重构异戊二烯焦磷酸代谢以促进萜类化合物的合成

徐显皓, 吕雪芹, 崔世修, 刘延峰, 夏洪志, 李江华, 堵国成, 李兆丰, Rodrigo Ledesma-Amaro, 陈坚, 刘龙

工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 166-178.

PDF(3906 KB)
PDF(3906 KB)
工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 166-178. DOI: 10.1016/j.eng.2023.03.019
研究论文
Article

重构异戊二烯焦磷酸代谢以促进萜类化合物的合成

作者信息 +

Remodeling Isoprene Pyrophosphate Metabolism for Promoting Terpenoids Bioproduction

Author information +
History +

摘要

萜类化合物是最大的一类天然产物。它们以异戊二烯焦磷酸(IPP)作为基本单元构建而成。使用细胞工厂合成萜类化合物已经引起了极大关注。而迄今为止,IPP的供应不足仍然是高效合成萜类化合物的主要挑战。在本项研究中,我们发现在枯草芽孢杆菌(Bacillus subtilis)中,中心代谢和IPP供应之间的代谢通量分配不平衡阻碍了IPP的积累。因此,我们构建了一系列响应丙酮酸和/或丙二酰辅酶A的双输入多输出(two-input-multi-output, TIMO)基因回路对IPP的代谢途径进行了改造,使IPP的积累增加了将近4倍。随后,设计了一种IPP代谢网络重构策略以提高三种萜类化合物的产量,包括维生素K2 (MK-7, 4.1倍)、番茄红素(9倍)和β-胡萝卜素(0.9倍)。在50-L的生物反应器中,MK-7的产量达到1549.6 mg∙L−1,是迄今为止报道的最高产量。本文提出了一种基于TIMO基因回路的IPP代谢网络重构框架,可用于复杂代谢网络的协同精细调控,从而实现萜类化合物的高效合成。

Abstract

Terpenoids are the largest family of natural products. They are made from the building block isoprene pyrophosphate (IPP), and their bioproduction using engineered cell factories has received a great deal of attention. To date, the insufficient metabolic supply of IPP remains a great challenge for the efficient synthesis of terpenoids. In this work, we discover that the imbalanced metabolic flux distribution between the central metabolism and the IPP supply hinders IPP accumulation in Bacillus subtilis (B. subtilis). Therefore, we remodel the IPP metabolism using a series of genetically encoded two-input-multi-output (TIMO) circuits that are responsive to pyruvate or/and malonyl-CoA, resulting in an IPP pool that is significantly increased by up to four-fold. As a proof-of-concept validation, we design an IPP metabolism remodeling strategy to improve the production of three valuable terpenoids, including menaquinone-7 (MK-7, 4.1-fold), lycopene (9-fold), and β-carotene (0.9-fold). In particular, the titer of MK-7 in a 50-L bioreactor reached 1549.6 mg∙L−1, representing the highest titer reported so far. Thus, we propose a TIMO genetic circuits-assisted IPP metabolism remodeling framework that can be generally used for the synergistic fine-tuning of complicated metabolic modules to achieve the efficient bioproduction of terpenoids.

关键词

萜类 / 基因回路 / 枯草芽孢杆菌 / 异戊二烯焦磷酸

Keywords

Terpenoids / Genetic circuits / Bacillus subtilis / Isoprene pyrophosphate

引用本文

导出引用
徐显皓, 吕雪芹, 崔世修. 重构异戊二烯焦磷酸代谢以促进萜类化合物的合成. Engineering. 2023, 28(9): 166-178 https://doi.org/10.1016/j.eng.2023.03.019

参考文献

[1]
M. Li, F. Hou, T. Wu, X. Jiang, F. Li, H. Liu, et al. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Nat Prod Rep, 37 (1) (2020), pp. 80-99
[2]
C.M. Denby, R.A. Li, V.T. Vu, Z. Costello, W. Lin, L.J.G. Chan, et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat Commun, 9 (2018), Article 965
[3]
G. Daletos, C. Katsimpouras, G. Stephanopoulos. Novel strategies and platforms for industrial isoprenoid engineering. Trends Biotechnol, 38 (7) (2020), pp. 811-822
[4]
C.J. Paddon, J.D. Keasling. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol, 12 (5) (2014), pp. 355-367. DOI: 10.1038/nrmicro3240
[5]
Y. Chen, L. Daviet, M. Schalk, V. Siewers, J. Nielsen. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng, 15 (2013), pp. 48-54
[6]
C. Wang, B. Zada, G. Wei, S.W. Kim. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli. Bioresour Technol, 241 (2017), pp. 430-438. DOI: 10.12928/telkomnika.v15i1.3854
[7]
W. Xie, X. Lv, L. Ye, P. Zhou, H. Yu. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng, 30 (2015), pp. 69-78
[8]
P.K. Ajikumar, W.H. Xiao, K.E. Tyo, Y. Wang, F. Simeon, E. Leonard, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 330 (6000) (2010), pp. 70-74. DOI: 10.1126/science.1191652
[9]
X. Lv, W. Xie, W. Lu, F. Guo, J. Gu, H. Yu, et al. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol, 186 (2014), pp. 128-136
[10]
C. Yang, X. Gao, Y. Jiang, B. Sun, F. Gao, S. Yang. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab Eng, 37 (2016), pp. 79-91
[11]
X. Wang, J. Han, X. Zhang, Y. Ma, Y. Lin, H. Wang, et al. Reversible thermal regulation for bifunctional dynamic control of gene expression in Escherichia coli. Nat Commun, 12 (2021), Article 1411
[12]
G.S. Hossain, M. Saini, R. Miyake, H. Ling, M.W. Chang. Genetic biosensor design for natural product biosynthesis in microorganisms. Trends Biotechnol, 38 (7) (2020), pp. 797-810
[13]
T.S. Jones, S.M.D. Oliveira, C.J. Myers, C.A. Voigt, D. Densmore. Genetic circuit design automation with Cello 2.0. Nat Protoc, 17 (4) (2022), pp. 1097-1113. DOI: 10.1038/s41596-021-00675-2
[14]
H.H. Chou, J.D. Keasling. Programming adaptive control to evolve increased metabolite production. Nat Commun, 4 (2013), Article 2595
[15]
S. Zhou, S. Yuan, P.H. Nair, H.S. Alper, Y. Deng, J. Zhou. Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metab Eng, 67 (2021), pp. 41-52
[16]
D. Scheiber, V. Veulemans, P. Horn, M.L. Chatrou, S.A. Potthoff, M. Kelm, et al. High-dose menaquinone-7 supplementation reduces cardiovascular calcification in a murine model of extraosseous calcification. Nutrients, 7 (8) (2015), pp. 6991-7011. DOI: 10.3390/nu7085318
[17]
S. Cui, X. Lv, Y. Wu, J. Li, G. Du, R. Ledesma-Amaro, et al. Engineering a bifunctional phr60-rap60-spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. ACS Synth Biol, 8 (8) (2019), pp. 1826-1837. DOI: 10.1021/acssynbio.9b00140
[18]
X. Zhang, Z. Cui, Q. Hong, S. Li. High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl Environ Microbiol, 71 (7) (2005), pp. 4101-4103
[19]
R.S. Cox, M.G. Surette, M.B. Elowitz. Programming gene expression with combinatorial promoters. Mol Syst Biol, 3 (2007), p. 145
[20]
J.M. Onorato, L. Chen, P. Shipkova, Z. Ma, A.V. Azzara, J.J. Devenny, et al. Liquid-liquid extraction coupled with LC/MS/MS for monitoring of malonyl-CoA in rat brain tissue. Anal Bioanal Chem, 397 (7) (2010), pp. 3137-3142. DOI: 10.1007/s00216-010-3879-1
[21]
E. Kindt, G. Szekely-Klepser, S.T. Fountain. The validation of a simple LC/MS/MS method for determining the level of mevalonic acid in human plasma. Biomed Chromatogr, 25 (3) (2011), pp. 323-329. DOI: 10.1002/bmc.1449
[22]
J.M. Buescher, S. Moco, U. Sauer, N. Zamboni. Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem, 82 (11) (2010), pp. 4403-4412. DOI: 10.1021/ac100101d
[23]
Q. Gao, H. Chen, G. Wang, W. Yang, X. Zhong, J. Liu, et al. Highly efficient production of menaquinone-7 from glucose by metabolically engineered Escherichia coli. ACS Synth Biol, 10 (4) (2021), pp. 756-765. DOI: 10.1021/acssynbio.0c00568
[24]
F.M. Commichau, K. Forchhammer, J. Stülke. Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol, 9 (2) (2006), pp. 167-172
[25]
X. Xu, X. Li, Y. Liu, Y. Zhu, J. Li, G. Du, et al. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nat Chem Biol, 16 (11) (2020), pp. 1261-1268. DOI: 10.1038/s41589-020-0637-3
[26]
D. Albanesi, D. de Mendoza, R. Fap. From control of membrane lipid homeostasis to a biotechnological tool. Front Mol Biosci, 3 (2016), p. 64
[27]
J. Li, S. Dai, X. Chen, X. Liang, L. Qu, L. Jiang, et al. Mechanism of forkhead transcription factors binding to a novel palindromic DNA site. Nucleic Acids Res, 49 (6) (2021), pp. 3573-3583. DOI: 10.1093/nar/gkab086
[28]
A.P. Bhavsar, X. Zhao, E.D. Brown. Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant. Appl Environ Microbiol, 67 (1) (2001), pp. 403-410
[29]
G.E. Schujman, M. Guerin, A. Buschiazzo, F. Schaeffer, L.I. Llarrull, G. Reh, et al. Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO J, 25 (17) (2006), pp. 4074-4083. DOI: 10.1038/sj.emboj.7601284
[30]
P. Xu, L. Li, F. Zhang, G. Stephanopoulos, M. Koffas. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci USA, 111 (31) (2014), pp. 11299-11304. DOI: 10.1073/pnas.1406401111
[31]
N. Hao, A.C. Palmer, A. Ahlgren-Berg, K.E. Shearwin, I.B. Dodd. The role of repressor kinetics in relief of transcriptional interference between convergent promoters. Nucleic Acids Res, 44 (14) (2016), pp. 6625-6638. DOI: 10.1093/nar/gkw600
[32]
D.L. Court, J. Gan, Y. Liang, G. Shaw, J.E. Tropea, N. Costantino, et al. RNase III: genetics and function; structure and mechanism. Annu Rev Genet, 47 (2013), pp. 405-431. DOI: 10.1146/annurev-genet-110711-155618
[33]
Y. Feng, J.E. Cronan. PdhR, the pyruvate dehydrogenase repressor, does not regulate lipoic acid synthesis. Res Microbiol, 165 (6) (2014), pp. 429-438
[34]
A.E. Bordoy, N.J. O’Connor, A. Chatterjee. Construction of two-input logic gates using transcriptional interference. ACS Synth Biol, 8 (10) (2019), pp. 2428-2441. DOI: 10.1021/acssynbio.9b00321
[35]
F.J. Isaacs, J. Hasty, C.R. Cantor, J.J. Collins. Prediction and measurement of an autoregulatory genetic module. Proc Natl Acad Sci USA, 100 (13) (2003), pp. 7714-7719
[36]
S.H. Fisher, L.V. Wray. Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci USA, 105 (3) (2008), pp. 1014-1019. DOI: 10.1073/pnas.0709949105
[37]
B.R. Belitsky, A.L. Sonenshein. Altered transcription activation specificity of a mutant form of Bacillus subtilis GltR, a LysR family member. J Bacteriol, 179 (4) (1997), pp. 1035-1043. DOI: 10.1128/jb.179.4.1035-1043.1997
[38]
Z. Liu, W. Zheng, C. Ge, W. Cui, L. Zhou, Z. Zhou. High-level extracellular production of recombinant nattokinase in Bacillus subtilis WB800 by multiple tandem promoters. BMC Microbiol, 19 (1) (2019), p. 89
[39]
T. Krause, M. Reichelt, J. Gershenzon, A. Schmidt. Analysis of the isoprenoid pathway intermediates, dimethylallyl diphosphate and isopentenyl diphosphate, from crude plant extracts by liquid chromatography tandem mass spectrometry. Phytochem Anal, 31 (6) (2020), pp. 770-777. DOI: 10.1002/pca.2941
PDF(3906 KB)

Accesses

Citation

Detail

段落导航
相关文章

/