[1] |
T.W. Thorpe, J.R. Marshall, V. Harawa, R.E. Ruscoe, A. Cuetos, J.D. Finnigan, et al.. Multifunctional biocatalyst for conjugate reduction and reductive amination. Nature, 604 (7904) ( 2022), pp. 86-91 DOI: 10.1038/s41586-022-04458-x
|
[2] |
D.J. Newman, G.M. Cragg. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod, 75 (3) ( 2012), pp. 311-335 DOI: 10.1021/np200906s
|
[3] |
W. Zawodny, S.L. Montgomery. Evolving new chemistry: biocatalysis for the synthesis of amine-containing pharmaceuticals. Catalysts, 12 (6) ( 2022), pp. 595-616 DOI: 10.3390/catal12060595
|
[4] |
S. Zhang, J. Del Pozo, F. Romiti, Y. Mu, S. Torker, A.H. Hoveyda. Delayed catalyst function enables direct enantioselective conversion of nitriles to NH 2-amines. Science, 364 (6435) ( 2019), pp. 45-51 DOI: 10.1126/science.aaw4029
|
[5] |
M.D. Patil, G. Grogan, A. Bommarius, H. Yun. Oxidoreductase-catalyzed synthesis of chiral amines. ACS Catal, 8 (12) ( 2018), pp. 10985-11015 DOI: 10.1021/acscatal.8b02924
|
[6] |
M. Barniol-Xicota, R. Leiva, C. Escolano, S. Vázquez. Syntheses of cinacalcet: an enantiopure active pharmaceutical ingredient (API). Synthesis, 48 (6) ( 2016), pp. 783-803
|
[7] |
C.Y. Yang, J. Li, Y.Y. Yao, C. Qing, B.C. Shen. Enantioseparation of cinacalcet, and its two related compounds by HPLC with self-made chiral stationary phases and chiral mobile phase additives. Curr Pharm Anal, 15 (2) ( 2019), pp. 200-209 DOI: 10.2174/1573412914666180518105046
|
[8] |
|
[9] |
H.U. Blaser. Enantioselective catalysis in fine chemicals production. Chem Commun, 3 (3) ( 2003), pp. 293-296
|
[10] |
T. Yasukawa, R. Masuda, S. Kobayashi. Development of heterogeneous catalyst systems for the continuous synthesis of chiral amines via asymmetric hydrogenation. Nat Catal, 2 (12) ( 2019), pp. 1088-1092 DOI: 10.1038/s41929-019-0371-y
|
[11] |
D. Ghislieri, N.J. Turner. Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Top Catal, 57 (5) ( 2014), pp. 284-300 DOI: 10.1007/s11244-013-0184-1
|
[12] |
M. Höhne, U.T. Bornscheuer. Biocatalytic routes to optically active amines. ChemCatChem, 1 (1) ( 2009), pp. 42-51 DOI: 10.1002/cctc.200900110
|
[13] |
D. Ghislieri, A.P. Green, M. Pontini, S.C. Willies, I. Rowles, A. Frank, et al.. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J Am Chem Soc, 135 (29) ( 2013), pp. 10863-10869 DOI: 10.1021/ja4051235
|
[14] |
V.F. Batista, J.L. Galman, G.A.D.C. Pinto, A.M.S. Silva, N.J. Turner. Monoamine oxidase: tunable activity for amine resolution and functionalization. ACS Catal, 8 (12) ( 2018), pp. 11889-11907 DOI: 10.1021/acscatal.8b03525
|
[15] |
|
[16] |
P. Yao, J.R. Marshall, Z. Xu, J. Lim, S.J. Charnock, D. Zhu, et al.. Asymmetric synthesis of N-substituted α-amino esters from α-ketoesters via imine reductase-catalyzed reductive amination. Angew Chem Int Ed Engl, 60 (16) ( 2021), pp. 8717-8721 DOI: 10.1002/anie.202016589
|
[17] |
Y.P. Xue, C.H. Cao, Y.G. Zheng. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev, 47 (4) ( 2018), pp. 1516-1561 DOI: 10.1039/c7cs00253j
|
[18] |
D.H. Wang, Q. Chen, S.N. Yin, X.W. Ding, Y.C. Zheng, Z. Zhang, et al.. Asymmetric reductive amination of structurally diverse ketones with ammonia using a spectrum-extended amine dehydrogenase. ACS Catal, 11 (22) ( 2021), pp. 14274-14283 DOI: 10.1021/acscatal.1c04324
|
[19] |
M.D. Patil, G. Grogan, A. Bommarius, H. Yun. Recent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral amines. Catalysts, 8 (7) ( 2018), pp. 254-278
|
[20] |
Q. Yang, F. Zhao, N. Zhang, M. Liu, H. Hu, J. Zhang, et al.. Mild dynamic kinetic resolution of amines by coupled visible-light photoredox and enzyme catalysis. Chem Commun, 54 (100) ( 2018), pp. 14065-14068 DOI: 10.1039/c8cc07990k
|
[21] |
Z.Q. Rong, Z.Y. Yu, C. Weng, L.C. Yang, S.C. Lu, Y. Lan, et al.. Dynamic kinetic asymmetric amination of alcohols assisted by microwave: stereoconvergent access to tetralin- and indane-derived chiral amines. ACS Catal, 10 (16) ( 2020), pp. 9464-9475 DOI: 10.1021/acscatal.0c02468
|
[22] |
V. Bhat, E.R. Welin, X. Guo, B.M. Stoltz. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem Rev, 117 (5) ( 2017), pp. 4528-4561 DOI: 10.1021/acs.chemrev.6b00731
|
[23] |
F. Steffen-Munsberg, C. Vickers, H. Kohls, H. Land, H. Mallin, A. Nobili, et al.. Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol Adv, 33 (5) ( 2015), pp. 566-604
|
[24] |
E.Y. Bezsudnova, V.O. Popov, K.M. Boyko. Structural insight into the substrate specificity of PLP fold type IV transaminases. Appl Microbiol Biotechnol, 104 (6) ( 2020), pp. 2343-2357 DOI: 10.1007/s00253-020-10369-6
|
[25] |
L. Zhai, S. Yang, Y. Lai, D. Meng, Q. Tian, Z. Guan, et al.. Effect of residue substitution via site-directed mutagenesis on activity and steroselectivity of transaminase BpTA from Bacillus pumilus W 3 for sitafloxacin hydrate intermediate. Int J Biol Macromol, 137 ( 2019), pp. 732-740
|
[26] |
D.F. Xie, J.X. Yang, C.J. Lv, J.Q. Mei, H.P. Wang, S. Hu, et al.. Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis. J Biotechnol, 293 ( 2019), pp. 8-16
|
[27] |
K. Fesko, K. Steiner, R. Breinbauer, H. Schwab, M. Schürmann, G.A. Strohmeier. Investigation of one-enzyme systems in the ω-transaminase-catalyzed synthesis of chiral amines. J Mol Catal, B Enzym, 96 ( 2013), pp. 103-110
|
[28] |
K. Deepankumar, M. Shon, S.P. Nadarajan, G. Shin, S. Mathew, N. Ayyadurai, et al.. Enhancing thermostability and organic solvent tolerance of ω-transaminase through global incorporation of fluorotyrosine. Adv Synth Catal, 356 (5) ( 2014), pp. 993-998 DOI: 10.1002/adsc.201300706
|
[29] |
Y.Y. Xie, J.G. Wang, L. Yang, W. Wang, Q.H. Liu, H.L. Wang, et al.. The identification and application of a robust ω-transaminase with high tolerance towards substrates and isopropylamine from a directed soil metagenome. Catal Sci Technol, 12 (7) ( 2022), pp. 2162-2175 DOI: 10.1039/d1cy02032c
|
[30] |
F. Guo, P. Berglund. Transaminase biocatalysis: optimization and application. Green Chem, 19 (2) ( 2017), pp. 333-360
|
[31] |
K.S. Siddiqui. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol, 37 (3) ( 2017), pp. 309-322 DOI: 10.3109/07388551.2016.1144045
|
[32] |
S.F. Li, J.Y. Xie, S. Qiu, S.Y. Xu, F. Cheng, Y.J. Wang, et al.. Semirational engineering of an aldo-keto reductase KmAKR for overcoming trade-offs between catalytic activity and thermostability. Biotechnol Bioeng, 118 (11) ( 2021), pp. 4441-4452 DOI: 10.1002/bit.27913
|
[33] |
L. Cui, A.Q. Cui, Q.T. Li, L.Z. Yang, H. Liu, W.G. Shao, et al.. Molecular evolution of an aminotransferase based on substrate-enzyme binding energy analysis for efficient valienamine synthesis. ACS Catal, 12 (21) ( 2022), pp. 13703-13714 DOI: 10.1021/acscatal.2c03784
|
[34] |
S.W. Han, E.S. Park, J.Y. Dong, J.S. Shin. Mechanism-guided engineering of ω-transaminase to accelerate reductive amination of ketones. Adv Synth Catal, 357 (8) ( 2015), pp. 1732-1740 DOI: 10.1002/adsc.201500211
|
[35] |
Q. Meng, N. Capra, C.M. Palacio, E. Lanfranchi, M. Otzen, L.Z. van Schie, et al.. Robust ω-transaminases by computational stabilization of the subunit interface. ACS Catal, 10 (5) ( 2020), pp. 2915-2928 DOI: 10.1021/acscatal.9b05223
|
[36] |
D.F.A.R. Dourado, S. Pohle, A.T.P. Carvalho, D.S. Dheeman, J.M. Caswell, T. Skvortsov, et al.. Rational design of a ( S)-selective-transaminase for asymmetric synthesis of (1 S)-1-(1,1′-biphenyl-2-yl)ethanamine. ACS Catal, 6 (11) ( 2016), pp. 7749-7759 DOI: 10.1021/acscatal.6b02380
|
[37] |
L. Yang, K. Zhang, M. Xu, Y. Xie, X. Meng, H. Wang, et al.. Mechanism-guided computational design of ω-transaminase by reprograming of high-energy-barrier steps. Angew Chem Int Ed Engl, 61 (52) ( 2022), p. e202212555
|
[38] |
C.K. Savile, J.M. Janey, E.C. Mundorff, J.C. Moore, S. Tam, W.R. Jarvis, et al.. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 329 (5989) ( 2010), pp. 305-309 DOI: 10.1126/science.1188934
|
[39] |
S.J. Novick, N. Dellas, R. Garcia, C. Ching, A. Bautista, D. Homan, et al.. Engineering an amine transaminase for the efficient production of a chiral sacubitril precursor. ACS Catal, 11 (6) ( 2021), pp. 3762-3770 DOI: 10.1021/acscatal.0c05450
|
[40] |
A. Łyskowski, C. Gruber, G. Steinkellner, M. Schürmann, H. Schwab, K. Gruber, et al.. Crystal structure of an ( R)-selective ω-transaminase from Aspergillus terreus. PLoS One, 9 (1) ( 2014), p. e87350 DOI: 10.1371/journal.pone.0087350
|
[41] |
J. Huang, D.F. Xie, Y. Feng. Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations. Biochem Biophys Res Commun, 483 (1) ( 2017), pp. 397-402
|
[42] |
J.R. Cao, F.F. Fan, C.J. Lv, H.P. Wang, Y. Li, S. Hu, et al.. Improving the thermostability and activity of transaminase from Aspergillus terreus by charge-charge interaction. Front Chem, 9 ( 2021), Article 664156
|
[43] |
D. Baud, N. Ladkau, T.S. Moody, J.M. Ward, H.C. Hailes. A rapid, sensitive colorimetric assay for the high-throughput screening of transaminases in liquid or solid-phase. Chem Commun, 51 (97) ( 2015), pp. 17225-17228
|
[44] |
F.H. Niesen, H. Berglund, M. Vedadi. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc, 2 (9) ( 2007), pp. 2212-2221 DOI: 10.1038/nprot.2007.321
|
[45] |
M. Purmonen, J. Valjakka, K. Takkinen, T. Laitinen, J. Rouvinen.Molecular dynamics studies on the thermostability of family 11 xylanases. Protein Eng Des Sel, 20 (11) ( 2007), pp. 551-559 DOI: 10.1093/protein/gzm056
|
[46] |
S.G. Yuan, H.C.S. Chan, Z.Q. Hu. Using PyMOL as a platform for computational drug design. WIREs Comput Mol Sci, 7 (2) ( 2017), p. e1298
|
[47] |
A. Parvez, Y. Ravikumar, R. Bisht, J. Yun, Y. Wang, S.P. Chandrika, et al.. Functional and structural roles of the dimer interface in the activity and stability of Clostridium butyricum 1,3-propanediol oxidoreductase. ACS Synth Biol, 11 (3) ( 2022), pp. 1261-1271 DOI: 10.1021/acssynbio.1c00555
|
[48] |
X. Yu, X. Wang, P.C. Engel. The specificity and kinetic mechanism of branched-chain amino acid aminotransferase from Escherichia coli studied with a new improved coupled assay procedure and the enzyme’s potential for biocatalysis. FEBS J, 281 (1) ( 2014), pp. 391-400 DOI: 10.1111/febs.12609
|