[1] |
N. Li, B. Zhang, Y. He, Y. Luo. Sub-picosecond nanodiodes for low-power ultrafast electronics. Adv Mater, 33 (33) ( 2021), Article 2100874
|
[2] |
M.S. Nikoo, A. Jafari, N. Perera, M. Zhu, G. Santoruvo, E. Matioli. Nanoplasma-enabled picosecond switches for ultrafast electronics. Nature, 579 (7800) ( 2020), pp. 534-539
|
[3] |
Y. Yang, R.B. Wilson, J. Gorchon, C.H. Lambert, S. Salahuddin, J. Bokor. Ultrafast magnetization reversal by picosecond electrical pulses. Sci Adv, 3 (11) ( 2017), Article e1603117
|
[4] |
B. Ferguson, X.C. Zhang. Materials for terahertz science and technology. Nat Mater, 1 ( 2002), pp. 26-33
|
[5] |
T.L. Cocker, D. Peller, P. Yu, J. Repp, R. Huber. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature, 539 (7628) ( 2016), pp. 263-267 DOI: 10.1038/nature19816
|
[6] |
M. Kahrs. 50 years of RF and microwave sampling. IEEE Trans Microw Theory Tech, 51 (6) ( 2003), pp. 1787-1805
|
[7] |
S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, et al.. Wireless sub-THz communication system with high data rate. Nat Photon, 7 (12) ( 2013), pp. 977-981 DOI: 10.1038/nphoton.2013.275
|
[8] |
P.H. Siegel. Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech, 52 (10) ( 2004), pp. 2438-2447
|
[9] |
K. Jhuria, J. Hohlfeld, A. Pattabi, E. Martin, A.Y.A. Córdova, X. Shi, et al.. Spin-orbit torque switching of a ferromagnet with picosecond electrical pulses. Nat Electron, 3 (11) ( 2020), pp. 680-686 DOI: 10.1038/s41928-020-00488-3
|
[10] |
T.J. Spencer, T. Osborn, P.A. Kohl. High-frequency chip connections. Science, 320 (5877) ( 2008), pp. 756-757 DOI: 10.1126/science.1157129
|
[11] |
T.Y. Hsiang, J.F. Whitaker, R. Sobolewski, D.R. Dykaar, G.A. Mourou. Propagation characteristics of picosecond electrical transients on coplanar striplines. Appl Phys Lett, 51 (19) ( 1987), pp. 1551-1553
|
[12] |
X. Yu, M. Sugeta, Y. Yamagami, M. Fujita, T. Nagatsuma. Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications. Appl Phys Express, 12 (1) ( 2019), Article 012005 DOI: 10.7567/1882-0786/aaf4b3
|
[13] |
F. Fesharaki, T. Djerafi, M. Chaker, K. Wu. Low-loss and low-dispersion transmission line over DC-to-THz spectrum. IEEE Trans Terahertz Sci Technol, 6 (4) ( 2016), pp. 611-618
|
[14] |
R.W. McGowan, G. Gallot, D. Grischkowsky. Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. Opt Lett, 24 (20) ( 1999), pp. 1431-1433
|
[15] |
J. Zhang, S. Alexandrou, T.Y. Hsiang. Attenuation characteristics of coplanar waveguides at subterahertz frequencies. IEEE Trans Microw Theory Tech, 53 (11) ( 2005), pp. 3281-3287
|
[16] |
H. Roskos, M.C. Nuss, K.W. Goossen, D.W. Kisker. Propagation of picosecond electrical pulses on a silicon-based microstrip line with buried cobalt silicide ground plane. Appl Phys Lett, 58 (23) ( 1991), pp. 2604-2606
|
[17] |
H. Hattermann, D. Bothner, L.Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sárkány, et al.. Coupling ultracold atoms to a superconducting coplanar waveguide resonator. Nat Commun, 8 ( 2017), p. 2254
|
[18] |
M.H. Burchett, S.R. Pennock, P.R. Shepherd. A rigorous analysis of uniform stripline of arbitrary dimensions. IEEE Trans Microw Theory Tech, 41 (12) ( 1993), pp. 2074-2080
|
[19] |
C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, F. Manshadi. Communication at millimetre-submillimetre wavelengths using a ceramic ribbon. Nature, 404 (6778) ( 2000), pp. 584-588
|
[20] |
P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.S. Rouifed, S. Cecchi, et al.. Integrated germanium optical interconnects on silicon substrates. Nat Photon, 8 (6) ( 2014), pp. 482-488 DOI: 10.1038/nphoton.2014.73
|
[21] |
K. Wu, Y.J. Cheng, T. Djerafi, W. Hong. Substrate-integrated millimeter-wave and terahertz antenna technology. Proc IEEE, 100 (7) ( 2012), pp. 2219-2232
|
[22] |
Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, N. Engheta. Substrate-integrated photonic doping for near-zero-index devices. Nat Commun, 10 ( 2019), p. 4132
|
[23] |
K. Wang, D. Mittleman. Metal wires for terahertz wave guiding. Nature, 432 (7015) ( 2004), pp. 376-379 DOI: 10.1038/nature03040
|
[24] |
Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, et al.. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments. Nat Photon, 12 (9) ( 2018), pp. 554-559 DOI: 10.1038/s41566-018-0238-9
|
[25] |
F. Lemoult, N. Kaina, M. Fink, G. Lerosey. Wave propagation control at the deep subwavelength scale in metamaterials. Nat Phys, 9 ( 2013), pp. 55-60 DOI: 10.1038/nphys2480
|
[26] |
D.S. Chemla, D.A.B. Miller, S. Schmitt-Rink. Generation of ultrashort electrical pulses through screening by virtual populations in biased quantum wells. Phys Rev Lett, 59 (9) ( 1987), pp. 1018-1021
|
[27] |
M.Y. Frankel, S. Gupta, J.A. Valdmanis, G.A. Mourou. Terahertz attenuation and dispersion characteristics of coplanar transmission lines. IEEE Trans Microw Theory Tech, 39 (6) ( 1991), pp. 910-916
|
[28] |
Q. Hu, R.P. Joshi. Transmembrane voltage analyses in spheroidal cells in response to an intense ultrashort electrical pulse. Phys Rev E, 79 ( 2009), Article 011901 DOI: 10.1103/PhysRevE.79.011901
|
[29] |
I. Liberal, A.M. Mahmoud, N. Engheta. Geometry-invariant resonant cavities. Nat Commun, 7 ( 2016), p. 10989
|
[30] |
Wang D, Fesharaki F, Wu K. Physical evidence of mode conversion along mode-selective transmission line. In:Proceedings of 2017 IEEE MTT-S International Microwave Symposium (IMS); 2017 Jun 4-9; Honololu, HI, USA; 2017.
|
[31] |
Wang D, Wu K. Propagation characteristics of mode-selective transmission line. In:Proceedings of 2018 IEEE MTT-S International Microwave Symposium (IMS); 2018 Jun 10-15; Philadelphia, PA, USA; 2018.
|
[32] |
R. Mittra, A. Nasri, R.K. Arya. Wide-angle scanning antennas for millimeter-wave 5G applications. Engineering, 11 ( 2022), pp. 60-71
|
[33] |
S. Venkatesh, X. Lu, B. Tang, K. Sengupta. Secure space-time-modulated millimetre-wave wireless links that are resilient to distributed eavesdropper attacks. Nat Electron, 4 (11) ( 2021), pp. 827-836
|
[34] |
M. Tonouchi. Cutting-edge terahertz technology. Nat Photon, 1 (2) ( 2007), pp. 97-105 DOI: 10.1038/nphoton.2007.3
|
[35] |
Y. Huang, Y. Shen, J. Wang. From terahertz imaging to terahertz wireless communications. Engineering, 22 ( 2023), pp. 106-124
|
[36] |
D. Wang, F. Fesharaki, K. Wu. Longitudinally uniform transmission lines with frequency-enabled mode conversion. IEEE Access, 6 ( 2018), pp. 24089-24109 DOI: 10.1109/access.2018.2830352
|
[37] |
D. Wang, K. Wu. Mode-selective transmission line—part I: theoretical foundation and physical mechanism. IEEE Trans Compon Packag Manuf Technol, 10 (12) ( 2020), pp. 2072-2086 DOI: 10.1109/tcpmt.2020.3037328
|
[38] |
S.G. Johnson, P. Bienstman, M.A. Skorobogatiy, M. Ibanescu, E. Lidorikis, J.D. Joannopoulos. Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. Phys Rev E, 66 (6) ( 2002), Article 066608
|
[39] |
D. Wang, K. Wu. Mode-selective transmission line—part II: excitation scheme and experimental verification. IEEE Trans Compon Packag Manuf Technol, 11 (2) ( 2021), pp. 260-272 DOI: 10.1109/tcpmt.2020.3043633
|
[40] |
K. Sengupta, T. Nagatsuma, D.M. Mittleman. Terahertz integrated electronic and hybrid electronic-photonic systems. Nat Electron, 1 (12) ( 2018), pp. 622-635 DOI: 10.1038/s41928-018-0173-2
|
[41] |
H. Tataria, M. Shafi, A.F. Molisch, M. Dohler, H. Sjöland, F. Tufvesson. 6G wireless systems: vision, requirements, challenges, insights, and opportunities. Proc IEEE, 109 (7) ( 2021), pp. 1166-1199 DOI: 10.1109/jproc.2021.3061701
|
[42] |
Y. Lyu, Y. Zhang, Y. Liu, W. Chen, X. Zhang, W. Xu, et al.. Analysis of potential disruptive technologies in the electronics and information field towards the intelligent society. Engineering, 7 (8) ( 2021), pp. 1051-1056
|