[1] |
J. Nilsson, M. Brännström, E. Coelingh, J. Fredriksson. Lane change maneuvers for automated vehicles. IEEE Trans Intell Transp Syst, 18 (5) (2016), pp. 1087-1096
|
[2] |
X. Wang, X. Qi, P. Wang, J. Yang. Decision making framework for autonomous vehicles driving behavior in complex scenarios via hierarchical state machine. Auton Intell Syst, 1 (1) (2021), pp. 1-12
|
[3] |
S. Noh. Decision-making framework for autonomous driving at road intersections: safeguarding against collision, overly conservative behavior, and violation vehicles. IEEE Trans Ind Electron, 66 (4) (2018), pp. 3275-3286
|
[4] |
J. Nilsson, J. Sjöberg. Strategic decision making for automated driving on two-lane, one way roads using model predictive control. Proceedings of IEEE Intelligent Vehicles Symposium (IV); 2013 Jun 23-26, IEEE, Gold Coast, QLD, Australia. New York City (2013), pp. 1253-1258
|
[5] |
Y. Du, Y. Wang, C.Y. Chan. Autonomous lane-change controller via mixed logical dynamical. Proceedings of 17th International IEEE Conference on Intelligent Transportation Systems (ITSC); 2014 Oct 8-11, IEEE, Qingdao, China. New York City (2014), pp. 1154-1159
|
[6] |
Z. Zhou, Z. Yang, Y. Zhang, Y. Huang, H. Chen, Z. Yu. A comprehensive study of speed prediction in transportation system: from vehicle to traffic. iScience, 25 (3) (2022), Article 103909
|
[7] |
J. Karlsson, N. Murgovski, J. Sjöberg. Optimal trajectory planning and decision making in lane change maneuvers near a highway exit. Proceedings of 18th European Control Conference (ECC); 2019 Jun 25-28, IEEE, Naples, Italy. New York City (2019), pp. 3254-3260
|
[8] |
J. Nilsson, J. Silvlin, M. Brannstrom, E. Coelingh, J. Fredriksson. If, when, and how to perform lane change maneuvers on highways. IEEE Intell Transp Syst Magazine, 8 (4) (2016), pp. 68-78
|
[9] |
Z. Cui, J. Hu, H. Guan. A lane-changing trajectory planning and assistant decision-making method for autonomous vehicle. Proceedings of 18th COTA International Conference of Transportation Professionals (CICTP); 2018 Jul 05-08, ASCE, Beijing, China. Reston (2018), pp. 87-101
|
[10] |
D. Xu, Z. Ding, X. He, H. Zhao, M. Moze, F. Aioun, et al.. Learning from naturalistic driving data for human-like autonomous highway driving. IEEE Trans Intell Transp Syst, 22 (12) (2020), pp. 7341-7354
|
[11] |
Y. Liu, B. Zhou, X. Wang, L. Li, S. Cheng, Z. Chen, et al.. Dynamic lane-changing trajectory planning for autonomous vehicles based on discrete global trajectory. IEEE Trans Intell Transp Syst, 23 (7) (2022), pp. 8513-8527
|
[12] |
R. Van Hoek, J. Ploeg, H. Nijmeijer. Cooperative driving of automated vehicles using B-splines for trajectory planning. IEEE Trans Intell Vehicles, 6 (3) (2021), pp. 594-604
|
[13] |
D. Kim, Y. Jeong, C.C. Chung. Lateral vehicle trajectory planning using a model predictive control scheme for an automated perpendicular parking system. IEEE Trans Ind Electron, 70 (2) (2023), pp. 1820-1829
|
[14] |
T.A. Mai, T.S. Dang, D.T. Duong, V.C. Le, S. Banerjee. A combined backstepping and adaptive fuzzy PID approach for trajectory tracking of autonomous mobile robots. J Braz Soc Mech Sci Eng, 43 (3) (2021), pp. 1-13
|
[15] |
A.J. Moshayedi, J. Li, L. Liao. Simulation study and PID tune of automated guided vehicles (AGV). Proceedings of IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA); 2021 Jun 18-20, IEEE, Hong Kong, China. New York City (2021), pp. 1-7
|
[16] |
A.D. Sabiha, M.A. Kamel, E. Said, W.M. Hussein. ROS-based trajectory tracking control for autonomous tracked vehicle using optimized backstepping and sliding mode control. Robot Auton Syst, 152 (2022), Article 104058
|
[17] |
H. El Atwi, N. Daher. A composite model predictive and super twisting sliding mode controller for stable and robust trajectory tracking of autonomous ground vehicles. Proceedings of IEEE 3rd International Multidisciplinary Conference on Engineering Technology (IMCET); 2021 Dec 8-10, IEEE, Beirut, Lebanon. New York City (2022), pp. 107-112
|
[18] |
J. Ji, A. Khajepour, W.W. Melek, Y. Huang. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Trans Vehicular Technol, 66 (2) (2016), pp. 952-964
|
[19] |
Y. Huang, H. Wang, A. Khajepour, H. Ding, K. Yuan, Y. Qin. A novel local motion planning framework for autonomous vehicles based on resistance network and model predictive control. IEEE Trans Vehicular Technol, 69 (1) (2019), pp. 55-66
|
[20] |
A. Wischnewski, T. Herrmann, F. Werner, B. Lohmann. A tube-MPC approach to autonomous multi-vehicle racing on high-speed ovals. IEEE Trans Intell Vehicles, 8 (1) (2023), pp. 368-378
|
[21] |
Evens B, Schuurmans M, Patrinos P. Learning MPC for interaction-aware autonomous driving: a game-theoretic approach. 2021. arXiv:2111.08331.
|
[22] |
K. Yuan, H. Shu, Y. Huang, Y. Zhang, A. Khajepour, L. Zhang. Mixed local motion planning and tracking control framework for autonomous vehicles based on model predictive control. IET Intell Transp Syst, 13 (6) (2019), pp. 950-959
|
[23] |
F. Mohseni, E. Frisk, L. Nielsen. Distributed cooperative MPC for autonomous driving in different traffic scenarios. IEEE Trans Intell Vehicles, 6 (2) (2020), pp. 299-309
|
[24] |
Y. Huang, H. Ding, Y. Zhang, H. Wang, D. Cao, N. Xu, et al.. A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach. IEEE Trans Ind Electron, 67 (2) (2020), pp. 1376-1386
|
[25] |
Q. Zhou, D. Zhao, B. Shuai, Y. Li, H. Williams, H. Xu. Knowledge implementation and transfer with an adaptive learning network for real-time power management of the plug-in hybrid vehicle. IEEE Trans Neural Netw Learn Syst, 32 (12) (2021), pp. 5298-5308
|
[26] |
Y. Wang, D. Zhang, J. Wang, Z. Chen, Y. Li, Y. Wang, et al.. Imitation learning of hierarchical driving model: from continuous intention to continuous trajectory. IEEE Robot Autom Lett, 6 (2) (2021), pp. 2477-2484
|
[27] |
C.J. Hoel, K. Wolff, L. Laine. Automated speed and lane change decision making using deep reinforcement learning. Proceedings of 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 4-7, IEEE, Maui, HI, USA. New York City (2018), pp. 2148-2155
|
[28] |
Y. Liu, X. Wang, L. Li, S. Cheng, Z. Chen. A novel lane change decision-making model of autonomous vehicle based on support vector machine. IEEE Access, 7 (2019), pp. 26543-26550
|
[29] |
X. Wang, J. Wu, Y. Gu, H. Sun, L. Xu, S. Kamijo, et al.. Human-like maneuver decision using LSTM-CRF model for on-road self-driving. Proceedings of 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 4-7, IEEE, Maui, HI, USA. New York (2018), pp. 210-216
|
[30] |
Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, A.M. L’opez. Multimodal end-to-end autonomous driving. IEEE Trans Intell Transp Syst, 23 (1) (2020), pp. 537-547
|
[31] |
M. Menner, K. Berntorp, M.N. Zeilinger, S. Di Cairano. Inverse learning for data-driven calibration of model-based statistical path planning. IEEE Trans Intell Vehicles, 6 (1) (2020), pp. 131-145
|
[32] |
B. Peng, Q. Sun, S.E. Li, D. Kum, Y. Yin, J. Wei, et al.. End-to-end autonomous driving through dueling double deep Q-network. Automotive Innovation, 4 (3) (2021), pp. 328-337
|
[33] |
Y. Lin, J. McPhee, N.L. Azad. Comparison of deep reinforcement learning and model predictive control for adaptive cruise control. IEEE Trans Intell Vehicles, 6 (2) (2020), pp. 221-231
|
[34] |
X. He, H. Yang, Z. Hu, C. Lv. Robust lane change decision making for autonomous vehicles: an observation adversarial reinforcement learning approach. IEEE Trans Intell Vehicles, 8 (1) (2023), pp. 184-193
|
[35] |
G. Li, S. Li, S. Li, Y. Qin, D. Cao, X. Qu, et al.. Deep reinforcement learning enabled decision-making for autonomous driving at intersections. Automotive Innovation, 3 (4) (2020), pp. 374-385
|
[36] |
Z. Liu, J. Hu, T. Song, Z. Huang. A methodology based on deep reinforcement learning to autonomous driving with double Q-Learning. Proceedings of 7th International Conference on Computer and Communications (ICCC); 2021 Dec 10-13, IEEE, Chengdu, China. New York City (2022), pp. 1266-1271
|
[37] |
S. Aradi. Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Trans Intell Transp Syst, 23 (2) (2022), pp. 740-759
|
[38] |
G. Li, Y. Yang, S. Li, X. Qu, N. Lyu, S.E. Li. Decision making of autonomous vehicles in lane change scenarios: deep reinforcement learning approaches with risk awareness. Transp Res Part C Emerg Technol, 134 (2022), Article 103452
|
[39] |
Y. Zhang, P. Sun, Y. Yin, L. Lin, X. Wang. Human-like autonomous vehicle speed control by deep reinforcement learning with double Q-learning. Proceedings of IEEE Intelligent Vehicles Symposium (IV); 2018 Jun 26-30; Changshu, China, IEEE, Changshu, China. New York City (2018), pp. 1251-1256
|