Yu. Reduced graphene oxide/carbon fiber composite membrane for self-floating solar-thermal steam production. Chem Res Chin Univ, 36 (4) ( 2020), pp. 699-702 DOI: 10.1007/s40242-020-0195-y
[37]
Y. Pang, J. Zhang, R. Ma, Z. Qu, E. Lee, T. Luo. Solar-thermal water evaporation: a review. ACS Energy Lett, 5 (2) ( 2020), pp. 437-456 DOI: 10.1021/acsenergylett.9b02611
[38]
Z. Xu, Z. Li, Y. Jiang, G. Xu, M. Zhu, W.C. Law, et al.. Recent advances in solar-driven evaporation systems. J Mater Chem A Mater Energy Sustain, 8 (48) ( 2020), pp. 25571-25600 DOI: 10.1039/d0ta08869b
[39]
N. Xu, J. Li, Y. Wang, C. Fang, X. Li, Y. Wang, et al.. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci Adv, 5 (7) ( 2019), p. eaaw7013
[40]
N. Xu, H. Zhang, Z. Lin, J. Li, G. Liu, X. Li, et al.. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl Sci Rev, 8 (10) ( 2021), p. nwab065
[41]
L. Zhou, X. Li, G.W. Ni, S. Zhu, J. Zhu. The revival of thermal utilization from the Sun: interfacial solar vapor generation. Natl Sci Rev, 6 (3) ( 2019), pp. 562-578 DOI: 10.1093/nsr/nwz030
[42]
G. Ni, S.H. Zandavi, S.M. Javid, S.V. Boriskina, T.A. Cooper, G. Chen. A salt-rejecting floating solar still for low-cost desalination. Energy Environ Sci, 11 (6) ( 2018), pp. 1510-1519 DOI: 10.1039/c8ee00220g
[43]
Q. Zhang, X. Xiao, G. Zhao, H. Yang, H. Cheng, L. Qu, et al.. An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination. J Mater Chem A Mater Energy Sustain, 9 (17) ( 2021), pp. 10945-10952 DOI: 10.1039/d1ta01295a
PDF(2571 KB)

Accesses

Citation

Detail

段落导航
相关文章

/