[1] |
M. Li, F. Hou, T. Wu, X. Jiang, F. Li, H. Liu, et al. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Nat Prod Rep, 37 (1) (2020), pp. 80-99
|
[2] |
C.M. Denby, R.A. Li, V.T. Vu, Z. Costello, W. Lin, L.J.G. Chan, et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat Commun, 9 (2018), Article 965
|
[3] |
G. Daletos, C. Katsimpouras, G. Stephanopoulos. Novel strategies and platforms for industrial isoprenoid engineering. Trends Biotechnol, 38 (7) (2020), pp. 811-822
|
[4] |
C.J. Paddon, J.D. Keasling. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol, 12 (5) ( 2014), pp. 355-367. DOI: 10.1038/nrmicro3240
|
[5] |
Y. Chen, L. Daviet, M. Schalk, V. Siewers, J. Nielsen. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng, 15 (2013), pp. 48-54
|
[6] |
C. Wang, B. Zada, G. Wei, S.W. Kim. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli. Bioresour Technol, 241 ( 2017), pp. 430-438. DOI: 10.12928/telkomnika.v15i1.3854
|
[7] |
W. Xie, X. Lv, L. Ye, P. Zhou, H. Yu. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng, 30 (2015), pp. 69-78
|
[8] |
P.K. Ajikumar, W.H. Xiao, K.E. Tyo, Y. Wang, F. Simeon, E. Leonard, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 330 (6000) ( 2010), pp. 70-74. DOI: 10.1126/science.1191652
|
[9] |
X. Lv, W. Xie, W. Lu, F. Guo, J. Gu, H. Yu, et al. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol, 186 (2014), pp. 128-136
|
[10] |
C. Yang, X. Gao, Y. Jiang, B. Sun, F. Gao, S. Yang. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab Eng, 37 (2016), pp. 79-91
|
[11] |
X. Wang, J. Han, X. Zhang, Y. Ma, Y. Lin, H. Wang, et al. Reversible thermal regulation for bifunctional dynamic control of gene expression in Escherichia coli. Nat Commun, 12 (2021), Article 1411
|
[12] |
G.S. Hossain, M. Saini, R. Miyake, H. Ling, M.W. Chang. Genetic biosensor design for natural product biosynthesis in microorganisms. Trends Biotechnol, 38 (7) (2020), pp. 797-810
|
[13] |
T.S. Jones, S.M.D. Oliveira, C.J. Myers, C.A. Voigt, D. Densmore. Genetic circuit design automation with Cello 2.0. Nat Protoc, 17 (4) ( 2022), pp. 1097-1113. DOI: 10.1038/s41596-021-00675-2
|
[14] |
H.H. Chou, J.D. Keasling. Programming adaptive control to evolve increased metabolite production. Nat Commun, 4 (2013), Article 2595
|
[15] |
S. Zhou, S. Yuan, P.H. Nair, H.S. Alper, Y. Deng, J. Zhou. Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metab Eng, 67 (2021), pp. 41-52
|
[16] |
D. Scheiber, V. Veulemans, P. Horn, M.L. Chatrou, S.A. Potthoff, M. Kelm, et al. High-dose menaquinone-7 supplementation reduces cardiovascular calcification in a murine model of extraosseous calcification. Nutrients, 7 (8) ( 2015), pp. 6991-7011. DOI: 10.3390/nu7085318
|
[17] |
S. Cui, X. Lv, Y. Wu, J. Li, G. Du, R. Ledesma-Amaro, et al. Engineering a bifunctional phr60-rap60-spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. ACS Synth Biol, 8 (8) ( 2019), pp. 1826-1837. DOI: 10.1021/acssynbio.9b00140
|
[18] |
X. Zhang, Z. Cui, Q. Hong, S. Li. High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl Environ Microbiol, 71 (7) (2005), pp. 4101-4103
|
[19] |
R.S. Cox, M.G. Surette, M.B. Elowitz. Programming gene expression with combinatorial promoters. Mol Syst Biol, 3 (2007), p. 145
|
[20] |
J.M. Onorato, L. Chen, P. Shipkova, Z. Ma, A.V. Azzara, J.J. Devenny, et al. Liquid-liquid extraction coupled with LC/MS/MS for monitoring of malonyl-CoA in rat brain tissue. Anal Bioanal Chem, 397 (7) ( 2010), pp. 3137-3142. DOI: 10.1007/s00216-010-3879-1
|
[21] |
E. Kindt, G. Szekely-Klepser, S.T. Fountain. The validation of a simple LC/MS/MS method for determining the level of mevalonic acid in human plasma. Biomed Chromatogr, 25 (3) ( 2011), pp. 323-329. DOI: 10.1002/bmc.1449
|
[22] |
J.M. Buescher, S. Moco, U. Sauer, N. Zamboni. Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem, 82 (11) ( 2010), pp. 4403-4412. DOI: 10.1021/ac100101d
|
[23] |
Q. Gao, H. Chen, G. Wang, W. Yang, X. Zhong, J. Liu, et al. Highly efficient production of menaquinone-7 from glucose by metabolically engineered Escherichia coli. ACS Synth Biol, 10 (4) ( 2021), pp. 756-765. DOI: 10.1021/acssynbio.0c00568
|
[24] |
F.M. Commichau, K. Forchhammer, J. Stülke. Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol, 9 (2) (2006), pp. 167-172
|
[25] |
X. Xu, X. Li, Y. Liu, Y. Zhu, J. Li, G. Du, et al. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nat Chem Biol, 16 (11) ( 2020), pp. 1261-1268. DOI: 10.1038/s41589-020-0637-3
|
[26] |
D. Albanesi, D. de Mendoza, R. Fap. From control of membrane lipid homeostasis to a biotechnological tool. Front Mol Biosci, 3 (2016), p. 64
|
[27] |
J. Li, S. Dai, X. Chen, X. Liang, L. Qu, L. Jiang, et al. Mechanism of forkhead transcription factors binding to a novel palindromic DNA site. Nucleic Acids Res, 49 (6) ( 2021), pp. 3573-3583. DOI: 10.1093/nar/gkab086
|
[28] |
A.P. Bhavsar, X. Zhao, E.D. Brown. Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant. Appl Environ Microbiol, 67 (1) (2001), pp. 403-410
|
[29] |
G.E. Schujman, M. Guerin, A. Buschiazzo, F. Schaeffer, L.I. Llarrull, G. Reh, et al. Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO J, 25 (17) ( 2006), pp. 4074-4083. DOI: 10.1038/sj.emboj.7601284
|
[30] |
P. Xu, L. Li, F. Zhang, G. Stephanopoulos, M. Koffas. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci USA, 111 (31) ( 2014), pp. 11299-11304. DOI: 10.1073/pnas.1406401111
|
[31] |
N. Hao, A.C. Palmer, A. Ahlgren-Berg, K.E. Shearwin, I.B. Dodd. The role of repressor kinetics in relief of transcriptional interference between convergent promoters. Nucleic Acids Res, 44 (14) ( 2016), pp. 6625-6638. DOI: 10.1093/nar/gkw600
|
[32] |
D.L. Court, J. Gan, Y. Liang, G. Shaw, J.E. Tropea, N. Costantino, et al. RNase III: genetics and function; structure and mechanism. Annu Rev Genet, 47 ( 2013), pp. 405-431. DOI: 10.1146/annurev-genet-110711-155618
|
[33] |
Y. Feng, J.E. Cronan. PdhR, the pyruvate dehydrogenase repressor, does not regulate lipoic acid synthesis. Res Microbiol, 165 (6) (2014), pp. 429-438
|
[34] |
A.E. Bordoy, N.J. O’Connor, A. Chatterjee. Construction of two-input logic gates using transcriptional interference. ACS Synth Biol, 8 (10) ( 2019), pp. 2428-2441. DOI: 10.1021/acssynbio.9b00321
|
[35] |
F.J. Isaacs, J. Hasty, C.R. Cantor, J.J. Collins. Prediction and measurement of an autoregulatory genetic module. Proc Natl Acad Sci USA, 100 (13) (2003), pp. 7714-7719
|
[36] |
S.H. Fisher, L.V. Wray. Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci USA, 105 (3) ( 2008), pp. 1014-1019. DOI: 10.1073/pnas.0709949105
|
[37] |
B.R. Belitsky, A.L. Sonenshein. Altered transcription activation specificity of a mutant form of Bacillus subtilis GltR, a LysR family member. J Bacteriol, 179 (4) ( 1997), pp. 1035-1043. DOI: 10.1128/jb.179.4.1035-1043.1997
|
[38] |
Z. Liu, W. Zheng, C. Ge, W. Cui, L. Zhou, Z. Zhou. High-level extracellular production of recombinant nattokinase in Bacillus subtilis WB800 by multiple tandem promoters. BMC Microbiol, 19 (1) (2019), p. 89
|
[39] |
T. Krause, M. Reichelt, J. Gershenzon, A. Schmidt. Analysis of the isoprenoid pathway intermediates, dimethylallyl diphosphate and isopentenyl diphosphate, from crude plant extracts by liquid chromatography tandem mass spectrometry. Phytochem Anal, 31 (6) ( 2020), pp. 770-777. DOI: 10.1002/pca.2941
|