面向未来低碳道路养护的超薄罩面功能性研究综述

Meng Guo, Rui Zhang, Xiuli Du, Pengfei Liu

工程(英文) ›› 2024, Vol. 32 ›› Issue (1) : 82-98.

PDF(1716 KB)
PDF(1716 KB)
工程(英文) ›› 2024, Vol. 32 ›› Issue (1) : 82-98. DOI: 10.1016/j.eng.2023.03.020
研究论文
Review

面向未来低碳道路养护的超薄罩面功能性研究综述

作者信息 +

A State-of-the-Art Review on the Functionality of Ultra-Thin Overlays Towards a Future Low Carbon Road Maintenance

Author information +
History +

Highlight

● Ultra-thin overlay has various eco-friendly functions and reduced cost by 30–40%.

● High-quality aggregates improved the skid resistance by 20%.

● Optimized gradation reduced the noise by 6.0 dB.

摘要

截至2021年,中国公路养护总里程达到525万公里。超薄罩面作为最常用的路面养护技术之一,可以显著提高路面的经济效益和环境效益。为了促进超薄罩面的低碳发展,本文主要研究了超薄罩面几种功能性的作用机理及影响因素。首先,对超薄罩面的抗滑性能、降噪性能、抗车辙性能和抗裂性能进行了评价。结果表明,优质集料可使超薄罩面的抗滑和抗车辙性能提高5 %~20 %。优化后的级配及改性胶结料可将超薄罩面的噪音降低0.4~6.0 dB。高粘度改性胶结料可使超薄罩面混合料的抗车辙性能提高10 %~130 %。玄武岩纤维可使超薄罩面的抗裂性提升20 %以上。由于超薄罩面具有更薄的厚度及更好的道路性能,其基于性能的工程成本与传统罩面相比,可降低30 %~40 %。其次,研究了超薄罩面的几种环保功能,包括融雪除冰、废气降解和路面降温。由于超薄罩面的厚度较薄,有利于氯化物融雪材料向路表的扩散。因此,自融雪超薄罩面的融雪效果较好。此外,含有光催化材料的超薄罩面混合料可以分解20 %~50 %的尾气污染物。彩色超薄罩面最高能够将路面温度降低8.1 ℃。而含有热阻材料的超薄罩面的上下表面温差最高可达12.8 ℃。此外,本文总结了功能型超薄罩面在全世界的一些典型工程应用。本综述有助于研究人员更好地理解超薄罩面的功能性,同时可促进未来多功能低碳道路养护的实现。

Abstract

Highway maintenance mileage reached 5.25 million kilometers in China by 2021. Ultra-thin overlay is one of the most commonly used maintenance technologies, which can significantly enhance the economic and environmental benefits of pavements. To promote the low-carbon development of ultra-thin overlays, this paper mainly studied the mechanism and influencing factors of several ultra-thin overlay functions. Firstly, the skid resistance, noise reduction, rutting resistance, and crack resistance of ultra-thin overlays were evaluated. The results indicated that the high-quality aggregates improved the skid and rutting resistance of ultra-thin overlay by 5%-20%. The optimized gradations and modified binders reduced noise of ultra-thin overlay by 0.4-6.0 dB. The high viscosity modified binders improved the rutting resistance of ultra-thin overlay by about 10%-130%. Basalt fiber improved the cracking resistance of ultra-thin overlay by more than 20%. Due to the thinner thickness and better road performance, the performance-based engineering cost of ultra-thin overlay was reduced by about 30%-40% compared with conventional overlays. Secondly, several environmentally friendly functions of ultra-thin overlay were investigated, including snow melting and deicing, exhaust gas purification and pavement cooling. The lower thickness of ultra-thin overlay was conducive to the diffusion of chloride-based materials to the pavement surface. Therefore, the snow melting effect of self-ice-melting was better. In addition, the ultra-thin overlay mixture containing photocatalytic materials could decompose 20%-50% of the exhaust gas. The colored ultra-thin overlay was able to reduce the temperature of the pavement by up to 8.1 °C. The temperature difference between the upper and lower surfaces of the ultra-thin overlay containing thermal resistance materials could reach up to 12.8 °C. In addition, numerous typical global engineering applications of functional ultra-thin overlay were summarized. This review can help better understand the functionality of ultra-thin overlays and promote the realization of future multi-functional and low-carbon road maintenance.

关键词

道路养护 / 超薄罩面 / 融雪除冰 / 尾气降解 / 路面降温 / 低碳

Keywords

Road maintenance / Ultra-thin overlay / Snow melting and deicing / Exhaust gas purification / Pavement cooling / Low-carbon

引用本文

导出引用
Meng Guo, Rui Zhang, Xiuli Du. 面向未来低碳道路养护的超薄罩面功能性研究综述. Engineering. 2024, 32(1): 82-98 https://doi.org/10.1016/j.eng.2023.03.020

参考文献

[1]
D. Simões, A. Almeida-Costa, A. Benta. Preventive maintenance of road pavement with microsurfacing—an economic and sustainable strategy. Int J Sustain Transp, 11 (9) ( 2017), pp. 670-680
[2]
Y. Jia, S. Wang, A. Huang, Y. Gao, J. Wang, W. Zhou. A comparative long-term effectiveness assessment of preventive maintenance treatments under various environmental conditions. Constr Build Mater, 273 ( 2020), Article 121717
[3]
F. Li, S. Zhou, W. Cai, Y. Du, L. Li. Laboratory evaluation of short and long term performance of hot-poured sealants. Constr Build Mater, 148 ( 2017), pp. 30-37
[4]
X. Zhang, H. Wang, M.R.M. Hasan, J. Gao, M. Irfan. Traffic open time prediction of fog seal with sand using image processing technology. Constr Build Mater, 209 ( 2019), pp. 9-19
[5]
J.H. Im, Y.R. Kim. Performance evaluation of fog seals on chip seals and verification of fog seal field tests. Can J Civ Eng, 42 (11) ( 2015), pp. 872-880
[6]
P. Cui, S. Wu, Y. Xiao, C. Yang, F. Wang. Enhancement mechanism of skid resistance in preventive maintenance of asphalt pavement by steel slag based on micro-surfacing. Constr Build Mater, 239 ( 2020), Article 117870
[7]
M. Ahmad, R. Tarefder. Mechanistic performance evaluation of chip seal. Int J Pavement Res Technol, 13 (1) ( 2020), pp. 269-275
[8]
A. Buss, M. Guirguis, D. Gransberg. Chip seal aggregate evaluation and successful roads preservation. Constr Build Mater, 180 ( 2018), pp. 396-404
[9]
M. Hu, L. Li, F. Peng. Laboratory investigation of ogfc-5 porous asphalt ultra-thin wearing course. Constr Build Mater, 219 ( 2019), pp. 101-110
[10]
W. Song, X. Shu, B. Huang, M. Woods.Influence of interface characteristics on the shear performance between open-graded friction course and underlying layer. J Mater Civ Eng, 30 (7) ( 2018), p. 07018002
[11]
H.Y. Yu, T. Ma, D.W. Wang, Z.H. Wang, S.T. Lv, X.Y. Zhu, et al.. Review on China’s pavement engineering research·2020. China J Highw Transp, 33 (10) ( 2020), pp. 1-66
[12]
S. Im, T. You, Y.R. Kim, G. Nsengiyumva, R. Rea, H. Haghshenas. Evaluation of thin-lift overlay pavement preservation practice: mixture testing, pavement performance, and lifecycle cost analysis. J Transp Eng B Pave, 144 (3) ( 2018), Article 04018037
[13]
D.H. Chen, T. Scullion. Very thin overlays in Texas. Constr Build Mater, 95 ( 2015), pp. 108-116
[14]
X. Li, J. Ye, Y. Badjona, Y. Chen, S. Luo, X. Song, et al.. Preparation and performance of colored ultra-thin overlay for preventive maintenance. Constr Build Mater, 249 ( 2020), Article 118619
[15]
C. Li, H. Ge, D. Sun, X. Zhou. Novel conductive wearing course using a graphite, carbon fiber, and epoxy resin mixture for active de-icing of asphalt concrete pavement. Mater Struct, 54 (1) ( 2021), pp. 1-17
[16]
Li WB. Research of photocatalytic decomposition titainum dioxide on asphalt pavement [dissertation]. Urumqi: Xinjiang University; 2018. Chinese.
[17]
Z. Liu, S. Luo, X. Quan, X. Wei, X. Yang, Q. Li. Laboratory evaluation of performance of porous ultra-thin overlay. Constr Build Mater, 204 ( 2019), pp. 28-40
[18]
Kragh J, Nielsen E, Olesen E, Goubert L, Vansteenkiste S, Visscher JD, et al. OPTHINAL—optimization of thin asphalt layers. Final report. Hedehusene: Danish Road Directorate; 2011.
[19]
You T, Im S, Kim YR, Haghshenas H, Nsengiyumva G. Evaluation of thin asphalt overlay practice preserving Nebraska’s asphalt pavement. Report. Lincoln: Nebraska Transportation Center; 2015 Jun.
[20]
C. Jahren, K. Behling. Thin maintenance surface treatments: comparative study. Transp Res Rec, 1866 (1) ( 2004), pp. 20-27
[21]
P.S. Kandhal, L. Lockett. Construction and performance of ultrathin asphalt friction course. P.S. Kartdhal, M. Stroup-Gardiner (Eds.), Flexible pavement rehabilitation and maintenance, ASTM International, San Diego ( 1998), pp. 81-95
[22]
J. Yu, F. Chen, W. Deng, Y. Ma, H. Yu. Design and performance of high-toughness ultra-thin friction course in south China. Constr Build Mater, 246 ( 2020), Article 118508
[23]
Z. Liu, X. Wang, S. Luo, X. Yang, Q. Li. Asphalt mixture design for porous ultra-thin overlay. Constr Build Mater, 217 ( 2019), pp. 251-264
[24]
L.T. Ding, X. Wang, K. Zhang, M. Zhang, J. Yang, Z. Chen. Durability evaluation of easy compaction and high-durability ultra-thin overlay. Constr Build Mater, 302 ( 2021), Article 124407
[25]
U. Sandberg, J. Kragh, L. Goubert, H. Bendtsen, A. Bergiers, K.P. Biligiri, et al.. Optimization of thin asphalt layers: state-of-the-art review. Infrastrukturteknik, 47 (2) ( 2011), pp. 248-251
[26]
F. Rahman, M. Hossain, S.A. Romanoschi, C. Hobson. Experience with thin superpave mixture overlay of small aggregate top size in Kansas. Transp Res Rec, 2205 (1) ( 2011), pp. 3-10
[27]
Y. Liu, Z.D. Qian, X.J. Shi, Y.H. Zhang, H.S. Ren. Developing cold-mixed epoxy resin-based ultra-thin antiskid surface layer for steel bridge deck pavement. Constr Build Mater, 291 ( 2021), Article 123366
[28]
L. Geng, T. Ma, J. Zhang, X. Huang, P. Hu.Research on peded ultra-thin wearing course mixture. Appl Sci, 7 ( 2017), p. 800
[29]
S. Ahmed, E.V. Dave, W.G. Buttlar, M.K. Exline. Cracking resistance of thin-bonded overlays using fracture test, numerical simulations and early field performance. Int J Pavement Eng, 14 (6) ( 2013), pp. 540-552
[30]
L. Garcia-Gil, R. Miró.Labeling strategy for evaluating the performance of thin asphalt wearing courses. Appl Sci, 9 (8) ( 2019), p. 1694
[31]
V. Cedric, B. Anneleen, V. Barbara. The acoustical durability of thin noise reducing asphalt layers. Coatings, 6 (2) ( 2016), p. 21
[32]
W. Gardziejczyk. The effect of time on acoustic durability of low noise pavements—the case studies in Poland. Transp Res D Transp Environ, 44 ( 2016), pp. 93-104
[33]
S. Chen, F. Gong, D. Ge, Z. You, J.B. Sousa. Use of reacted and activated rubber in ultra-thin hot mixture asphalt overlay for wet-freeze climates. J Clean Prod, 232 ( 2019), pp. 369-378
[34]
W. Cui, K. Wu, X. Cai, H. Tang, W. Huang. Optimizing gradation design for ultra-thin wearing course asphalt. Materials, 13 (1) ( 2020), p. 15
[35]
J. Wan, S. Wu, Y. Xiao, M. Fang, W. Song, P. Pan, et al.. Enhanced ice and snow melting efficiency of steel slag based ultra-thin friction courses with steel fiber. J Clean Prod, 236 ( 2019), Article 117613
[36]
L. Zhang, Q. Lu, R. Shan, F. Zhang, Y. Muhammad, K. Huang. Photocatalytic degradation of vehicular exhaust by nitrogen-doped titanium dioxide modified pavement material. Transp Res D Transp Environ, 91 ( 2021), Article 102690
[37]
Y. Jiang, Y. Ye, J. Xue, Z. Chen. Thermal resistant stone mastic asphalt surface and its antirutting performance. J Mater Civil Eng, 30 (11) ( 2018), Article 06018019
[38]
R. Hajj, A. Filonzi, A. Smit, A. Bhasin.Design and performance of mixes for use as ultrathin overlay. J Transp Eng, 146 (3) ( 2019), p. 04019026
[39]
M. Yu, Z. You, G. Wu, L. Kong, C. Liu, J. Gao. Measurement and modeling of skid resistance of asphalt pavement: a review. Constr Build Mater, 260 ( 2020), Article 119878
[40]
W. Jiang, D. Yuan, J. Shan, W. Ye, A. Sha. Experimental study of the performance of porous ultra-thin asphalt overlay. Int J Pavement Eng, 1 ( 2020), pp. 1-13
[41]
S. Son, I.L. Al-Qadi, T. Zehr. 4.75 mm SMA performance and cost-effectiveness for asphalt thin overlays. Int J Pavement Eng, 17 (9) ( 2016), pp. 799-809
[42]
P. Leandri, M. Losa. Peak friction prediction model based on surface texture characteristics. Transp Res Rec, 2525 (1) ( 2015), pp. 91-99
[43]
M.A. Beyene, R.C. Meininger, N.H. Gibson, J.F. Munoz, J. Youtcheff. Forensic investigation of the cause(s) of slippery ultra-thin bonded wearing course of an asphalt pavement: influence of aggregate mineralogical compositions. Int J Pavement Eng, 17 (10) ( 2016), pp. 887-900
[44]
M. Deng, Y. Ding, Z. He, B. Shan, B. Tang. Investigation on performances and nano-adhesion behavior of ultra-thin wearing course using polyurethane as binder. Constr Build Mater, 278 (1) ( 2021), Article 122349
[45]
I. Liapis, S. Likoydis. Use of electric arc furnace slag in thin skid-resistant surfacing. Procedia Soc Behav Sci, 48 ( 2012), pp. 907-918
[46]
Y.S. Guan, F.W. An, C. Han, Z.X. Zhang. Design and evaluation of ultra thin friction courses asphalt mixture modified by polyolefin. Adv Mat Res, 723 ( 2013), pp. 41-49
[47]
B. Hong, G. Lu, J. Gao, S. Dong, D. Wang. Green tunnel pavement: polyurethane ultra-thin friction course and its performance characterization. J Clean Prod, 289 ( 2020), Article 125131
[48]
B. Hong, G. Lu, T. Li, J. Lin, D. Wang, D. Liang, et al.. Gene-editable materials for future transportation infrastructure: a review for polyurethane-based pavement. J Infrastruct Preserv Resil, 2 (1) ( 2021), p. 27
[49]
J.Q. Chen, H.C. Dan, Y.J. Ding, Y.M. Gao, M. Guo, S.C. Guo, et al.. New innovations in pavement materials and engineering: a review on pavement engineering research 2021. J Traffic Transp Eng, 8 (6) ( 2021), pp. 815-999
[50]
L.G.D. Pizzo, F. Bianco, A. Moro, G. Schiaffino, G. Licitra. Relationship between tyre cavity noise and road surface characteristics on low-noise pavements. Transp Res Part D: Transp Environ, 98 ( 2021), Article 102971
[51]
K.J. Kowalski, W. Bańkowski, J.B. Król, M. Gajewski, R. Horodecka, P. Świeżewski. Selection of quiet pavement technology for polish climate conditions on the example of CiDRO project. Transp Res Procedia, 14 ( 2016), pp. 2724-2733
[52]
A. Vaitkus, T. Andriejauskas, V. Vorobjovas, A. Jagniatinskis, B. Fiks, E. Zofka. Asphalt wearing course optimization for road traffic noise reduction. Constr Build Mater, 152 ( 2017), pp. 345-356
[53]
V. Chandran, T. Manvel Raj, T. Lakshmanan. Effect of recycled rubber particles and silica on tensile and tear properties of natural rubber composites. Mater Sci, 22 (2) ( 2017), pp. 256-261
[54]
W. Li, S. Han, Q. Huang. Performance of noise reduction and skid resistance of durable granular ultra-thin layer asphalt pavement. Materials, 13 (19) ( 2020), p. 4260
[55]
Meng FC. Study on technical performance of noise reduction ultra thin full-asphalt concrete (UFAC) [dissertation]. Guangzhou: South China University of Technology; 2021. Chinese.
[56]
F. Kehagia, S. Mavridou. Noise reduction in pavement made of rubberized bituminous top layer. Open J Civil Eng, 2014 (3) ( 2014), pp. 198-208
[57]
I. Boz, G.P. Coffey, J. Habbouche, S.D. Diefenderfer, O.E. Ozbulut. A critical review of monotonic loading tests to evaluate rutting potential of asphalt mixtures. Constr Build Mater, 335 ( 2022), Article 127484
[58]
R. Guo, T. Nian, F. Zhou. Analysis of factors that influence anti-rutting performance of asphalt pavement. Constr Build Mater, 254 ( 2020), Article 119237
[59]
M.W. Wang, J.Y. Wei, X.B. Xie, G.H. Li, H.W. Zhang, M. Bao, et al.. Composition and evaluation on road performance of sbs/ptw high-viscosity-modified asphalt and its mixtures for ultrathin overlays. Adv Mater Sci Eng, 2022 ( 2022), p. 8644521
[60]
H.L. Zhang, M.M. Su, S.F. Zhao, Y.P. Zhang, Z.P. Zhang. High and low temperature properties of nano-particles/polymer modified asphalt. Constr Build Mater, 114 ( 2016), pp. 323-332
[61]
F. Zhang, C. Hu. Preparation and properties of high viscosity modified asphalt. Polym Compos, 38 (5) ( 2017), pp. 936-946
[62]
Q.M. Zhao, X.J. Lu, S. Jing, Y. Liu, W.J. Hu, M.M. Su, et al.. Properties of SBS/MCF-modified asphalts mixtures used for ultra-thin overlays. Coatings, 12 (4) ( 2022), p. 432
[63]
Q. Zhao, S. Jing, X. Lu, Y. Liu, P. Wang, M. Sun, et al.. The properties of micro carbon fiber composite modified high-viscosity asphalts and mixtures. Polymers, 14 (13) ( 2022), p. 2718
[64]
F. Rahman, M. Hossain, S.A. Romanoschi, C. Hobson. Optimiszed design for 4.75-mm NMAS superpave mix thin overlay. I. Al-Qadi, S. Murrell ( First Congress of Transportation and Development Institute (TDI). T&DI Congress 2011: Integrated Transportation and Development for a Better Tomorrow; 2011 Mar 13-16, The American Society of Civil Engineers (ASCE), Chicago IL, USA. Eds.), Reston ( 2011), pp. 428-437
[65]
S. Busang, J. Maina. Influence of aggregates properties on microstructural properties and mechanical performance of asphalt mixtures. Constr Build Mater, 318 ( 2022), Article 126002
[66]
J. Wan, Y. Xiao, W. Song, C. Chen, P. Pan, D. Zhang. Self-healing property of ultra-thin wearing courses by induction heating. Materials, 11 (8) ( 2018), p. 1392
[67]
Y.F. Fang, B. Ma, K. Wei, X.Q. Wang, X.X. Kang, F.S. Liu. Performance of single-component epoxy resin for crack repair of asphalt pavement. Constr Build Mater, 304 ( 2021), Article 124625
[68]
L. Garcia-Gil, R. Miró, F.E. Pérez-Jiménez.Evaluating the role of aggregate gradation on cracking performance of asphalt concrete for thin overlays. Appl Sci (Basel), 9 (4) ( 2019), p. 628
[69]
A. Budiarto, H.R. Purnomo, A. Setyawan. The structural properties evaluaton on ultra-thin surfacing hot mixture asphalt concrete. Appl Mech Mater, 754-755 ( 2015), pp. 828-832
[70]
J. Yu, N. Yang, F. Chen, Y. Chen, Z. Lin, H. Yu. Design of cold-mixed high-toughness ultra-thin asphalt layer towards sustainable pavement construction. Buildings, 11 (12) ( 2021), p. 619
[71]
M. Zaumanis, L.D. Poulikakos, M.N. Partl. Performance-based design of asphalt mixtures and review of key parameters. Mater Des, 141 ( 2018), pp. 185-201
[72]
W.S. Mogawer, A.J. Austerman, S. Underwood. Effect of binder modification on the performance of an ultra-thin overlay pavement preservation strategy. Transp Res Rec, 2550 (1) ( 2016), pp. 1-7
[73]
K. Lou, P. Xiao, B. Wu, A. Kang, X. Wu, Q. Shen. Effects of fiber length and content on the performance of ultra-thin wearing course modified by basalt fibers. Constr Build Mater, 313 ( 2021), Article 125439
[74]
L. Fay, X.M. Shi. Environmental impacts of chemicals for snow and ice control: state of the knowledge. Water Air Soil Pollut, 223 (5) ( 2012), pp. 2751-2770
[75]
K. Zhong, M.Z. Sun, R.H. Chang. Performance evaluation of high-elastic/salt-storage asphalt mixture modified with mafilon and rubber particles. Constr Build Mater, 193 ( 2018), pp. 153-161
[76]
J. Zhou, J. Li, G.Q. Liu, T. Yang, Y.L. Zhao. Long-term performance and deicing effect of sustained-release snow melting asphalt mixture. Adv Civ Eng, 2019 (1) ( 2019), pp. 1-12
[77]
R. Mirzanamadi, C.E. Hagentoft, P. Johansson, J. Johnsson. Anti-icing of road surfaces using hydronic heating pavement with low temperature. Cold Reg Sci Technol, 145 ( 2018), pp. 106-118
[78]
Y. Zhang, Z.Z. Liu, X.M. Shi. Development and use of salt-storage additives in asphalt pavement for anti-icing: literature review. J Transp Eng B Pave, 147 (4) ( 2021), Article 03121002
[79]
J. Zhou, J. Li, G. Liu, T. Yang, Y. Zhao.Long-term performance and deicing effect of sustained-release snow melting asphalt mixture. Adv Civ Eng, 2019 ( 2019), p. 1940692
[80]
Z. Liu, M. Xing, S. Chen, R. He, P. Cong. Influence of the chloride-based anti-freeze filler on the properties of asphalt mixtures. Constr Build Mater, 51 ( 2014), pp. 133-140
[81]
Dou HB. Design and pavement performance of ultra-thin snow melt salt asphalt mixture pavement overlay [dissertation]. Xi’an: Chang’an University; 2016. Chinese.
[82]
Z.M. Liu, H.X. Chen, H.B. Dou, Y.D. Wang, D.Y. Niu. Snowmelt performance of ultra-thin saline and self-melted asphalt mixture. Bull Chin Ceram Soc, 36 (1) ( 2017), pp. 262-268 Chinese
[83]
T. Ma, L. Geng, X. Ding, D. Zhang, X. Huang. Experimental study of deicing asphalt mixture with anti-icing additives. Constr Build Mater, 127 ( 2016), pp. 653-662
[84]
Z.Z. Liu, S.F. Chen, R. He, M.L. Xing, Y.J. Bai, H.B. Dou.Investigation on the properties of asphalt mixtures containing antifreeze fillers. J Mater Civil Eng, 27 (6) ( 2015), p. 04014180
[85]
K. Zhang, J. Kevern.Review of porous asphalt pavements in cold regions: the state of practice and case study repository in design, construction, and maintenance. J Infrastruct Preserv Resil, 2 (1) ( 2021), p. 4
[86]
X. Cao, X. Yang, H. Li, W. Huang, X. Liu. Investigation of Ce-TiO2 photocatalyst and its application in asphalt-based specimens for no degradation. Constr Build Mater, 148 ( 2017), pp. 824-832
[87]
M.M. Hassan, H. Dylla, L.N. Mohammad, T. Rupnow. Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Constr Build Mater, 24 (8) ( 2010), pp. 1456-1461
[88]
A.T. Hodgson, H. Destaillats, D.P. Sullivan, W.J. Fisk. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air, 17 (4) ( 2007), pp. 305-316
[89]
J. Wu, S. Wang, D.S. Jiang. Research progress of modification methods of titanium dioxide photocatalysts. Contemp Chem Ind, 45 (8) ( 2016), pp. 1934-1936
[90]
W. Liu, S. Wang, J. Zhang, J. Fan. Photocatalytic degradation of vehicle exhausts on asphalt pavement by TiO2/rubber composite structure. Constr Build Mater, 81 ( 2015), pp. 224-232
[91]
H.S. Wu, A.Q. Shen, X.L. Yang, Z.M. He, Y.H. Zhang.Effect of TiO2/CeO2 on photocatalytic degradation capability and pavement performance of asphalt mixture with steel slag. J Mater Civ Eng, 33 (9) ( 2021), p. 04021234
[92]
D. Wang, Z. Leng, M. Huben, M. Oeser, B. Steinauer. Photocatalytic pavements with epoxy-bonded TiO2-containing spreading material. Constr Build Mater, 107 ( 2016), pp. 44-51
[93]
H. Wang, K. Jin, X.Y. Dong, S.H. Zhan, C.H. Liu.Preparation technique and properties of nano-TiO2 photocatalytic coatings for asphalt pavement. Appl Sci, 8 (11) ( 2018), p. 2049
[94]
L. Wu, H. Chen, X. Li, H. Chen. Research progress of nano TiO2 photocatalysis technology applied in ecological road. New Chem Mater, 47 (01) ( 2019), pp. 33-37
[95]
A. Sha, Z. Liu, K. Tang, P. Li. Solar heating reflective coating layer (shrcl) to cool the asphalt pavement surface. Constr Build Mater, 139 ( 2017), pp. 355-364
[96]
J.A. Voogt, T.R. Oke. Thermal remote sensing of urban climates. Remote Sens Environ, 86 (3) ( 2003), pp. 370-384
[97]
A. Synnefa, M. Santamouris, K. Apostolakis. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol Energy, 81 (4) ( 2007), pp. 488-497
[98]
M. Jia, A. Sha, W. Jiang, W. Wang, J. Li, J. Dai, et al.. Laboratory evaluation of poly(ethylene glycol) for cooling of asphalt pavements. Constr Build Mater, 273 ( 2020), Article 121774
[99]
H. Deng, D. Deng, Y. Du, X. Lu. Using lightweight materials to enhance thermal resistance of asphalt mixture for cooling asphalt pavement. Adv Civil Eng, 2019 ( 2019), Article 5216827
[100]
M. Santamouris. Using cool pavements as a mitigation strategy to fight urban heat island — a review of the actual developments. Renew Sustain Energy Rev, 26 ( 2013), pp. 224-240
[101]
E. Morini, B. Castellani, E. Anderini, A. Presciutti, A. Nicolini, F. Rossi. Optimized retro-reflective tiles for exterior building element. Sustain Cities Soc, 37 ( 2017), pp. 146-153
[102]
A. Synnefa, T. Karlessi, N. Gaitani, M. Santamouris, D.N. Assimakopoulos, C. Papakatsikas. Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate. Build Environ, 46 (1) ( 2011), pp. 38-44
[103]
N. Xie, H. Li, W. Zhao, C. Zhang, B. Yang, H. Zhang, et al.. Optical and durability performance of near-infrared reflective coatings for cool pavement: laboratorial investigation. Build Environ, 163 ( 2019), Article 106334
[104]
F. Becherini, E. Lucchi, A. Gandini, M.C. Barrasa, A. Troi, F. Roberti, et al.. Characterization and thermal performance evaluation of infrared reflective coatings compatible with historic buildings. Build Environ, 134 ( 2018), pp. 35-46
[105]
S.R.O. Aletba, N.A. Hassan, R.P. Jaya, E. Aminudin, M.Z.H. Mahmud, A. Mohamed, et al.. Thermal performance of cooling strategies for asphalt pavement: a state-of-the-art review. J Traffic Transp Eng, 8 (3) ( 2021), pp. 356-373
[106]
Wang GW. Experimental research on the ultra-thin wearing course of thermal resistance function [dissertation]. Harbin: Harbin Institute of Technology; 2011. Chinese.
[107]
L. Zou, N.X. Zheng, X.P. Ji. Study on thermal resistance performance of thermal resistance thin surface of asphalt mixture. J Wuhan Univ Technol, 36 (6) ( 2014), pp. 41-46 Chinese
[108]
Zeng SQ. Properties of ultra-thin wear layer Novachip@ material and its application of preventive maintenance on the highway [dissertation]. Guangzhou: South China University of Technology; 2011. Chinese.
[109]
Li YM. The research on ultra-thin asphalt concrete [dissertation]. Changsha: Changsha University of Science and Technology; 2012. Chinese.
[110]
Zhang SH. Research on the complete set of construction technology and local standards for thin asphalt concrete overlay of expressway [dissertation]. Nanjing: Nanjing University of Science and Technology; 2013. Chinese.
[111]
Tang ZG. Research on the application of ultra-thin wear layer for the preventive maintenance of Nanyou Expressway [dissertation]. Nanning: Guangxi University; 2015. Chinese.
[112]
L.X. Wu, H. Zhang, L.F. Chen, X.L. Xu. Study on application of thin layer pavement in bridge deck pavement reconstruction of Xinyi River Bridge. Technol Highw Transp, 033 (003) ( 2017), pp. 65-69 Chinese
[113]
Song Y. Study on application of Novachip ultra-thin wear layer in expressway preventive maintenance [dissertation]. Guangzhou: South China University of Technology; 2016. Chinese.
[114]
J.M. Yu, F.D. Chen, X.Y. Peng, G.H. Liu, K. Deng, X.S. Yu, et al.. High-toughness ultra-thin friction course for the channel on the Zhuhai artificial island of the Hong Kong-Zhuhai-Macao Bridge. J Tsinghua Univ Sci Technol, 60 (1) ( 2020), p. 9 Chinese
[115]
J. Wang, J. Sun, S. Luo, Q. Li. Laboratory and field performance evaluation of high-workability ultra-thin asphalt overlays. Materials, 15 (6) ( 2022), p. 2123
[116]
M. Miljkovic, M. Radenberg. Thin noise-reducing asphalt pavements for urban areas in Germany. Int J Pavement Eng, 13 (6) ( 2012), pp. 569-578
[117]
C. Vuye, A. Bergiers, B. Vanhooreweder. The acoustical durability of thin noise reducing asphalt layers. Coatings, 6 (2) ( 2016), p. 21
[118]
O. Merska, P. Mieczkowski, D. Żymełka. Low-noise thin surface course-evaluation of the effectiveness of noise reduction. Transp Res Procedia, 14 ( 2016), pp. 2688-2697
[119]
T. Bennert, F. Fee, E. Sheehy, A. Jumikis, R. Sauber. Comparison of thin-lift hot-mix asphalt surface course mixes in New Jersey. Transp Res Rec, 2005 ( 1929), pp. 59-68
[120]
A.G. de Barros, J.K. Kampen, C. Vuye. The impact of thin asphalt layers as a road traffic noise intervention in an urban environment. Sustainability, 13 (22) ( 2021), Article 12561
[121]
X.Q. Xu, Y.H. Yu, J. Yang, C.H. Wu.Long-term skid resistance evaluation of gac-16 based on accelerated pavement testing. Adv Mater Sci Eng, 2020 ( 2020), p. 1245060
[122]
Wilson B, Scullion T, Estakhri C. Design and construction recommendations for thin overlays in Texas. Report. Washington, DC: Federal Highway Administration (FHWA); 2013. Report No.: FHWA/TX-13/0-6615-1.
PDF(1716 KB)

Accesses

Citation

Detail

段落导航
相关文章

/