[1] |
H.Y. Kang, J.M. Schoenung. Electronic waste recycling: a review of U.S. infrastructure and technology options. Resour Conserv Recycl, 45 (4) (2005), pp. 368-400.
|
[2] |
L. Andeobu, S. Wibowo, S. Grandhi. An assessment of e-waste generation and environmental management of selected countries in Africa, Europe and North America: a systematic review. Sci Total Environ, 792 (20) (2021), Article 148078.
|
[3] |
X. Zeng, R. Gong, W.Q. Chen, J. Li. Uncovering the recycling potential of “New” WEEE in China. Environ Sci Technol, 50 (3) (2016), pp. 1347-1358.
|
[4] |
Q. Song, L. Zhang, C. Yang, Z. Xu. Novel electrodeposition method for Cu-In-Cd-Ga sequential separation from waste solar cell: mechanism, application, and environmental impact assessment. Environ Sci Technol, 55 (15) (2021), pp. 10724-10733.
|
[5] |
Y. Zhang, L. Zhan, B. Xie, Z. Xu, C. Chen. Decomposition of packaging materials and recycling GaAs from waste ICs by hydrothermal treatment. ACS Sustain Chem Eng, 7 (16) (2019), pp. 14111-14118.
|
[6] |
X. Cai, W. Huang, B. Xu, G. Kaltenpoth, Z. Cheng. A study of moisture diffusion in plastic packaging. J Electron Mater, 31 (5) (2002), pp. 449-455.
|
[7] |
R. Wang, Z. Xu. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review. Waste Manag, 34 (8) (2014), pp. 1455-1469.
|
[8] |
Y. Liu, J. Liu, Z.W. Jiang, T. Tang. Chemical recycling of carbon fibre reinforced epoxy resin composites in subcritical water: synergistic effect of phenol and KOH on the decomposition efficiency. Polym Degrad Stabil, 97 (3) (2012), pp. 214-220.
|
[9] |
H. Koizumi. Development and practical applications of blue light-emitting diodes. Engineering, 1 (2) (2015), pp. 167-168.
|
[10] |
T.R. Martins, E.H. Tanabe, D.A. Bertuol. Innovative method for the recycling of end-of-life LED bulbs by mechanical processing. Resour Conserv Recycling, 161 (2020), Article 104875.
|
[11] |
L. Zhan, F. Xia, Q. Ye, X. Xiang, B. Xie. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes. J Hazard Mater, 299 (2015), pp. 388-394.
|
[12] |
J. Yang, Y. Yang, Z. He, B. Chen, J. Liu. A personal desktop liquid-metal printer as a pervasive electronics manufacturing tool for society in the near future. Engineering, 1 (4) (2015), pp. 506-512.
|
[13] |
M. Yazdan Mehr, W.D. van Driel, G.Q. Zhang. Progress in understanding color maintenance in solid-state lighting. Syst Eng, 1 (2) (2015), pp. 170-178.
|
[14] |
N.A.A. Howarth, J. Rosenow. Banning the bulb: institutional evolution and the phased ban of incandescent lighting in Germany. Energy Policy, 67 (2014), pp. 737-746.
|
[15] |
S. Fang, W.Y. Yan, H.B. Cao, Q.B. Song, Y. Zhang, Z. Sun. Evaluation on end-of-life LEDs by understanding the criticality and recyclability for metals recycling. J Clean Prod, 182 (2018), pp. 624-633.
|
[16] |
J. Cui, L. Zhang. Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater, 158 (2-3) (2008), pp. 228-256.
|
[17] |
S.R. Lim, D. Kang, O.A. Ogunseitan, J.M. Schoenung. Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification. Environ Sci Technol, 45 (1) (2011), pp. 320-327.
|
[18] |
X. Zheng, Z. Zhu, X. Lin, Y. Zhang, Y. He, H. Cao, et al. A mini-review on metal recycling from spent lithium ion batteries. Engineering, 4 (3) (2018), pp. 361-370.
|
[19] |
S.R. Lim, D. Kang, O.A. Ogunseitan, J.M. Schoenung. Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs. Environ Sci Technol, 47 (2) (2013), pp. 1040-1047.
|
[20] |
D.E. Carter, H.V. Aposhian, A.J. Gandolfi. The metabolism of inorganic arsenic oxides, gallium arsenide, and arsine: a toxicochemical review. Toxicol Appl Pharmacol, 193 (3) (2003), pp. 309-334.
|
[21] |
S. Wei, H. Zhang, S. Tao. A review of arsenic exposure and lung cancer. Toxicol Res, 8 (3) (2019), pp. 319-327.
|
[22] |
R.P. de Oliveira, J. Benvenuti, D.C.R. Espinosa. A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes. Renew Sustain Energy Rev, 145 (2021), Article 111090.
|
[23] |
M. Maarefvand, S. Sheibani, F. Rashchi. Recovery of gallium from waste LEDs by oxidation and subsequent leaching. Hydrometall, 191 (2020), Article 105230.
|
[24] |
F. Pourhossein, S.M. Mousavi. A novel step-wise indirect bioleaching using biogenic ferric agent for enhancement recovery of valuable metals from waste light emitting diode (WLED). J Hazard Mater, 378 (2019), Article 120648.
|
[25] |
E. Hsu, K. Barmak, A.C. West, A.H.A. Park. Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies. Green Chem, 21 (5) (2019), pp. 919-936.
|
[26] |
M. Sahu, A. Satapathy. A study on microsized titanium oxide-filled epoxy with enhanced heat conductivity for microelectronic applications. Particul Sci Technol, 33 (1) (2015), pp. 109-112.
|
[27] |
J. Datta, P. Kosiorek, M. Włoch. Effect of high loading of titanium dioxide particles on the morphology, mechanical and thermo-mechanical properties of the natural rubber-based composites. Iran Polym J, 25 (12) (2016), pp. 1021-1035.
|
[28] |
K.H. Baik, B.K. Min, J.Y. Kim, H.K. Kim, C. Sone, Y. Park, et al. Light output enhancement of GaN-based flip-chip light-emitting diodes fabricated with SiO2/TiO2 distributed Bragg reflector coated on mesa sidewall. J Appl Phys, 108 (6) (2010), Article 063105.
|
[29] |
T. Adschiri, Y. Hakuta, K. Sue, K. Arai. Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. J Nanopart Res, 3 (2001), pp. 227-235.
|
[30] |
X. Bokhimi, J. Sanchez-Valente, F. Pedraza. Crystallization of sol-gel boehmite via hydrothermal annealing. J Solid State Chem, 166 (1) (2002), pp. 182-190.
|
[31] |
N. Akiya, P.E. Savage. Roles of water for chemical reactions in high-temperature water. Chem Rev, 102 (8) (2002), pp. 2725-2750.
|
[32] |
Q.K. Jing, J.L. Zhang, Y.B. Liu, W.J. Zhang, Y.Q. Chen, C.Y. Wang. Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method. ACS Sustain Chem Eng, 8 (48) (2020), pp. 17622-17628.
|
[33] |
K. Tekin, S. Karagoz, S. Bektas. A review of hydrothermal biomass processing. Renew Sustain Energy Rev, 40 (2014), pp. 673-687.
|
[34] |
S. Jomaa, A. Shanableh, W. Khalil, B. Trebilco. Hydrothermal decomposition and oxidation of the organic component of municipal and industrial waste products. Adv Environ Res, 7 (3) (2003), pp. 647-653.
|
[35] |
W.Z. He, G.M. Li, L.Z. Kong, H. Wang, J.W. Huang, J.C. Xu. Application of hydrothermal reaction in resource recovery of organic wastes. Resour Conserv Recycling, 52 (5) (2008), pp. 691-699.
|
[36] |
H. Xiao, B. Lv, G. Zhao, Y. Wang, M. Li, D. Li. Hydrothermally enhanced electrochemical oxidation of high concentration refractory perfluorooctanoic acid. J Phys Chem A, 115 (47) (2011), pp. 13836-13841.
|
[37] |
P. Liu, J.W. Le, D.X. Zhang, S.C. Wang, T.Y. Pan. Free radical reaction mechanism on improving tar yield and quality derived from lignite after hydrothermal treatment. Fuel, 207 (2017), pp. 244-252.
|
[38] |
Y. Zhang, L. Zhan, Z. Xu. Recycling Ag, As, Ga of waste light-emitting diodes via subcritical water treatment. J Hazard Mater, 408 (2021), Article 124409.
|
[39] |
L. Zhan, Z. Wang, Y. Zhang, Z. Xu. Recycling of metals (Ga, In, As and Ag) from waste light-emitting diodes in sub/supercritical ethanol. Resour Conserv Recycl, 155 (2020), Article 104695.
|
[40] |
M. Gonzalez de Gortari, M. Misra, A.K. Mohanty. Polyphthalamide polymers: a review on synthesis, properties, and advance manufacturing and emerging applications. J Appl Polym Sci, 139 (40) (2022), p. e52965.
|
[41] |
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, et al. Gaussian 16. ( C. 01 ed.), Gaussian Inc., Wallingford (2016).
|
[42] |
S.J. Christian, S.L. Billington. Moisture diffusion and its impact on uniaxial tensile response of biobased composites. Compos Part B Eng, 43 (5) (2012), pp. 2303-2312.
|
[43] |
M.C. Rosu, R.C. Suciu, M. Mihet, I. Bratu. Physical-chemical characterization of titanium dioxide layers sensitized with the natural dyes carmine and morin. Mater Sci Semicond Process, 16 (6) (2013), pp. 1551-1557.
|
[44] |
S.V. Rempel, D.A. Eselevich, E.Y. Gerasimov, A.A. Valeeva. Impact of titanium monoxide stoichiometry and heat treatment on the properties of TiOy/HAp nanocomposite. J Alloys Compd, 800 (2019), pp. 412-418.
|
[45] |
S. Göktürk. Effect of hydrophobicity on micellar binding of carminic acid. J Photochem Photobiol Chem, 169 (2) (2005), pp. 115-121.
|
[46] |
N. Karthikeyan, J. Joseph Prince, S. Ramalingam, S. Periandy. Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR-mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations. Spectrochim Acta A Mol Biomol Spectrosc, 139 (15) (2015), pp. 229-242.
|
[47] |
Z. Georges, B. Paolo, R.S. Tiago. EUR 30500 EN: update on the Status of LED-Lighting world market since 2018. Publications Office of the European Union, Luxembourg (2021).
|