[1] |
J.H. O’Keefe, D.S. Bell. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol, 100 (5) (2007), pp. 899-904
|
[2] |
L.Y. Ma, W.W. Chen, R.L. Gao, L.S. Liu, M.L. Zhu, Y.J. Wang, et al. China cardiovascular diseases report 2018:an updated summary. J Geriatr Cardiol, 17 (1) (2020), pp. 1-8
|
[3] |
S. Fischer, U. Schatz, U. Julius. Practical recommendations for the management of hyperlipidemia. Atheroscler Suppl, 18 (2015), pp. 194-198
|
[4] |
M. Demyen, K. Alkhalloufi, N.T. Pyrsopoulos. Lipid-lowering agents and hepatotoxicity. Clin Liver Dis, 17 (4) (2013), pp. 699-714
|
[5] |
K.S. Swanson, G.R. Gibson, R. Hutkins, R.A. Reimer, G. Reid, K. Verbeke, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol, 17 (11) ( 2020), pp. 687-701. DOI: 10.1038/s41575-020-0344-2
|
[6] |
M. Shimizu, M. Hashiguchi, T. Shiga, H.O. Tamura, M. Mochizuki. Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS One, 10 (10) ( 2015), p. e0139795. DOI: 10.1371/journal.pone.0139795
|
[7] |
Y.A. Cho, J. Kim. Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine, 94 (43) (2015), p. e1714
|
[8] |
L. Wang, M.J. Guo, Q. Gao, J.F. Yang, L. Yang, X.L. Pang, et al. The effects of probiotics on total cholesterol: a meta-analysis of randomized controlled trials. Medicine, 97 (5) ( 2018), p. e9679. DOI: 10.1097/md.0000000000009679
|
[9] |
M. Chen, W.L. Guo, Q.Y. Li, J.X. Xu, Y.J. Cao, B. Liu, et al. The protective mechanism of Lactobacillus plantarum FZU3013 against non-alcoholic fatty liver associated with hyperlipidemia in mice fed a high-fat diet. Food Funct, 11 (4) ( 2020), pp. 3316-3331. DOI: 10.1039/c9fo03003d
|
[10] |
Y. Teng, Y. Wang, Y. Tian, Y. Chen, W. Guan, C.h. Piao, et al. Lactobacillus plantarum LP 104 ameliorates hyperlipidemia induced by ampk pathways in c57bl/6n mice fed high-fat diet. J Funct Foods, 64 (2020), p. 103665
|
[11] |
L.S. Niculescu, M.D. Dulceanu, C.S. Stancu, M.G. Carnuta, T. Barbalata, A.V. Sima. Probiotics administration or the high-fat diet arrest modulates micrornas levels in hyperlipidemic hamsters. J Funct Foods, 56 (2019), pp. 295-302
|
[12] |
Y. Wa, B. Yin, Y. He, W. Xi, Y. Huang, C. Wang, et al. Effects of single probiotic-and combined probiotic-fermented milk on lipid metabolism in hyperlipidemic rats. Front Microbiol, 10 (2019), p. 1312
|
[13] |
X. Liang, Z. Zhang, X. Zhou, Y. Lu, R. Li, Z. Yu, et al. Probiotics improved hyperlipidemia in mice induced by a high cholesterol diet via downregulating FXR. Food Funct, 11 (11) ( 2020), pp. 9903-9911. DOI: 10.1039/d0fo02255a
|
[14] |
C.S. Stancu, G.M. Sanda, M. Deleanu, A.V. Sima. Probiotics determine hypolipidemic and antioxidant effects in hyperlipidemic hamsters. Mol Nutr Food Res, 58 (3) ( 2014), pp. 559-568. DOI: 10.1002/mnfr.201300224
|
[15] |
J. Jiang, N. Feng, C. Zhang, F. Liu, J. Zhao, H. Zhang, et al. Lactobacillus reuteri A9 and Lactobacillus mucosae A 13 isolated from Chinese superlongevity people modulate lipid metabolism in a hypercholesterolemia rat model. FEMS Microbiol Lett, 366 (24) (2019), p. fnz254
|
[16] |
M. Zarezadeh, V. Musazadeh, A.H. Faghfouri, N. Roshanravan, P. Dehghan. Probiotics act as a potent intervention in improving lipid profile: an umbrella systematic review and meta-analysis. Crit Rev Food Sci Nutr, 63 (2) ( 2023), pp. 145-158. DOI: 10.1080/10408398.2021.2004578
|
[17] |
J. Jiang, C. Wu, C. Zhang, J. Zhao, L. Yu, H. Zhang, et al. Effects of probiotic supplementation on cardiovascular risk factors in hypercholesterolemia: a systematic review and meta-analysis of randomized clinical trial. J Funct Foods, 74 (2020), p. 104177
|
[18] |
M. Ruscica, C. Pavanello, S. Gandini, C. Macchi, M. Botta, D. Dall’Orto, et al. Nutraceutical approach for the management of cardiovascular risk—a combination containing the probiotic Bifidobacterium longum bb536 and red yeast rice extract: results from a randomized, double-blind, placebo-controlled study. Nutr J, 18 (1) (2019), p. 13
|
[19] |
M.C. Fuentes, T. Lajo, J.M. Carrión, J. Cuñé. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br J Nutr, 109 (10) (2013), pp. 1866-1872
|
[20] |
A. Costabile, I. Buttarazzi, S. Kolida, S. Quercia, J. Baldini, J.R. Swann, et al. An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PLoS One, 12 (12) ( 2017), p. e0187964. DOI: 10.1371/journal.pone.0187964
|
[21] |
M.L. Jones, C.J. Martoni, M. Parent, S. Prakash. Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr, 107 (10) (2012), pp. 1505-1513
|
[22] |
T. Takagi, Y. Naito, S. Kashiwagi, K. Uchiyama, K. Mizushima, K. Kamada, et al. Changes in the gut microbiota are associated with hypertension, hyperlipidemia, and type 2 diabetes mellitus in Japanese subjects. Nutrients, 12 (10) ( 2020), p. 2996. DOI: 10.3390/nu12102996
|
[23] |
H. Liu, L.L. Pan, S. Lv, Q. Yang, H. Zhang, W. Chen, et al. Alterations of gut microbiota and blood lipidome in gestational diabetes mellitus with hyperlipidemia. Front Physiol, 10 (2019), p. 1015
|
[24] |
H. Li, B. Liu, J. Song, Z. An, X. Zeng, J. Li, et al. Characteristics of gut microbiota in patients with hypertension and/or hyperlipidemia: a cross-sectional study on rural residents in Xinxiang county, Henan Province. Microorganisms, 7 (10) (2019), p. 399
|
[25] |
J. Jiang, C. Wu, C. Zhang, Q. Zhang, L. Yu, J. Zhao, et al. Strain-specific effects of Bifidobacterium longum on hypercholesterolemic rats and potential mechanisms. Int J Mol Sci, 22 (3) ( 2021), p. 1305. DOI: 10.3390/ijms22031305
|
[26] |
Y. Lai, C.W. Liu, Y. Yang, Y.C. Hsiao, H. Ru, K. Lu. High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice. Nat Commun, 12 (1) (2021), p. 6000
|
[27] |
J. Lu, L. Zhang, Q. Zhai, J. Zhao, H. Zhang, Y.K. Lee, et al. Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. NPJ Biofilms Microbiomes, 7 (1) (2021), p. 71
|
[28] |
G.M. Douglas, V.J. Maffei, J.R. Zaneveld, S.N. Yurgel, J.R. Brown, C.M. Taylor, et al. PICRUSt 2 for prediction of metagenome functions. Nat Biotechnol, 38 (6) ( 2020), pp. 685-688. DOI: 10.1038/s41587-020-0548-6
|
[29] |
M. Furuhashi. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. Am J Physiol Endocrinol Metab, 319 (5) ( 2020), pp. E827-E834. DOI: 10.1152/ajpendo.00378.2020
|
[30] |
K.A. Greany, J.A. Nettleton, K.E. Wangen, W. Thomas, M.S. Kurzer. Probiotic consumption does not enhance the cholesterol-lowering effect of soy in postmenopausal women. J Nutr, 134 (12) ( 2004), pp. 3277-3283. DOI: 10.1093/jn/134.12.3277
|
[31] |
L.A. Simons, S.G. Amansec, P. Conway. Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol. Nutr Metab Cardiovasc Dis, 16 (8) (2006), pp. 531-535
|
[32] |
A. Ataie-Jafari, B. Larijani, H. Alavi Majd, F. Tahbaz. Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann Nutr Metab, 54 (1) ( 2009), pp. 22-27. DOI: 10.1159/000203284
|
[33] |
S. Rerksuppaphol, L. Rerksuppaphol. A randomized double-blind controlled trial of Lactobacillus acidophilus plus Bifidobacterium bifidum versus placebo in patients with hypercholesterolemia. J Clin Diagn Res, 9 (3) (2015), pp. KC01-KC04
|
[34] |
Z. Wang, D. Koonen, M. Hofker, J. Fu. Gut microbiome and lipid metabolism: from associations to mechanisms. Curr Opin Lipidol, 27 (3) (2016), pp. 216-224
|
[35] |
Y. Shao, D. Huo, Q. Peng, Y. Pan, S. Jiang, B. Liu, et al. Lactobacillus plantarum HNU082-derived improvements in the intestinal microbiome prevent the development of hyperlipidaemia. Food Funct, 8 (12) (2017), pp. 4508-4516
|
[36] |
A. Ahmad, W. Yang, G. Chen, M. Shafiq, S. Javed, S.S. Ali Zaidi, et al. Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS One, 14 (12) ( 2019), p. e0226372. DOI: 10.1371/journal.pone.0226372
|
[37] |
Y. Sanz, A. Santacruz, P. Gauffin. Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc, 69 (3) (2010), pp. 434-441
|
[38] |
J. Tam, T. Hoffmann, S. Fischer, S. Bornstein, J. Gräßler, B. Noack. Obesity alters composition and diversity of the oral microbiota in patients with type 2 diabetes mellitus independently of glycemic control. PLoS One, 13 (10) ( 2018), p. e0204724. DOI: 10.1371/journal.pone.0204724
|
[39] |
A. Andoh, A. Nishida, K. Takahashi, O. Inatomi, H. Imaeda, S. Bamba, et al. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J Clin Biochem Nutr, 59 (1) ( 2016), pp. 65-70. DOI: 10.3164/jcbn.15-152
|
[40] |
Q. Zhang, R. Zou, M. Guo, M. Duan, Q. Li, H. Zheng. Comparison of gut microbiota between adults with autism spectrum disorder and obese adults. PeerJ, 9 ( 2021), p. e10946. DOI: 10.7717/peerj.10946
|
[41] |
M.C. Martínez-Cuesta, R. Del Campo, M. Garriga-García, C. Peláez, T. Requena. Taxonomic characterization and short-chain fatty acids production of the obese microbiota. Front Cell Infect Microbiol, 11 (2021), p. 598093
|
[42] |
B. Lelouvier, F. Servant, S. Païssé, A.C. Brunet, S. Benyahya, M. Serino, et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: a pilot analysis. Hepatology, 64 (6) ( 2016), pp. 2015-2027. DOI: 10.1002/hep.28829
|
[43] |
W. Zhang-Sun, F. Tercé, R. Burcelin, A. Novikov, M. Serino, M. Caroff. Structure function relationships in three lipids A from the Ralstonia genus rising in obese patients. Biochimie, 159 (2019), pp. 72-80
|
[44] |
S.D. Udayappan, P. Kovatcheva-Datchary, G.J. Bakker, S.R. Havik, H. Herrema, P.D. Cani, et al. Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS One, 12 (11) ( 2017), p. e0181693. DOI: 10.1371/journal.pone.0181693
|
[45] |
M. Yang, Y. Yin, F. Wang, H. Zhang, X. Ma, Y. Yin, et al. Supplementation with Lycium barbarum polysaccharides reduce obesity in high-fat diet-fed mice by modulation of gut microbiota. Front Microbiol, 12 (2021), p. 719967
|
[46] |
L. Boesmans, M. Valles-Colomer, J. Wang, V. Eeckhaut, G. Falony, R. Ducatelle, et al. Butyrate producers as potential next-generation probiotics: safety assessment of the administration of Butyricicoccus pullicaecorum to healthy volunteers. mSystems, 3 (6) (2018), p. e00094-18
|
[47] |
X. Liu, B. Mao, J. Gu, J. Wu, S. Cui, G. Wang, et al. Blautia—a new functional genus with potential probiotic properties?. Gut Microbes, 13 (1) (2021), pp. 1-21
|
[48] |
N. Ozato, S. Saito, T. Yamaguchi, M. Katashima, I. Tokuda, K. Sawada, et al. Blautia genus associated with visceral fat accumulation in adults 20-76 years of age. NPJ Biofilms Microbiomes, 5 (1) (2019), p. 28
|
[49] |
K. Hosomi, M. Saito, J. Park, H. Murakami, N. Shibata, M. Ando, et al. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat Commun, 13 (1) (2022), p. 4477
|
[50] |
H. Schellekens, C. Torres-Fuentes, M. van de Wouw, C.M. Long-Smith, A. Mitchell, C. Strain, et al. Bifidobacterium longum counters the effects of obesity: partial successful translation from rodent to human. EBioMedicine, 63 (2021), p. 103176
|
[51] |
J. Wu, K. Wang, X. Wang, Y. Pang, C. Jiang. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell, 12 (5) ( 2021), pp. 360-373. DOI: 10.1007/s13238-020-00814-7
|
[52] |
|
[53] |
X.Y. Li, Z.X. Zhao, M. Huang, R. Feng, C.Y. He, C. Ma, et al. Effect of Berberine on promoting the excretion of cholesterol in high-fat diet-induced hyperlipidemic hamsters. J Transl Med, 13 (1) (2015), p. 278
|
[54] |
A. Molinaro, A. Wahlström, H.U. Marschall. Role of bile acids in metabolic control. Trends Endocrinol Metab, 29 (1) (2018), pp. 31-41
|
[55] |
A. Wahlström, S.I. Sayin, H.U. Marschall, F. Bäckhed. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab, 24 (1) (2016), pp. 41-50
|
[56] |
C. Revilla-Monsalve, I. Zendejas-Ruiz, S. Islas-Andrade, A. Báez-Saldaña, M.A. Palomino-Garibay, P.M. Hernández-Quiróz, et al. Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in nondiabetic subjects with hypertriglyceridemia. Biomed Pharmacother, 60 (4) (2006), pp. 182-185
|
[57] |
H. Chen, L. Chen, D.D. Tang, D.Q. Chen, H. Miao, Y.Y. Zhao, et al. Metabolomics reveals hyperlipidemic biomarkers and antihyperlipidemic effect of poria cocos. Curr Metabolomics, 4 (2) ( 2016), pp. 104-115. DOI: 10.2174/2213235X04999160603155430
|
[58] |
N. Jing, X. Liu, M. Jin, X. Yang, X. Hu, C. Li, et al. Fubrick tea attenuates high-fat diet induced fat deposition and metabolic disorder by regulating gut microbiota and caffeine metabolism. Food Funct, 11 (8) ( 2020), pp. 6971-6986. DOI: 10.1039/d0fo01282c
|
[59] |
N. Ma, X.W. Liu, X.J. Kong, S.H. Li, Z.H. Jiao, Z. Qin, et al. Aspirin eugenol ester regulates cecal contents metabolomic profile and microbiota in an animal model of hyperlipidemia. BMC Vet Res, 14 (1) (2018), p. 405
|
[60] |
S. Cussotto, I. Delgado, A. Anesi, S. Dexpert, A. Aubert, C. Beau, et al. Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front Immunol, 11 (2020), p. 557
|
[61] |
K. Han, J. Ma, J. Dou, D. Hao, W. Zhu, X. Yu, et al. A clinical trial of the effects of a dietary pattern on health metrics and fecal metabolites in volunteers with risk of cardiovascular disease. Front Nutr, 9 (2022), p. 853365
|
[62] |
L. Yang, J.H. Chen, T. Xu, A.S. Zhou, H.K. Yang. Rice protein improves oxidative stress by regulating glutathione metabolism and attenuating oxidative damage to lipids and proteins in rats. Life Sci, 91 (11-12) (2012), pp. 389-394
|
[63] |
N. Ma, I. Karam, X.W. Liu, X.J. Kong, Z. Qin, S.H. Li, et al. UPLC-Q-TOF/MS-based urine and plasma metabonomics study on the ameliorative effects of aspirin eugenol ester in hyperlipidemia rats. Toxicol Appl Pharmacol, 332 (2017), pp. 40-51
|
[64] |
X.C. Lv, M. Chen, Z.R. Huang, W.L. Guo, L.Z. Ai, W.D. Bai, et al. Potential mechanisms underlying the ameliorative effect of Lactobacillus paracasei FZU103 on the lipid metabolism in hyperlipidemic mice fed a high-fat diet. Food Res Int, 139 (2021), p. 109956
|