[1] |
A. Pandey, A. Cabello, L. Akoolo, A. Rice-Ficht, A. Arenas-Gamboa, D. McMurray, et al.. The case for live attenuated vaccines against the neglected zoonotic diseases brucellosis and bovine tuberculosis. PLoS Negl Trop Dis, 10 (8) ( 2016), Article e0004572. DOI: 10.1371/journal.pntd.0004572
|
[2] |
U.S. Vishnu, J. Sankarasubramanian, P. Gunasekaran, J. Rajendhran. Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach. Infect Genet Evol, 55 ( 2017), pp. 151-158
|
[3] |
J. McDermott, D. Grace, J. Zinsstag. Economics of brucellosis impact and control in low-income countries. Rev Sci Tech, 32 (1) ( 2013), pp. 249-261. DOI: 10.20506/rst.32.1.2197
|
[4] |
R. López-Santiago, A.B. Sánchez-Argáez, L.G. De Alba-Núñez, S.L. Baltierra-Uribe, M.C. Moreno-Lafont. Immune response to mucosal Brucella infection. Front Immunol, 10 ( 2019), Article 1759
|
[5] |
S. Christopher, B.L. Umapathy, K.L. Ravikumar. Brucellosis: review on the recent trends in pathogenicity and laboratory diagnosis. J Lab Physicians, 2 (2) ( 2010), pp. 55-60
|
[6] |
K.B. García-Méndez, S.M. Hielpos, P.F. Soler-Llorens, V. Arce-Gorvel, C. Hale, J.P. Gorvel, et al.. Infection by Brucella melitensis or Brucella papionis modifies essential physiological functions of human trophoblasts. Cell Microbiol, 21 (7) ( 2019), Article e13019
|
[7] |
N.V. Ganesh, J.M. Sadowska, S. Sarkar, L. Howells, J. McGiven, D.R. Bundle. Molecular recognition of Brucella A and M antigens dissected by synthetic oligosaccharide glycoconjugates leads to a disaccharide diagnostic for brucellosis. J Am Chem Soc, 136 (46) ( 2014), pp. 16260-16269. DOI: 10.1021/ja5081184
|
[8] |
Z. Sadeghi, M. Fasihi-Ramandi, M. Azizi, S. Bouzari. Mannosylated chitosan nanoparticles loaded with FliC antigen as a novel vaccine candidate against Brucella melitensis and Brucella abortus infection. J Biotechnol, 310 ( 2020), pp. 89-96
|
[9] |
S.C. Oliveira, G.H. Giambartolomei, J. Cassataro. Confronting the barriers to develop novel vaccines against brucellosis. Expert Rev Vaccines, 10 (9) ( 2011), pp. 1291-1305. DOI: 10.1586/erv.11.110
|
[10] |
C. Pan, H. Yue, L. Zhu, G.H. Ma, H.L. Wang. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv Drug Deliv Rev, 176 ( 2021), Article 113867
|
[11] |
G. Gomez, L.G. Adams, A. Rice-Ficht, T.A. Ficht. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Front Cell Infect Microbiol, 3 ( 2013), p. 17
|
[12] |
J. Cassataro, K.A. Pasquevich, S.M. Estein, D.A. Laplagne, C.A. Velikovsky, S. de la Barrera, et al.. A recombinant subunit vaccine based on the insertion of 27 amino acids from Omp31 to the N-terminus of BLS induced a similar degree of protection against B. ovis than Rev. 1 vaccination. Vaccine, 25 (22) ( 2007), pp. 4437-4446
|
[13] |
R. Rappuoli. Glycoconjugate vaccines: principles and mechanisms. Sci Transl Med, 10 (456) ( 2018), p. 10
|
[14] |
Z. Peng, J. Wu, K. Wang, X. Li, P. Sun, L. Zhang, et al.. Production of a promising biosynthetic self-assembled nanoconjugate vaccine against Klebsiella pneumoniae serotype O 2 in a general Escherichia coli host. Adv Sci, 8 (14) ( 2021), Article e2100549
|
[15] |
T.E. MacCalman, M.K. Phillips-Jones, S.E. Harding. Glycoconjugate vaccines: some observations on carrier and production methods. Biotechnol Genet Eng Rev, 35 (2) ( 2019), pp. 93-125. DOI: 10.1080/02648725.2019.1703614
|
[16] |
C. Pan, P. Sun, B. Liu, H. Liang, Z. Peng, Y. Dong, et al.. Biosynthesis of conjugate vaccines using an O-linked glycosylation system. MBio, 7 (2) ( 2016), pp. e00443-516
|
[17] |
P. Sun, C. Pan, M. Zeng, B. Liu, H. Liang, D. Wang, et al.. Design and production of conjugate vaccines against S. Paratyphi A using an O-linked glycosylation system in vivo. npj Vaccines, 3(1):4 ( 2018)
|
[18] |
X. Li, C. Pan, Z. Liu, P. Sun, X. Hua, E. Feng, et al.. Safety and immunogenicity of a new glycoengineered vaccine against Acinetobacter baumannii in mice. Microb Biotechnol, 15 (2) ( 2022), pp. 703-716
|
[19] |
J. Huang, C. Pan, P. Sun, E. Feng, J. Wu, L. Zhu, et al.. Application of an O-linked glycosylation system in Yersinia enterocolitica serotype O:9 to generate a new candidate vaccine against Brucella abortus. Microorganisms, 8 (3) ( 2020), p. 436. DOI: 10.3390/microorganisms8030436
|
[20] |
A.C. Gomes, M. Mohsen, M.F. Bachmann. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines, 5 (1) ( 2017), p. 5. DOI: 10.17058/rea.v25i1.3547
|
[21] |
X. Li, C. Pan, P. Sun, Z. Peng, E. Feng, J. Wu, et al.. Orthogonal modular biosynthesis of nanoscale conjugate vaccines for vaccination against infection. Nano Res, 15 (2) ( 2022), pp. 1645-1653. DOI: 10.1007/s12274-021-3713-4
|
[22] |
Y. Shi, C. Pan, K. Wang, Y. Liu, Y. Sun, Y. Guo, et al.. Construction of orthogonal modular proteinaceous nanovaccine delivery vectors based on mSA-biotin binding. Nanomaterials, 12 (5) ( 2022), p. 12. DOI: 10.1515/ijmr-2020-8074
|
[23] |
K.D. Brune, M. Howarth. New routes and opportunities for modular construction of particulate vaccines: stick, click, and glue. Front Immunol, 9 ( 2018), p. 1432
|
[24] |
J.M. Dow, M. Mauri, T.A. Scott, B.W. Wren. Improving protein glycan coupling technology (PGCT) for glycoconjugate vaccine production. Expert Rev Vaccines, 19 (6) ( 2020), pp. 507-527. DOI: 10.1080/14760584.2020.1775077
|
[25] |
J. Ding, Y. Pan, H. Jiang, J. Cheng, T. Liu, N. Qin, et al.. Whole genome sequences of four Brucella strains. J Bacteriol, 193 (14) ( 2011), pp. 3674-3675
|
[26] |
Y. Zhang, T. Li, J. Zhang, Z. Li, Y. Zhang, Z. Wang, et al.. The Brucella melitensis M5-90 phosphoglucomutase (PGM) mutant is attenuated and confers protection against wild-type challenge in BALB/c mice. World J Microbiol Biotechnol, 32 (4) ( 2016), p. 58. DOI: 10.3109/09513590.2015.1078303
|
[27] |
Z. Li, J. Zhang, K.E. Zhang, Q. Fu, Z. Wang, T. Li, et al.. Brucella melitensis 16MΔTcfSR as a potential live vaccine allows for the differentiation between natural and vaccinated infection. Exp Ther Med, 10 (3) ( 2015), pp. 1182-1188. DOI: 10.3892/etm.2015.2619
|
[28] |
S. Deqiu, X. Donglou, Y. Jiming. Epidemiology and control of brucellosis in China. Vet Microbiol, 90 (1-4) ( 2002), pp. 165-182
|
[29] |
Y. Jiang, B. Chen, C. Duan, B. Sun, J. Yang, S. Yang. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol, 81 (7) ( 2015), pp. 2506-2514
|
[30] |
D.R. Bundle, J. McGiven. Brucellosis: improved diagnostics and vaccine insights from synthetic glycans. Acc Chem Res, 50 (12) ( 2017), pp. 2958-2967. DOI: 10.1021/acs.accounts.7b00445
|
[31] |
K. Yang, B.J. Whalen, R.S. Tirabassi, L.K. Selin, T.S. Levchenko, V.P. Torchilin, et al.. A DNA vaccine prime followed by a liposome-encapsulated protein boost confers enhanced mucosal immune responses and protection. J Immunol, 180 (9) ( 2008), pp. 6159-6167. DOI: 10.4049/jimmunol.180.9.6159
|
[32] |
E.D. Avila-Calderón, A. Lopez-Merino, N. Sriranganathan, S.M. Boyle, A. Contreras-Rodríguez. A history of the development of Brucella vaccines. BioMed Res Int, 2013 ( 2013), Article 743509
|
[33] |
A. Ghasemi, R. Ranjbar, J. Amani. In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. Iran J Basic Med Sci, 17 (3) ( 2014), pp. 172-180
|
[34] |
D. Maione, I. Margarit, C.D. Rinaudo, V. Masignani, M. Mora, M. Scarselli, et al.. Identification of a universal group B Streptococcus vaccine by multiple genome screen. Science, 309 (5731) ( 2005), pp. 148-150. DOI: 10.1126/science.1109869
|
[35] |
M. Skwarczynski, I. Toth. Peptide-based synthetic vaccines. Chem Sci, 7 (2) ( 2016), pp. 842-854
|
[36] |
D. Yin, L. Li, D. Song, Y. Liu, W. Ju, X. Song, et al.. A novel recombinant multi-epitope protein against Brucella melitensis infection. Immunol Lett, 175 ( 2016), pp. 1-7
|
[37] |
Y. He, R. Rappuoli, A.S. De Groot, R.T. Chen. Emerging vaccine informatics. J Biomed Biotechnol, 2010 ( 2010), Article 218590
|
[38] |
N. Nazifi, M. Tahmoorespur, M.H. Sekhavati, A. Haghparast, A.M. Behroozikhah. In vivo immunogenicity assessment and vaccine efficacy evaluation of a chimeric tandem repeat of epitopic region of OMP31 antigen fused to interleukin 2 (IL-2) against Brucella melitensis in BALB/c mice. BMC Vet Res, 15 (1) ( 2019), p. 402
|
[39] |
M. Heidary, S. Dashtbin, R. Ghanavati, M. Mahdizade Ari, N. Bostanghadiri, A. Darbandi, et al.. Evaluation of brucellosis vaccines: a comprehensive review. Front Vet Sci, 9 ( 2022), Article 925773
|
[40] |
K.D. Brune, D.B. Leneghan, I.J. Brian, A.S. Ishizuka, M.F. Bachmann, S.J. Draper, et al.. Plug-and-display: decoration of virus-like particles via isopeptide bonds for modular immunization. Sci Rep, 6 (1) ( 2016), Article 19234
|
[41] |
Z. Chen, Y. Zhu, T. Sha, Z. Li, Y. Li, F. Zhang, et al.. Design of a new multi-epitope vaccine against Brucella based on T and B cell epitopes using bioinformatics methods. Epidemiol Infect, 149 ( 2021), Article e136
|
[42] |
T. Sha, Z. Li, C. Zhang, X. Zhao, Z. Chen, F. Zhang, et al.. Bioinformatics analysis of candidate proteins Omp2b, P39 and BLS for Brucella multivalent epitope vaccines. Microb Pathog, 147 ( 2020), Article 104318
|
[43] |
H. Singha, A.I. Mallick, C. Jana, N. Fatima, M. Owais, P. Chaudhuri. Co-immunization with interlukin-18 enhances the protective efficacy of liposomes encapsulated recombinant Cu-Zn superoxide dismutase protein against Brucella abortus. Vaccine, 29 (29-30) ( 2011), pp. 4720-4727
|
[44] |
H. Zhang, H. Zheng, P. Guo, L. Hu, Z. Wang, J. Wang, et al.. Broadly protective CD8+ T cell immunity to highly conserved epitopes elicited by heat shock protein gp96-adjuvanted influenza monovalent split vaccine. J Virol, 95 (12) ( 2021), p. 95
|
[45] |
B. Pulendran, P.S. Arunachalam, D.T. O’Hagan. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov, 20 (6) ( 2021), pp. 454-475. DOI: 10.1038/s41573-021-00163-y
|
[46] |
S. Yousefi, T. Abbassi-Daloii, M. Tahmoorespur, M.H. Sekhavati. Nanoparticle or conventional adjuvants: which one improves immune response against Brucellosis?. Iran J Basic Med Sci, 22 (4) ( 2019), pp. 360-366
|
[47] |
C.M. Fernandez-Prada, E.B. Zelazowska, M. Nikolich, T.L. Hadfield, R.M. Roop 2nd, G.L. Robertson, et al.. Interactions between Brucella melitensis and human phagocytes: bacterial surface O-polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect Immun, 71 (4) ( 2003), pp. 2110-2119
|
[48] |
M.O. Eze, L. Yuan, R.M. Crawford, C.M. Paranavitana, T.L. Hadfield, A.K. Bhattacharjee, et al.. Effects of opsonization and gamma interferon on growth of Brucella melitensis 16M in mouse peritoneal macrophages in vitro. Infect Immun, 68 (1) ( 2000), pp. 257-263
|
[49] |
M. Abkar, A.S. Lotfi, J. Amani, K. Eskandari, M.F. Ramandi, J. Salimian, et al.. Survey of Omp 19 immunogenicity against Brucella abortus and Brucella melitensis: influence of nanoparticulation versus traditional immunization. Vet Res Commun, 39 (4) ( 2015), pp. 217-228. DOI: 10.1007/s11259-015-9645-2
|
[50] |
Y. Lin, Y. He. Ontology representation and analysis of vaccine formulation and administration and their effects on vaccine immune responses. J Biomed Semantics, 3 (1) ( 2012), p. 17. DOI: 10.1186/2041-1480-3-17
|
[51] |
M.C. Moran, M.P. Dominguez, A.R. Bence, M.G. Rodriguez, F.A. Goldbaum, V. Zylberman, et al.. Evaluation of the efficacy of polymeric antigen BLSOmp 31 formulated in a new cage-like particle adjuvant (ISPA) administered by parenteral or mucosal routes against Brucella ovis in BALB/c mice. Res Vet Sci, 145 ( 2022), pp. 29-39
|
[52] |
S. Haase, K. Banerjee, A.A. Mujeeb, C.S. Hartlage, F.M. Núñez, F.J. Núñez, et al..H3.3-G 34 mutations impair DNA repair and promote cGAS/STING-mediated immune responses in pediatric high-grade glioma models. J Clin Invest, 132 (22) ( 2022), p. 132
|
[53] |
I. Salewski, S. Kuntoff, A. Kuemmel, R. Feldtmann, S.B. Felix, L. Henze, et al.. Combined vaccine-immune-checkpoint inhibition constitutes a promising strategy for treatment of dMMR tumors. Cancer Immunol Immunother, 70 (12) ( 2021), pp. 3405-3419. DOI: 10.1007/s00262-021-02933-4
|
[54] |
M.C. Lin, Y.C. Lin, S.T. Chen, T.H. Young,P.J. Lou. Therapeutic vaccine targeting Epstein-Barr virus latent protein, LMP1, suppresses LMP1-expressing tumor growth and metastasis in vivo. BMC Cancer, 17 (1) ( 2017), p. 18
|
[55] |
N. Nezafat, Z. Karimi, M. Eslami, M. Mohkam, S. Zandian, Y. Ghasemi. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Comput Biol Chem, 62 ( 2016), pp. 82-95
|
[56] |
L. Morici, A.G. Torres, R.W. Titball. Novel multi-component vaccine approaches for Burkholderia pseudomallei. Clin Exp Immunol, 196 (2) ( 2019), pp. 178-188. DOI: 10.1111/cei.13286
|
[57] |
C.P. Arevalo, M.J. Bolton, V. Le Sage, N. Ye, C. Furey, H. Muramatsu, et al.. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science, 378 (6622) ( 2022), pp. 899-904. DOI: 10.1126/science.abm0271
|
[58] |
|
[59] |
S. Mani, T. Wierzba, R.I. Walker. Status of vaccine research and development for Shigella. Vaccine, 34 (26) ( 2016), pp. 2887-2894
|