[1] |
Z. Niu, X.S. Shen, Q. Zhang, Y. Tang. Space-air-ground integrated vehicular network for connected and automated vehicles: challenges and solutions. Intell Converg Netw, 1 (2) (2020), pp. 142-169
|
[2] |
M. Xu, W.C. Ng, W.Y.B. Lim, J. Kang, Z. Xiong, D. Niyato, et al.. A full dive into realizing the edge-enabled metaverse: visions, enabling technologies, and challenges. IEEE Commun Surv Tutor, 25 (1) (2023), pp. 656-700
|
[3] |
H. Chai, S. Leng, Y. Chen, K. Zhang. A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in Internet of Vehicles. IEEE Trans Intell Transp Syst, 22 (7) (2021), pp. 3975-3986
|
[4] |
W. Wang, F. Xia, H. Nie, Z. Chen, Z. Gong, X. Kong, et al.. Vehicle trajectory clustering based on dynamic representation learning of Internet of Vehicles. IEEE Trans Intell Transp Syst, 22 (6) (2021), pp. 3567-3576
|
[5] |
Z. Wang, Y. Shi, Y. Zhou, H. Zhou, N. Zhang. Wireless-powered over-the-air computation in intelligent reflecting surface-aided IoT networks. IEEE Internet Things J, 8 (3) (2021), pp. 1585-1598
|
[6] |
M. Di Renzo, A. Zappone, M. Debbah, M.S. Alouini, C. Yuen, J. de Rosny, et al.. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J Sel Areas Commun, 38 (11) (2020), pp. 2450-2525
|
[7] |
Du H, Wang J, Niyato D, Kang J, Xiong Z, Zhang J, et al. Semantic communications for wireless sensing: RIS-aided encoding and selfsupervised decoding. 2022. arXiv:2211.12727v1.
|
[8] |
Yuan X, Chen J, Zhang N, Zhu C, Ye Q, Shen XS. FedTSE:low-cost federated learning for privacy-preserved traffic state estimation in IoV. In: Proceedings of 2022 IEEE Conference on Computer Communications Workshops, 2022 May 2-5, New York City, NY, USA; 2022.
|
[9] |
D.C. Nguyen, P. Cheng, M. Ding, D. Lopez-Perez, P.N. Pathirana, J. Li, et al.. Enabling AI in future wireless networks: a data life cycle perspective. IEEE Commun Surv Tutor, 23 (1) (2021), pp. 553-595
|
[10] |
W. Ni, Y. Liu, Y.C. Eldar, Z. Yang, H. Tian. STAR-RIS integrated nonorthogonal multiple access and over-the air federated learning: framework, analysis, and optimization. IEEE Internet Things J, 9 (18) (2022), pp. 17136-17156
|
[11] |
J. Feng, W. Zhang, Q. Pei, J. Wu, X. Lin. Heterogeneous computation and resource allocation for wireless powered federated edge learning systems. IEEE Trans Commun, 70 (5) (2022), pp. 3220-3233
|
[12] |
C.L.P. Chen, Z. Liu. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans Neural Netw Learn Syst, 29 (1) (2018), pp. 10-24
|
[13] |
X. Yuan, J. Chen, N. Zhang, X. Fang, D. Liu. A federated bidirectional connection broad learning scheme for secure data sharing in Internet of Vehicles. China Commun, 18 (7) (2021), pp. 117-133
|
[14] |
Yu H, Liu Z, Liu Y, Chen T, Cong M, Weng X, et al. A fairness-aware incentive scheme for federated learning. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society; 2020 Feb 7-8; New York City, NY, USA; 2020.
|
[15] |
B. Yang, X. Cao, C. Huang, C. Yuen, M. Di Renzo, L.G. Yong, et al.. Federated spectrum learning for reconfigurable intelligent surfaces-aided wireless edge networks. IEEE Trans Wirel Commun, 21 (11) (2022), pp. 9610-9626
|
[16] |
L. Li, D. Ma, H. Ren, P. Wang, W. Lin, Z. Han. Towards energy-efficient multiple IRSs: federated learning based configuration optimization. IEEE Trans Green Commun Netw, 6 (2) (2022), pp. 755-765
|
[17] |
Z. Wang, J. Qiu, Y. Zhou, Y. Shi, L. Fu, W. Chen, et al.. Federated learning via intelligent reflecting surface. IEEE Trans Wirel Commun, 21 (2) (2022), pp. 808-822
|
[18] |
S. Huang, S. Wang, R. Wang, M. Wen, K. Huang. Reconfigurable intelligent surface assisted mobile edge computing with heterogeneous learning tasks. IEEE Trans Cogn Commun Netw, 7 (2) (2021), pp. 369-382
|
[19] |
L. Liu, M. Zhao, M. Yu, M.A. Jan, D. Lan, A. Taherkordi. Mobility-aware multi-hop task offloading for autonomous driving in vehicular edge computing and networks. IEEE Trans Intell Transp Syst, 24 (2) (2023), pp. 2169-2182
|
[20] |
R. Mao, R. Cui, C.L.P. Chen. Broad learning with reinforcement learning signal feedback: theory and applications. IEEE Trans Neural Netw Learn Syst, 33 (7) (2022), pp. 2952-2964
|
[21] |
X. Peng, K. Ota, M. Dong. A broad learningdriven network traffic analysis system based on fog computing paradigm. China Commun, 17 (2) (2020), pp. 1-13
|
[22] |
L. Guo, R. Li, B. Jiang. An ensemble broad learning scheme for semisupervised vehicle type classification. IEEE Trans Neural Netw Learn Syst, 32 (12) (2021), pp. 5287-5297
|
[23] |
X. Wei, J. Zhao, L. Zhou, Y. Qian. Broad reinforcement learning for supporting fast autonomous IoT. IEEE Internet Things J, 7 (8) (2020), pp. 7010-7020
|
[24] |
Y. Liu, J.J.Q. Yu, J. Kang, D. Niyato, S. Zhang. Privacy-preserving traffic flow prediction: a federated learning approach. IEEE Internet Things J, 7 (8) (2020), pp. 7751-7763
|
[25] |
Z. Du, C. Wu, T. Yoshinaga, K.L.A. Yau, Y. Ji, J. Li. Federated learning for vehicular Internet of Things: recent advances and open issues. IEEE Open J Comput Soc, 1 (2020), pp. 45-61
|
[26] |
Y. Lu, X. Huang, K. Zhang, S. Maharjan, Y. Zhang. Blockchain empowered asynchronous federated learning for secure data sharing in Internet of Vehicles. IEEE Trans Veh Technol, 69 (4) (2020), pp. 4298-4311
|
[27] |
J. Le, X. Lei, N. Mu, H. Zhang, K. Zeng, X. Liao. Federated continuous learning with broad network architecture. IEEE Trans Cybern, 51 (8) (2021), pp. 3874-3888
|
[28] |
T.H.T. Le, N.H. Tran, Y.K. Tun, M.N.H. Nguyen, S.R. Pandey, Z. Han, et al.. An incentive mechanism for federated learning in wireless cellular networks: an auction approach. IEEE Trans Wirel Commun, 20 (8) (2021), pp. 4874-4887
|
[29] |
T. Liu, B. Di, P. An, L. Song. Privacy-preserving incentive mechanism design for federated cloud-edge learning. IEEE Trans Netw Sci Eng, 8 (3) (2021), pp. 2588-2600
|
[30] |
Z. Chu, P. Xiao, M. Shojafar, D. Mi, J. Mao, W. Hao. Intelligent reflecting surface assisted mobile edge computing for Internet of Things. IEEE Wirel Commun Lett, 10 (3) (2021), pp. 619-623
|
[31] |
C. Huang, A. Zappone, G.C. Alexandropoulos, M. Debbah, C. Yuen. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans Wirel Commun, 18 (8) (2019), pp. 4157-4170
|
[32] |
X. Gong, T. Zhang, C.L.P. Chen, Z. Liu. Research review for broad learning system: algorithms, theory, and applications. IEEE Trans Cybern, 52 (9) (2022), pp. 8922-8950
|
[33] |
B. Ko, K. Liu, S.H. Son, K.J. Park. RSU-assisted adaptive scheduling for vehicle-to-vehicle data sharing in bidirectional road scenarios. IEEE Trans Intell Transp Syst, 22 (2) (2021), pp. 977-989
|
[34] |
S. Mao, N. Zhang, L. Liu, J. Wu, M. Dong, K. Ota, et al.. Computation rate maximization for intelligent reflecting surface enhanced wireless powered mobile edge computing networks. IEEE Trans Veh Technol, 70 (10) (2021), pp. 10820-10831
|
[35] |
L. Zhang, J. Li, G. Lu, P. Shen, M. Bennamoun, S.A.A. Shah, et al.. Analysis and variants of broad learning system. IEEE Trans Syst Man Cybern Syst, 52 (1) (2022), pp. 334-344
|
[36] |
S. Boyd, L. Vandenberghe, L. Faybusovich. Convex optimization. IEEE Trans Autom Control, 51 (11) (2006), Article 1859
|
[37] |
Ng KL, Chen Z, Liu Z, Yu H, Liu Y, Yang Q. A multi-player game for studying federated learning incentive schemes. In:Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence; 2020 Jul 22; Yokohama, Japan; 2020.
|