长双歧杆菌CCFM1077通过调节肠道微生物组成和粪便代谢物来减轻高脂血症——一项随机、双盲、安慰剂对照的临床试验

储传奇, 姜金池, 于雷雷, 李易文, 张松礼, 周巍, 王群, 赵建新, 翟齐啸, 田丰伟, 陈卫

工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 193-205.

PDF(4247 KB)
PDF(4247 KB)
工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 193-205. DOI: 10.1016/j.eng.2023.04.010
研究论文
Article

长双歧杆菌CCFM1077通过调节肠道微生物组成和粪便代谢物来减轻高脂血症——一项随机、双盲、安慰剂对照的临床试验

作者信息 +

Bifidobacterium longum CCFM1077 Attenuates Hyperlipidemia by Modulating the Gut Microbiota Composition and Fecal Metabolites: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

Author information +
History +

摘要

越来越多的研究表明肠道菌群及其代谢物在高脂血症的发展中至关重要。长双歧杆菌(Bifidobacterium longum, B. longum)CCFM1077已在动物中显示出降脂作用。本研究旨在评估B. longum CCFM1077在降低高脂血症患者血脂水平方面的潜力,并调查该菌对患者的血清脂质异常、肠道菌群和粪便代谢物的影响。本研究是一个为期六周的随机、双盲、安慰剂对照的试验。高脂血症患者(N = 62)被随机分配接受安慰剂(N = 31)或B. longum CCFM1077 [每日1.0×1010个菌落形成单位(CFU);N = 31]。在基线和干预终点检查了包括总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、总甘油三酯(TG)和高密度脂蛋白胆固醇(HDL-C)在内的血清脂质水平。肠道菌群组成和多样性的变化是基于16S核糖体RNA(rRNA)V3~V4区域的测序在干预期结束时进行。利用超高效液相色谱(UPLC)-Q-Exactive Orbitrap/质谱仪进行了粪便的非靶向代谢组学分析。口服B. longum CCFM1077六周显著降低了高脂血症患者的血清TC(p < 0.01)和LDL-C(p < 0.01)水平。B. longum CCFM1077的治疗显著增加了肠道菌群的多样性和抗肥胖相关属的相对丰度,包括LactobacillusButyricicoccus、BifidobacteriumBlautia,而减少了与肥胖相关属的相对丰度,包括AlistipesMegamonasCatenibacterium。此外,一些关键代谢产物[胆汁酸(BA)、生物素和咖啡因]及其相应的代谢途径(主要胆汁酸生物合成,牛磺酸和次牛磺酸代谢,生物素代谢,嘌呤代谢和咖啡因代谢)被B. longum CCFM1077富集,因此可能降低血脂水平。B. longum CCFM1077是一种具有降低高脂血症患者血清TC和LDL-C水平潜力的益生菌菌株。其潜在机制可能与抗肥胖相关属和粪便代谢物的增加有关。这些发现为将来在管理高脂血症患者中应用益生菌奠定了基础。

Abstract

An increasing number of studies have indicated that gut microbiota and its metabolites are crucial in the development of hyperlipidemia. Bifidobacterium longum (B. longum) CCFM1077 has been shown to have lipid-lowering effects in animals. This study aimed to evaluate the potential of B. longum CCFM1077 in lowering the lipid levels in patients with hyperlipidemia and investigate the effect of this bacterium on serum lipid abnormalities, gut microbiota, and fecal metabolites in these patients. This study was a six-week, randomized, double-blind, and placebo-controlled pilot clinical trial. Subjects with hyperlipidemia (N = 62) were randomly assigned to receive placebo (N = 31) or B. longum CCFM1077 (1 × 1010 colony-forming units (CFUs) per day; N = 31). Serum lipid levels including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), total triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) were examined at the baseline and interventional endpoints. Changes in the gut microbiota composition and diversity were measured based on 16S ribosomal RNA (rRNA) sequencing of the V3-V4 region at the end of the intervention period. Non-targeted metabolomics of the feces was performed using ultra-performance liquid chromatography (UPLC)-Q-Exactive Orbitrap/mass spectrometer. Oral administration of B. longum CCFM1077 for six weeks significantly decreased the serum levels of TC (p < 0.01) and LDL-C (p < 0.01) in patients with hyperlipidemia. B. longum CCFM1077 treatment markedly increased gut microbiota diversity and the relative abundance of anti-obesity-related genera, including Lactobacillus, Butyricicoccus, Bifidobacterium, and Blautia, whereas it decreased the relative abundance of obesity-related genera, including Alistipes, Megamonas, and Catenibacterium. Additionally, some key metabolites (bile acids (BAs), biotin, and caffeine) and their corresponding metabolic pathways (primary BA biosynthesis, and taurine and hypotaurine, biotin, purine, and caffeine metabolisms) were enriched by B. longum CCFM1077, and thus it may lower lipid levels. B. longum CCFM1077 is a probiotic strain with the potential to lower serum TC and LDL-C levels patients with hyperlipidemia. The underlying mechanism may be related to the increased abundance of anti-obesity-related genera and fecal metabolites. These findings provide a foundation for future clinical applications of lipid-lowering probiotics in managing individuals with hyperlipidemia.

关键词

益生菌 / 长双歧杆菌 / 高脂血症 / 肠道菌群 / 粪便代谢物 / 胆汁酸

Keywords

Probiotics / Bifidobacterium longum / Hyperlipidemia / Gut microbiota / Fecal metabolites / Bile acid (BA)

引用本文

导出引用
储传奇, 姜金池, 于雷雷. 长双歧杆菌CCFM1077通过调节肠道微生物组成和粪便代谢物来减轻高脂血症——一项随机、双盲、安慰剂对照的临床试验. Engineering. 2023, 28(9): 193-205 https://doi.org/10.1016/j.eng.2023.04.010

参考文献

[1]
J.H. O’Keefe, D.S. Bell. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol, 100 (5) (2007), pp. 899-904
[2]
L.Y. Ma, W.W. Chen, R.L. Gao, L.S. Liu, M.L. Zhu, Y.J. Wang, et al. China cardiovascular diseases report 2018:an updated summary. J Geriatr Cardiol, 17 (1) (2020), pp. 1-8
[3]
S. Fischer, U. Schatz, U. Julius. Practical recommendations for the management of hyperlipidemia. Atheroscler Suppl, 18 (2015), pp. 194-198
[4]
M. Demyen, K. Alkhalloufi, N.T. Pyrsopoulos. Lipid-lowering agents and hepatotoxicity. Clin Liver Dis, 17 (4) (2013), pp. 699-714
[5]
K.S. Swanson, G.R. Gibson, R. Hutkins, R.A. Reimer, G. Reid, K. Verbeke, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol, 17 (11) (2020), pp. 687-701. DOI: 10.1038/s41575-020-0344-2
[6]
M. Shimizu, M. Hashiguchi, T. Shiga, H.O. Tamura, M. Mochizuki. Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS One, 10 (10) (2015), p. e0139795. DOI: 10.1371/journal.pone.0139795
[7]
Y.A. Cho, J. Kim. Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine, 94 (43) (2015), p. e1714
[8]
L. Wang, M.J. Guo, Q. Gao, J.F. Yang, L. Yang, X.L. Pang, et al. The effects of probiotics on total cholesterol: a meta-analysis of randomized controlled trials. Medicine, 97 (5) (2018), p. e9679. DOI: 10.1097/md.0000000000009679
[9]
M. Chen, W.L. Guo, Q.Y. Li, J.X. Xu, Y.J. Cao, B. Liu, et al. The protective mechanism of Lactobacillus plantarum FZU3013 against non-alcoholic fatty liver associated with hyperlipidemia in mice fed a high-fat diet. Food Funct, 11 (4) (2020), pp. 3316-3331. DOI: 10.1039/c9fo03003d
[10]
Y. Teng, Y. Wang, Y. Tian, Y. Chen, W. Guan, C.h. Piao, et al. Lactobacillus plantarum LP 104 ameliorates hyperlipidemia induced by ampk pathways in c57bl/6n mice fed high-fat diet. J Funct Foods, 64 (2020), p. 103665
[11]
L.S. Niculescu, M.D. Dulceanu, C.S. Stancu, M.G. Carnuta, T. Barbalata, A.V. Sima. Probiotics administration or the high-fat diet arrest modulates micrornas levels in hyperlipidemic hamsters. J Funct Foods, 56 (2019), pp. 295-302
[12]
Y. Wa, B. Yin, Y. He, W. Xi, Y. Huang, C. Wang, et al. Effects of single probiotic-and combined probiotic-fermented milk on lipid metabolism in hyperlipidemic rats. Front Microbiol, 10 (2019), p. 1312
[13]
X. Liang, Z. Zhang, X. Zhou, Y. Lu, R. Li, Z. Yu, et al. Probiotics improved hyperlipidemia in mice induced by a high cholesterol diet via downregulating FXR. Food Funct, 11 (11) (2020), pp. 9903-9911. DOI: 10.1039/d0fo02255a
[14]
C.S. Stancu, G.M. Sanda, M. Deleanu, A.V. Sima. Probiotics determine hypolipidemic and antioxidant effects in hyperlipidemic hamsters. Mol Nutr Food Res, 58 (3) (2014), pp. 559-568. DOI: 10.1002/mnfr.201300224
[15]
J. Jiang, N. Feng, C. Zhang, F. Liu, J. Zhao, H. Zhang, et al. Lactobacillus reuteri A9 and Lactobacillus mucosae A 13 isolated from Chinese superlongevity people modulate lipid metabolism in a hypercholesterolemia rat model. FEMS Microbiol Lett, 366 (24) (2019), p. fnz254
[16]
M. Zarezadeh, V. Musazadeh, A.H. Faghfouri, N. Roshanravan, P. Dehghan. Probiotics act as a potent intervention in improving lipid profile: an umbrella systematic review and meta-analysis. Crit Rev Food Sci Nutr, 63 (2) (2023), pp. 145-158. DOI: 10.1080/10408398.2021.2004578
[17]
J. Jiang, C. Wu, C. Zhang, J. Zhao, L. Yu, H. Zhang, et al. Effects of probiotic supplementation on cardiovascular risk factors in hypercholesterolemia: a systematic review and meta-analysis of randomized clinical trial. J Funct Foods, 74 (2020), p. 104177
[18]
M. Ruscica, C. Pavanello, S. Gandini, C. Macchi, M. Botta, D. Dall’Orto, et al. Nutraceutical approach for the management of cardiovascular risk—a combination containing the probiotic Bifidobacterium longum bb536 and red yeast rice extract: results from a randomized, double-blind, placebo-controlled study. Nutr J, 18 (1) (2019), p. 13
[19]
M.C. Fuentes, T. Lajo, J.M. Carrión, J. Cuñé. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br J Nutr, 109 (10) (2013), pp. 1866-1872
[20]
A. Costabile, I. Buttarazzi, S. Kolida, S. Quercia, J. Baldini, J.R. Swann, et al. An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PLoS One, 12 (12) (2017), p. e0187964. DOI: 10.1371/journal.pone.0187964
[21]
M.L. Jones, C.J. Martoni, M. Parent, S. Prakash. Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr, 107 (10) (2012), pp. 1505-1513
[22]
T. Takagi, Y. Naito, S. Kashiwagi, K. Uchiyama, K. Mizushima, K. Kamada, et al. Changes in the gut microbiota are associated with hypertension, hyperlipidemia, and type 2 diabetes mellitus in Japanese subjects. Nutrients, 12 (10) (2020), p. 2996. DOI: 10.3390/nu12102996
[23]
H. Liu, L.L. Pan, S. Lv, Q. Yang, H. Zhang, W. Chen, et al. Alterations of gut microbiota and blood lipidome in gestational diabetes mellitus with hyperlipidemia. Front Physiol, 10 (2019), p. 1015
[24]
H. Li, B. Liu, J. Song, Z. An, X. Zeng, J. Li, et al. Characteristics of gut microbiota in patients with hypertension and/or hyperlipidemia: a cross-sectional study on rural residents in Xinxiang county, Henan Province. Microorganisms, 7 (10) (2019), p. 399
[25]
J. Jiang, C. Wu, C. Zhang, Q. Zhang, L. Yu, J. Zhao, et al. Strain-specific effects of Bifidobacterium longum on hypercholesterolemic rats and potential mechanisms. Int J Mol Sci, 22 (3) (2021), p. 1305. DOI: 10.3390/ijms22031305
[26]
Y. Lai, C.W. Liu, Y. Yang, Y.C. Hsiao, H. Ru, K. Lu. High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice. Nat Commun, 12 (1) (2021), p. 6000
[27]
J. Lu, L. Zhang, Q. Zhai, J. Zhao, H. Zhang, Y.K. Lee, et al. Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. NPJ Biofilms Microbiomes, 7 (1) (2021), p. 71
[28]
G.M. Douglas, V.J. Maffei, J.R. Zaneveld, S.N. Yurgel, J.R. Brown, C.M. Taylor, et al. PICRUSt 2 for prediction of metagenome functions. Nat Biotechnol, 38 (6) (2020), pp. 685-688. DOI: 10.1038/s41587-020-0548-6
[29]
M. Furuhashi. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. Am J Physiol Endocrinol Metab, 319 (5) (2020), pp. E827-E834. DOI: 10.1152/ajpendo.00378.2020
[30]
K.A. Greany, J.A. Nettleton, K.E. Wangen, W. Thomas, M.S. Kurzer. Probiotic consumption does not enhance the cholesterol-lowering effect of soy in postmenopausal women. J Nutr, 134 (12) (2004), pp. 3277-3283. DOI: 10.1093/jn/134.12.3277
[31]
L.A. Simons, S.G. Amansec, P. Conway. Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol. Nutr Metab Cardiovasc Dis, 16 (8) (2006), pp. 531-535
[32]
A. Ataie-Jafari, B. Larijani, H. Alavi Majd, F. Tahbaz. Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann Nutr Metab, 54 (1) (2009), pp. 22-27. DOI: 10.1159/000203284
[33]
S. Rerksuppaphol, L. Rerksuppaphol. A randomized double-blind controlled trial of Lactobacillus acidophilus plus Bifidobacterium bifidum versus placebo in patients with hypercholesterolemia. J Clin Diagn Res, 9 (3) (2015), pp. KC01-KC04
[34]
Z. Wang, D. Koonen, M. Hofker, J. Fu. Gut microbiome and lipid metabolism: from associations to mechanisms. Curr Opin Lipidol, 27 (3) (2016), pp. 216-224
[35]
Y. Shao, D. Huo, Q. Peng, Y. Pan, S. Jiang, B. Liu, et al. Lactobacillus plantarum HNU082-derived improvements in the intestinal microbiome prevent the development of hyperlipidaemia. Food Funct, 8 (12) (2017), pp. 4508-4516
[36]
A. Ahmad, W. Yang, G. Chen, M. Shafiq, S. Javed, S.S. Ali Zaidi, et al. Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS One, 14 (12) (2019), p. e0226372. DOI: 10.1371/journal.pone.0226372
[37]
Y. Sanz, A. Santacruz, P. Gauffin. Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc, 69 (3) (2010), pp. 434-441
[38]
J. Tam, T. Hoffmann, S. Fischer, S. Bornstein, J. Gräßler, B. Noack. Obesity alters composition and diversity of the oral microbiota in patients with type 2 diabetes mellitus independently of glycemic control. PLoS One, 13 (10) (2018), p. e0204724. DOI: 10.1371/journal.pone.0204724
[39]
A. Andoh, A. Nishida, K. Takahashi, O. Inatomi, H. Imaeda, S. Bamba, et al. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J Clin Biochem Nutr, 59 (1) (2016), pp. 65-70. DOI: 10.3164/jcbn.15-152
[40]
Q. Zhang, R. Zou, M. Guo, M. Duan, Q. Li, H. Zheng. Comparison of gut microbiota between adults with autism spectrum disorder and obese adults. PeerJ, 9 (2021), p. e10946. DOI: 10.7717/peerj.10946
[41]
M.C. Martínez-Cuesta, R. Del Campo, M. Garriga-García, C. Peláez, T. Requena. Taxonomic characterization and short-chain fatty acids production of the obese microbiota. Front Cell Infect Microbiol, 11 (2021), p. 598093
[42]
B. Lelouvier, F. Servant, S. Païssé, A.C. Brunet, S. Benyahya, M. Serino, et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: a pilot analysis. Hepatology, 64 (6) (2016), pp. 2015-2027. DOI: 10.1002/hep.28829
[43]
W. Zhang-Sun, F. Tercé, R. Burcelin, A. Novikov, M. Serino, M. Caroff. Structure function relationships in three lipids A from the Ralstonia genus rising in obese patients. Biochimie, 159 (2019), pp. 72-80
[44]
S.D. Udayappan, P. Kovatcheva-Datchary, G.J. Bakker, S.R. Havik, H. Herrema, P.D. Cani, et al. Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS One, 12 (11) (2017), p. e0181693. DOI: 10.1371/journal.pone.0181693
[45]
M. Yang, Y. Yin, F. Wang, H. Zhang, X. Ma, Y. Yin, et al. Supplementation with Lycium barbarum polysaccharides reduce obesity in high-fat diet-fed mice by modulation of gut microbiota. Front Microbiol, 12 (2021), p. 719967
[46]
L. Boesmans, M. Valles-Colomer, J. Wang, V. Eeckhaut, G. Falony, R. Ducatelle, et al. Butyrate producers as potential next-generation probiotics: safety assessment of the administration of Butyricicoccus pullicaecorum to healthy volunteers. mSystems, 3 (6) (2018), p. e00094-18
[47]
X. Liu, B. Mao, J. Gu, J. Wu, S. Cui, G. Wang, et al. Blautia—a new functional genus with potential probiotic properties?. Gut Microbes, 13 (1) (2021), pp. 1-21
[48]
N. Ozato, S. Saito, T. Yamaguchi, M. Katashima, I. Tokuda, K. Sawada, et al. Blautia genus associated with visceral fat accumulation in adults 20-76 years of age. NPJ Biofilms Microbiomes, 5 (1) (2019), p. 28
[49]
K. Hosomi, M. Saito, J. Park, H. Murakami, N. Shibata, M. Ando, et al. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat Commun, 13 (1) (2022), p. 4477
[50]
H. Schellekens, C. Torres-Fuentes, M. van de Wouw, C.M. Long-Smith, A. Mitchell, C. Strain, et al. Bifidobacterium longum counters the effects of obesity: partial successful translation from rodent to human. EBioMedicine, 63 (2021), p. 103176
[51]
J. Wu, K. Wang, X. Wang, Y. Pang, C. Jiang. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell, 12 (5) (2021), pp. 360-373. DOI: 10.1007/s13238-020-00814-7
[52]
A. Perino, K. Schoonjans. Metabolic messengers: bile acids. Nat Metab, 4 (4) (2022), pp. 416-423. DOI: 10.1038/s42255-022-00559-z
[53]
X.Y. Li, Z.X. Zhao, M. Huang, R. Feng, C.Y. He, C. Ma, et al. Effect of Berberine on promoting the excretion of cholesterol in high-fat diet-induced hyperlipidemic hamsters. J Transl Med, 13 (1) (2015), p. 278
[54]
A. Molinaro, A. Wahlström, H.U. Marschall. Role of bile acids in metabolic control. Trends Endocrinol Metab, 29 (1) (2018), pp. 31-41
[55]
A. Wahlström, S.I. Sayin, H.U. Marschall, F. Bäckhed. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab, 24 (1) (2016), pp. 41-50
[56]
C. Revilla-Monsalve, I. Zendejas-Ruiz, S. Islas-Andrade, A. Báez-Saldaña, M.A. Palomino-Garibay, P.M. Hernández-Quiróz, et al. Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in nondiabetic subjects with hypertriglyceridemia. Biomed Pharmacother, 60 (4) (2006), pp. 182-185
[57]
H. Chen, L. Chen, D.D. Tang, D.Q. Chen, H. Miao, Y.Y. Zhao, et al. Metabolomics reveals hyperlipidemic biomarkers and antihyperlipidemic effect of poria cocos. Curr Metabolomics, 4 (2) (2016), pp. 104-115. DOI: 10.2174/2213235X04999160603155430
[58]
N. Jing, X. Liu, M. Jin, X. Yang, X. Hu, C. Li, et al. Fubrick tea attenuates high-fat diet induced fat deposition and metabolic disorder by regulating gut microbiota and caffeine metabolism. Food Funct, 11 (8) (2020), pp. 6971-6986. DOI: 10.1039/d0fo01282c
[59]
N. Ma, X.W. Liu, X.J. Kong, S.H. Li, Z.H. Jiao, Z. Qin, et al. Aspirin eugenol ester regulates cecal contents metabolomic profile and microbiota in an animal model of hyperlipidemia. BMC Vet Res, 14 (1) (2018), p. 405
[60]
S. Cussotto, I. Delgado, A. Anesi, S. Dexpert, A. Aubert, C. Beau, et al. Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front Immunol, 11 (2020), p. 557
[61]
K. Han, J. Ma, J. Dou, D. Hao, W. Zhu, X. Yu, et al. A clinical trial of the effects of a dietary pattern on health metrics and fecal metabolites in volunteers with risk of cardiovascular disease. Front Nutr, 9 (2022), p. 853365
[62]
L. Yang, J.H. Chen, T. Xu, A.S. Zhou, H.K. Yang. Rice protein improves oxidative stress by regulating glutathione metabolism and attenuating oxidative damage to lipids and proteins in rats. Life Sci, 91 (11-12) (2012), pp. 389-394
[63]
N. Ma, I. Karam, X.W. Liu, X.J. Kong, Z. Qin, S.H. Li, et al. UPLC-Q-TOF/MS-based urine and plasma metabonomics study on the ameliorative effects of aspirin eugenol ester in hyperlipidemia rats. Toxicol Appl Pharmacol, 332 (2017), pp. 40-51
[64]
X.C. Lv, M. Chen, Z.R. Huang, W.L. Guo, L.Z. Ai, W.D. Bai, et al. Potential mechanisms underlying the ameliorative effect of Lactobacillus paracasei FZU103 on the lipid metabolism in hyperlipidemic mice fed a high-fat diet. Food Res Int, 139 (2021), p. 109956
PDF(4247 KB)

Accesses

Citation

Detail

段落导航
相关文章

/