[1] |
L. Feng, C. Hu, X. Chen, X. Zhao. Dramatic inundation changes of China’s two largest freshwater lakes linked to the Three Gorges Dam. Environ Sci Technol, 47 (17) (2013), pp. 9628-9634
|
[2] |
R. Stone. The legacy of the Three Gorges Dam. Science, 333 (6044) (2011), p. 817
|
[3] |
E. Zhao, C. Wu, S. Wang, J. Hu, W. Wang. Seepage dissolution effect prediction on aging deformation of concrete dams by coupled chemo-mechanical model. Constr Build Mater, 237 (2020), Article 117603
|
[4] |
H. Yang, W. Li. Research and application of hydraulic concrete. China Water & Power Press, Beijing (2005). Chinese
|
[5] |
Y. Li, L. Nie, B. Wang. A numerical simulation of the temperature cracking propagation process when pouring mass concrete. Autom Construct, 37 (2014), pp. 203-210
|
[6] |
X. Lu, B. Chen, B. Tian, Y. Li, C. Lv, B. Xiong. A new method for hydraulic mass concrete temperature control: design and experiment. Constr Build Mater, 302 (2021), Article 124167
|
[7] |
J. Xin, G. Zhang, Y. Liu, Z. Wang, N. Yang, Y. Wang, et al.. Environmental impact and thermal cracking resistance of low heat cement (LHC) and moderate heat cement (MHC) concrete at early ages. J Build Eng, 32 (2020), Article 101668
|
[8] |
F.W. Taylor. Cement chemistry. Thomas Telford Publishing, London (1997)
|
[9] |
T.A. Harrison. Early-age thermal crack control in concrete. Construction Industry Research and Information Association, London (1981)
|
[10] |
J. Gong, C. Jiang, X. Tang, Z. Zheng, L. Yang. Optimization of mixture proportions in ternary low-heat Portland cement-based cementitious systems with mortar blends based on projection pursuit regression. Constr Build Mater, 238 (2020), Article 117666
|
[11] |
F. Han, R. Liu, D. Wang, P. Yan. Characteristics of the hydration heat evolution of composite binder at different hydrating temperature. Thermochim Acta, 586 (2014), pp. 52-57
|
[12] |
L. Wu, N. Farzadnia, C. Shi, Z. Zhang, H. Wang. Autogenous shrinkage of high performance concrete: a review. Constr Build Mater, 149 (2017), pp. 62-75
|
[13] |
M. Juenger, R. Siddique. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement Concr Res, 78 (2015), pp. 71-80
|
[14] |
G.L. Golewski. Green concrete based on quaternary binders with significant reduced of CO2 emissions. Energies, 14 (15) (2021), p. 4558
|
[15] |
G.L. Golewski. An extensive investigations on fracture parameters of concretes based on quaternary binders (QBC) by means of the DIC technique. Constr Build Mater, 351 (2022), Article 128823
|
[16] |
G.L. Golewski. Comparative measurements of fracture toughgness combined with visual analysis of cracks propagation using the DIC technique of concretes based on cement matrix with a highly diversified composition. Theor Appl Fract Mech, 121 (2022), Article 103553
|
[17] |
G.L. Golewski, B. Szostak. Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of CSH phase. Struct Eng Mech, 82 (4) (2022), pp. 543-556
|
[18] |
D.M. Gil, G.L. Golewski, L. Lichołai, B. Dębska, P. Miąsik, J. Szyszka, et al.. Potential of siliceous fly ash and silica fume as a substitute for binder in cementitious concretes. E3S Web of Conf, 49 (2018), p. 00030
|
[19] |
G.L. Golewski. Fracture performance of cementitious composites basen on quaternary blended cements. Materials, 15 (17) (2022), p. 6023
|
[20] |
L. Mo, M. Deng, A. Wang. Effects of MgO-based expansive additive on compensating the shrinkage of cement paste under non-wet curing conditions. Cement Concr Compos, 34 (3) (2012), pp. 377-383
|
[21] |
L. Mo, J. Fang, W. Hou, X. Ji, J. Yang, T. Fan, et al.. Synergetic effects of curing temperature and hydration reactivity of MgO expansive agents on their hydration and expansion behaviours in cement pastes. Constr Build Mater, 207 (2019), pp. 206-217
|
[22] |
L. Mo, M. Liu, A. Al-Tabbaa, M. Deng, W.Y. Lau. Deformation and mechanical properties of quaternary blended cements containing ground granulated blast furnace slag, fly ash and magnesia. Cement Concr Res, 71 (2015), pp. 7-13
|
[23] |
S. Chatterji. Mechanism of expansion of concrete due to the presence of dead-burnt CaO and MgO. Cement Concr Res, 25 (1) (1995), pp. 51-56
|
[24] |
M. Yan, M. Deng, C. Wang, Z. Chen. Effect of particle size of periclase on the periclase hydration and expansion of low-heat Portland cement pastes. Adv Mater Sci Eng, 2018 (2018), pp. 1-8
|
[25] |
L. Mo, M. Deng, M. Tang, A. Al-Tabbaa. MgO expansive cement and concrete in China: past, present and future. Cement Concr Res, 57 (2014), pp. 1-12
|
[26] |
B. Zhu. On damming technology of micro-expansion concrete. J Hydroelectr Eng, 3 (2000), pp. 1-13. Chinese
|
[27] |
X. Wang, Z. Ma, Y. Liu. Research progress of the high-magnesia cement. Mater Rev, 27 (S2) (2013), pp. 302-304. Chinese
|
[28] |
W. Li, W. Chen. Mix proportion design for concrete of the second stage of the Three Gorges Project. Chinese Hydraulic Engineering Society, Beijing (1999). Chinese
|
[29] |
Y. Zhen, W. Liu, X. Zhou, W. Li. Optimization of concrete raw materials for the second phase of Three Gorges Project. China Three Gorges, 8 (1997), pp. 19-21. Chinese
|
[30] |
Y. Chen, H. Zhang, Z. Lin. Hydration rate of fly ash and probability of poor lime phenomena in concrete of the Three Gorges Project. J Hydraul Eng, 8 (2002), pp. 7-11. Chinese
|
[31] |
W. Li, W. Sun, W. Chen. Raw materials, proportion and quality of concrete for the Three Gorges Dam. China Cement, 4 (2003), pp. 46-48. Chinese
|
[32] |
A. Morandeau, M. Thiéry, P. Dangla. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cement Concr Res, 56 (2014), pp. 153-170
|
[33] |
J. Wang, H. Xu, D. Xu, P. Du, Z. Zhou, L. Yuan, et al.. Accelerated carbonation of hardened cement pastes: influence of porosity. Constr Build Mater, 225 (2019), pp. 159-169
|
[34] |
V. Dutzer, W. Dridi, S. Poyet, P. Le Bescop, X. Bourbon. The link between gas diffusion and carbonation in hardened cement pastes. Cement Concr Res, 123 (2019), p. 105795
|
[35] |
T. Van Gerven, G. Cornelis, E. Vandoren, C. Vandecasteele. Effects of carbonation and leaching on porosity in cement-bound waste. Waste Manag, 27 (7) (2007), pp. 977-985
|
[36] |
M. Auroy, S. Poyet, P. Le Bescop, J.M. Torrenti, T. Charpentier, M. Moskura, et al.. Impact of carbonation on unsaturated water transport properties of cement-based materials. Cement Concr Res, 74 (2015), pp. 44-58
|
[37] |
S. Poyet, P. Le Bescop, M. Pierre, L. Chomat, C. Blanc. Accelerated leaching of cementitious materials using ammonium nitrate (6M): influence of test conditions. Eur J Environ Civ Eng, 16 (3-4) (2012), pp. 336-351
|
[38] |
T. Schmidt, B. Lothenbach, M. Romer, J. Neuenschwander, K. Scrivener. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cement Concr Res, 39 (12) (2009), pp. 1111-1121
|
[39] |
I. Ismail, S.A. Bernal, J.L. Provis, R. San Nicolas, D.G. Brice, A.R. Kilcullen, et al.. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr Build Mater, 48 (2013), pp. 1187-1201
|
[40] |
M. Sun, C. Zou, D. Xin. Pore structure evolution mechanism of cement mortar containing diatomite subjected to freeze-thaw cycles by multifractal analysis. Cement Concr Compos, 114 (2020), Article 103731
|
[41] |
C. Li, M. Wu, Q. Chen, Z. Jiang. Chemical and mineralogical alterations of concrete subjected to chemical attacks in complex underground tunnel environments during 20-36 years. Cement Concr Compos, 86 (2018), pp. 139-159
|
[42] |
A. Leemann, R. Loser. Analysis of concrete in a vertical ventilation shaft exposed to sulfate-containing groundwater for 45 years. Cement Concr Compos, 33 (1) (2011), pp. 74-83
|
[43] |
M. Rosenqvist, A. Bertron, K. Fridh, M. Hassanzadeh. Concrete alteration due to 55 years of exposure to river water: chemical and mineralogical characterisation. Cement Concr Res, 92 (2017), pp. 110-120
|
[44] |
Fan Q, Li W, Li X, Chen G, Yang H. Application of low heat portland cement concrete in Hoover Dam and its revelation. Water Power 2016 ;42(12):46-9,59. Chinese.
|
[45] |
G. Li, H. Zhan, Y. Liu, H. Wang. Experimental study on long age performance of RCC core samples for Shapai High Arch Dam. Des Hydroelectr Power Stat, 33 (4) (2017), pp. 70-73. Chinese
|
[46] |
K. Fang, Y. Ruan, L. Zeng. Study on long term performance of RCC with low cement and high fly ash content. J Hydroelectr Eng, 4 (1999), pp. 18-25. Chinese
|
[47] |
Yuan Q, Li Z, Li S. Experimental research on characteris t ics of approximate fifty years hydraulic concrete. Concrete 2007;(1):4-7,10,13. Chinese.
|
[48] |
Y. Shi, T. Yang, J. Li, H. Yang. Evaluation and analysis of durability of old concrete in Danjiangkou Dam. Yangtze River, 40 (11) (2009), pp. 10-11. Chinese
|
[49] |
Z. Li, L. Xiao, Z. Wang. Microcosmic test and analysis of concrete core samples from Danjiangkou Dam. J Yangtze River Sci Res Inst, 28 (5) (2011), pp. 59-62. Chinese
|
[50] |
O. Zobal, P. Reiterman, T. Plachý, Z. Bittnar. Durability of concrete with fly ash from the dam Orlík after 55 years. Adv Mat Res, 1144 (2017), pp. 81-87
|
[51] |
W. Zhong, H. Wu, J. Pan, J. Wang, C. Zhang. Removal of 80-year-old gravity dam and mechanical properties of aging dam concrete. J Perform Constr Facil, 35 (5) (2021), p. 04021054
|
[52] |
A. Campos, C.M. López, A. Blanco, A. Aguado. Effects of an internal sulfate attack and an alkali-aggregate reaction in a concrete dam. Constr Build Mater, 166 (2018), pp. 668-683
|
[53] |
I. Maruyama, P. Lura. Properties of early-age concrete relevant to cracking in massive concrete. Cement Concr Res, 123 (2019), Article 105770
|
[54] |
A. Blanco, I. Segura, S.H.P. Cavalaro, S. Chinchón-Payá, A. Aguado. Sand-cement concrete in the century-old Camarasa Dam. J Perform Constr Facil, 30 (4) (2016), p. 04015083
|
[55] |
A. Blanco, F. Pardo-Bosch, S. Cavalaro, A. Aguado. Lessons learned about the diagnosis of pathologies in concrete dams: 30 years of research and practice. Constr Build Mater, 197 (2019), pp. 356-368
|
[56] |
J. Hu. Carbonisation and calcium leaching-induced deterioration of concrete in dams: field inspection and microstructural investigation. Eur J Environ Civ Eng, 24 (12) (2018), pp. 2046-2069
|
[57] |
C. Neumann, E.F. Faria, A.C.P. dos Santos. Concrete leaching of a hydroelectric powerhouse due to 40 years of exposure to river water. Constr Build Mater, 302 (2021), p. 124253
|
[58] |
Li W, Chen W. Durability of concrete in Three Gorges Project. Chin Three Gorges 2001;7:15-7,49. Chinese.
|
[59] |
Li W, Zheng D, Chen W. Long age performance test of dam concrete of Three Gorges Project. Water Power 2009 ;35(12):76-8+81. Chinese.
|
[60] |
F. Yang, Z. Xiong, S. Huang. Experimental study on durability of dam concrete in Three Gorges Project. J China Inst Water Resour Hydropower Res, 14 (4) (2016), pp. 285-290. Chinese
|
[61] |
D. Lu, X. Zhou, Z. Xu, X. Lan, M. Tang, B. Fournier. Evaluation of laboratory test method for determining the potential alkali contribution from aggregate and the ASR safety of the Three-Gorges Dam concrete. Cement Concr Res, 36 (6) (2006), pp. 1157-1165
|
[62] |
H. Yang, P. Li, M. Rao. Long term investigation and inhibition on alkali-aggregates reaction of Three Gorges Dam concrete. Constr Build Mater, 151 (2017), pp. 673-681
|
[63] |
H. Yang, J. Lin, M. Li. Experimental study on alkali leaching from granite aggregate and total alkali content of concrete in Three Gorges Project. J Hydraul Eng, 07 (2003), pp. 85-89. Chinese
|
[64] |
H. Yang, Y. Wang, P. Cao, J. Lu. Experimental study on alkali-aggregate reaction of concrete of Three Gorges Dam. J Hydraul Eng, 1 (2003), pp. 93-97. Chinese
|
[65] |
S. Yu, L. Sheng, L. Zhan, Z. Niluo. Analysis of temperature variation characteristics in the Three Gorges Reservoir area after impoundment of the Three Gorges Dam. Acta Ecol Sin, 41 (5) (2020), pp. 384-389
|
[66] |
J. Chen, F. Wang, X. Xia, L. Zhang. Major element chemistry of the Changjiang (Yangtze River). Chem Geol, 187 (3) (2002), pp. 231-255
|
[67] |
M. Hu, R. Stallard, J. Edmond. Major ion chemistry of some large Chinese rivers. Nature, 298 (5874) (1982), pp. 550-553
|
[68] |
Ministry of Water Resources of the People’s Republic of China. SL 352-2006: test code for hydraulic concrete. Chinese standard. Beijing: Ministry of Water Resources of the People’s Republic of China. Chinese
|
[69] |
K. Sisomphon, L. Franke. Carbonation rates of concretes containing high volume of pozzolanic materials. Cement Concr Res, 37 (12) (2007), pp. 1647-1653
|
[70] |
A. Leemann, P. Nygaard, J. Kaufmann, R. Loser. Relation between carbonation resistance, mix design and exposure of mortar and concrete. Cement Concr Compos, 62 (2015), pp. 33-43
|
[71] |
Q. Zeng, K. Li, T. Fen-chong, P. Dangla. Pore structure characterization of cement pastes blended with high-volume fly-ash. Cement Concr Res, 42 (1) (2012), pp. 194-204
|
[72] |
J. Yuan, Z. Du, Y. Wu, F. Xiao. Freezing-thawing resistance evaluations of concrete pavements with deicing salts based on various surfaces and air void parameters. Constr Build Mater, 204 (2019), pp. 317-326
|
[73] |
E. Berodier, K. Scrivener. Evolution of pore structure in blended systems. Cement Concr Res, 73 (2015), pp. 25-35
|
[74] |
K. Scrivener, R. Snellings, B. Lothenbach. A practical guide to microstructural analysis of cementitious materials. CRC Press, Boca Raton (2016)
|
[75] |
K.L. Scrivener, A. Nonat. Hydration of cementitious materials, present and future. Cement Concr Res, 41 (7) (2011), pp. 651-665
|
[76] |
Z. Giergiczny. Fly ash and slag. Cement Concr Res, 124 (2019), p. 105826
|
[77] |
B. Lothenbach, K. Scrivener, R.D. Hooton. Supplementary cementitious materials. Cement Concr Res, 41 (12) (2011), pp. 1244-1256
|
[78] |
H. Justnes, J. Skocek, T.A. Østnor, C.J. Engelsen, O. Skjølsvold. Microstructural changes of hydrated cement blended with fly ash upon carbonation. Cement Concr Res, 137 (2020), p. 106192
|
[79] |
H. Abdul Razak, F. Choi. The effect of corrosion on the natural frequency and modal damping of reinforced concrete beams. Eng Struct, 23 (9) (2001), pp. 1126-1133
|
[80] |
K. Ebrahimi, M.J. Daiezadeh, M. Zakertabrizi, F. Zahmatkesh, K.A. Habibnejad. A review of the impact of micro- and nanoparticles on freeze-thaw durability of hardened concrete: mechanism perspective. Constr Build Mater, 186 (2018), pp. 1105-1113
|
[81] |
Y. Yu, J. Yu, Y. Ge. Water and chloride permeability research on ordinary cement mortar and concrete with compound admixture and fly ash. Constr Build Mater, 127 (2016), pp. 556-564
|
[82] |
S. von Greve-Dierfeld, B. Lothenbach, A. Vollpracht, B. Wu, B. Huet, C. Andrade, et al.. Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Mater Struct, 53 (6) (2020), Article 136
|
[83] |
Y. Zheng, M. Russell, G. Davis, D. McPolin, K. Yang, P.A.M. Basheer, et al.. Influence of carbonation on the bound chloride concentration in different cementitious systems. Constr Build Mater, 302 (2021), p. 124171
|
[84] |
The American Concrete Institute (ACI). ASTMC1202- 2010: standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. Farmington Hills: ACI; 2010.
|
[85] |
M. Ibrahim, M. Issa. Evaluation of chloride and water penetration in concrete with cement containing limestone and IPA. Constr Build Mater, 129 (2016), pp. 278-288
|
[86] |
P.T. Huynh, Y. Ogawa, K. Kawai, P.T. Bui. Evaluation of the cementing efficiency factor of low-calcium fly ash for the chloride-penetration resistance of concretes: a simple approach. Constr Build Mater, 270 (2021), p. 121858
|
[87] |
R. Loser, B. Lothenbach, A. Leemann, M. Tuchschmid. Chloride resistance of concrete and its binding capacity—comparison between experimental results and thermodynamic modeling. Cement Concr Compos, 32 (1) (2010), pp. 34-42
|
[88] |
M.D.A. Thomas, R.D. Hooton, A. Scott, H. Zibara. The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cement Concr Res, 42 (1) (2012), pp. 1-7
|
[89] |
J. Zhu, R. Zhang, Y. Zhang, F. He. The fractal characteristics of pore size distribution in cement-based materials and its effect on gas permeability. Sci Rep, 9 (1) (2019), p. 17191
|
[90] |
M.C.G. Juenger, R. Snellings, S.A. Bernal. Supplementary cementitious materials: new sources, characterization, and performance insights. Cement Concr Res, 122 (2019), pp. 257-273
|
[91] |
L. Wang, H.Q. Yang, S.H. Zhou, E. Chen, S.W. Tang. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with Low Heat Portland (LHP) cement and fly ash. Constr Build Mater, 187 (2018), pp. 1073-1091
|
[92] |
Q. Wang, J. Feng, P. Yan. The microstructure of 4-year-old hardened cement-fly ash paste. Constr Build Mater, 29 (2012), pp. 114-119
|
[93] |
J. Kaufmann, R. Loser, A. Leemann. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption. J Colloid Interface Sci, 336 (2) (2009), pp. 730-737
|
[94] |
M. Saillio, V. Baroghel-Bouny, M. Bertin, S. Pradelle, J. Vincent. Phase assemblage of cement pastes with SCM at different ages. Constr Build Mater, 224 (2019), pp. 144-157
|
[95] |
F. Deschner, F. Winnefeld, B. Lothenbach, S. Seufert, P. Schwesig, S. Dittrich, et al.. Hydration of Portland cement with high replacement by siliceous fly ash. Cement Concr Res, 42 (10) (2012), pp. 1389-1400
|
[96] |
F. Deschner, B. Lothenbach, F. Winnefeld, J. Neubauer. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash. Cement Concr Res, 52 (2013), pp. 169-181
|
[97] |
P.T. Durdziński, M. Ben Haha, M. Zajac, K.L. Scrivener. Phase assemblage of composite cements. Cement Concr Res, 99 (2017), pp. 172-182
|
[98] |
M. Zajac, J. Skocek, S. Adu-Amankwah, L. Black, M. Ben Haha. Impact of microstructure on the performance of composite cements: why higher total porosity can result in higher strength. Cement Concr Compos, 90 (2018), pp. 178-192
|
[99] |
A.V. Girão, I.G. Richardson, R. Taylor, R.M.D. Brydson. Composition, morphology and nanostructure of C-S-H in 70% white Portland cement-30% fly ash blends hydrated at 55°C. Cement Concr Res, 40 (9) (2010), pp. 1350-1359
|
[100] |
J.I. Escalante-Garcia, J.H. Sharp. The chemical composition and microstructure of hydration products in blended cements. Cement Concr Compos, 26 (8) (2004), pp. 967-976
|
[101] |
C. Hu, Z. Li. Property investigation of individual phases in cementitious composites containing silica fume and fly ash. Cement Concr Compos, 57 (2015), pp. 17-26
|
[102] |
K. Luke, E. Lachowski. Internal composition of 20-year-old fly ash and slag-blended ordinary portland cement pastes. J Am Ceram Soc, 91 (12) (2008), pp. 4084-4092
|
[103] |
S. Bae, C. Meral, J. Oh, J. Moon, M. Kunz, P.J.M. Monteiro. Characterization of morphology and hydration products of high-volume fly ash paste by monochromatic scanning X-ray micro-diffraction (μ-SXRD). Cement Concr Res, 59 (2014), pp. 155-164
|
[104] |
Song Q, Deng Y, Hu YR, Wang Q, Chen YX. Microanalysis on occurrence state of Mg2+ in clinker and hydrates. J Build Mater 2020 ;23(5):1016-23,1029. Chinese.
|
[105] |
E. Bernard, B. Lothenbach, C. Chlique, M. Wyrzykowski, A. Dauzères, I. Pochard, et al.. Characterization of magnesium silicate hydrate (M-S-H). Cement Concr Res, 116 (2019), pp. 309-330
|
[106] |
S. Jia, I.G. Richardson. Micro- and nano-structural evolutions in white Portland cement/pulverized fuel ash cement pastes due to deionized-water leaching. Cement Concr Res, 103 (2018), pp. 191-203
|
[107] |
B.Z. Dilnesa, E. Wieland, B. Lothenbach, R. Dähn, K.L. Scrivener. Fe-containing phases in hydrated cements. Cement Concr Res, 58 (2014), pp. 45-55
|
[108] |
C. Lu, C. Chen, G. Shan. Microstructure of high performance concrete under long term sustained loading. Proceedings of the 1st International Conference on Microstructure Related Durability of Cementitious Composites; 2008 Oct 13-15; Nanjing, China, RILEM Publications, Boulevard Newton (2008)
|
[109] |
Q. Wang, J. Yang, H. Chen. Long-term properties of concrete containing limestone powder. Mater Struct, 50 (3) (2017), p. 168
|
[110] |
J. Liu, Z. Jiang, Y. Zhao, H. Zhou, X. Wang, H. Zhou, et al.. Chloride distribution and steel corrosion in a concrete bridge after long-term exposure to natural marine environment. Materials, 13 (17) (2020), p. 3900
|
[111] |
J. Ortega, R. Tremiño, I. Sánchez, M. Climent. Effects of environment in the microstructure and properties of sustainable mortars with fly ash and slag after a 5-year exposure period. Sustainability, 10 (3) (2018), p. 663
|
[112] |
T.U. Mohammed, H. Hamada, T. Yamaji. Concrete after 30 years of exposure—part I: mineralogy, microstructures, and interfaces. ACI Mater J, 101 (1) (2004), pp. 3-12
|
[113] |
T.U. Mohammed, T. Yamaji, H. Hamada. Microstructures and interfaces in concrete after 15 years of exposure in tidal environment. ACI Mater J, 99 (4) (2002), pp. 352-360
|
[114] |
T.U. Mohammed, H. Hamada, T. Yamaji. Long-term durability of concrete made with slag cements under marine environment. ACI Mater J, 116 (5) (2019), pp. 5-16
|
[115] |
Z. Liu, W. Hansen, B. Meng. Characterisation of air-void systems in concrete. Mag Concr Res, 68 (4) (2016), pp. 178-186
|
[116] |
E.K.K. Nambiar, K. Ramamurthy. Air-void characterisation of foam concrete. Cement Concr Res, 37 (2) (2007), pp. 221-230
|
[117] |
M. Zajac, M. Ben Haha. Experimental investigation and modeling of hydration and performance evolution of fly ash cement. Mater Struct, 47 (7) (2013), pp. 1259-1269
|
[118] |
K. De Weerdt, M.B. Haha, G. Le Saout, K.O. Kjellsen, H. Justnes, B. Lothenbach. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. MCement Concr Res, 41 (3) (2011), pp. 279-291
|
[119] |
K.L. Scrivener, B. Lothenbach, N. De Belie, E. Gruyaert, J. Skibsted, R. Snellings, et al.. TC 238-SCM: hydration and microstructure of concrete with SCMs. Mater Struct, 48 (4) (2015), pp. 835-862
|
[120] |
T. Matschei, B. Lothenbach, F.P. Glasser. The AFm phase in Portland cement. Cement Concr Res, 37 (2) (2007), pp. 118-130
|
[121] |
E. Bernard, B. Lothenbach, F. Le Goff, I. Pochard, A. Dauzères. Effect of magnesium on calcium silicate hydrate (C-S-H). Cement Concr Res, 97 (2017), pp. 61-72
|
[122] |
D. Lu, Y. Zheng, Y. Liu, Z. Xu. Effect of light-burned magnesium oxide on deformation behavior of geopolymer and its mechanism. J Chin Ceram Soc, 40 (11) (2012), pp. 1625-1630. Chinese
|