迈向碳中和的绿电化学工业

唐城, 张强

工程(英文) ›› 2023, Vol. 29 ›› Issue (10) : 22-26.

PDF(775 KB)
PDF(775 KB)
工程(英文) ›› 2023, Vol. 29 ›› Issue (10) : 22-26. DOI: 10.1016/j.eng.2023.04.018
观点述评

迈向碳中和的绿电化学工业

作者信息 +

Green Electrification of the Chemical Industry Toward Carbon Neutrality

Author information +
History +

引用本文

导出引用
唐城, 张强. 迈向碳中和的绿电化学工业. Engineering. 2023, 29(10): 22-26 https://doi.org/10.1016/j.eng.2023.04.018

参考文献

[1]
International Energy Agency (IEA). An energy sector roadmap to carbon neutrality in China. Report. Paris: IEA; 2021.
[2]
H. Dai, Y. Su, L. Kuang, J. Liu, D. Gu, C. Zou. Contemplation on China’s energy-development strategies and initiatives in the context of its carbon neutrality goal. Engineering, 7 (12) ( 2021), pp. 1684-1687
[3]
G. Luderer, S. Madeddu, L. Merfort, F. Ueckerdt, M. Pehl, R. Pietzcker, et al.. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat Energy, 7 (1) ( 2022), pp. 32-42
[4]
S. Yu, S. Fu, J. Behrendt, Q. Chai, L. Chen, W. Chen, et al..Synthesis report 2022 on China’s carbon neutrality: electrification in China’s carbon neutrality pathways. Energy Foundation of China, Beijing ( 2022) [Chinese].
[5]
K. Van Kranenburg, E. Schols, H. Gelevert, R. de Kler, Y. Van Delft, M. Weeda. Empowering the chemical industry: opportunities for electrification. Report, The Energy Research Centre of the Netherlands (ECN), Petten ( 2016)
[6]
D.S. Mallapragada, Y. Dvorkin, M.A. Modestino, D.V. Esposito, W.A. Smith, B.M. Hodge, et al.. Decarbonization of the chemical industry through electrification: barriers and opportunities. Joule, 7 (1) ( 2023), pp. 23-41
[7]
N. Armaroli, V. Balzani. Towards an electricity-powered world. Energy Environ Sci, 4 (9) ( 2011), pp. 3193-3222. DOI: 10.1039/c1ee01249e
[8]
I. Eryazici, N. Ramesh, C. Villa. Electrification of the chemical industry—materials innovations for a lower carbon future. MRS Bull, 46 (12) ( 2021), pp. 1197-1204. DOI: 10.1557/s43577-021-00243-9
[9]
J.M. Chen, B. Yu, Y.M. Wei. CO2 emissions accounting for the chemical industry: an empirical analysis for China. Nat Hazards, 99 (3) ( 2019), pp. 1327-1343. DOI: 10.1007/s11069-019-03589-1
[10]
G. Buffo, P. Marocco, D. Ferrero, A. Lanzini, M. Santarelli. Power-to-X and power-to-power routes. F. Calise, M.D. D’Accadia, M. Santarelli, A. Lanzini, D. Ferrero (Eds.), Solar hydrogen production: processes, systems and technologies, Academic Press, New York ( 2019), pp. 529-557
[11]
C. Tang, Y. Zheng, M. Jaroniec, S.Z. Qiao. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew Chem Int Ed, 60 (36) ( 2021), pp. 19572-19590. DOI: 10.1002/anie.202101522
[12]
e-Refinery Institute [Internet]. Delft: Delft University of Technology; [cited 2022 Nov 5]. Available from: https://www.tudelft.nl/e-refinery/.
[13]
G. Papanikolaou, G. Centi, S. Perathoner, P. Lanzafame. Catalysis for e-chemistry: need and gaps for a future de-fossilized chemical production, with focus on the role of complex (direct) syntheses by electrocatalysis. ACS Catal, 12 (5) ( 2022), pp. 2861-2876. DOI: 10.1021/acscatal.2c00099
[14]
International Renewable Energy Agency (IRENA).World energy transitions outlook 2022: 1.5 °C pathway. Report, IRENA, Abu Dhabi ( 2022)
[15]
Beyond Zero Emissions Inc. Zero carbon industry plan: electrifying industry. Report, Beyond Zero Emissions Inc., Melbourne ( 2018)
[16]
Nonnast T, Kateva E, Clarkmead L, Stamm M, editors. BASF, SABIC and Linde join forces to realize the world’s first electrically heated steam cracker furnace [Internet]. Ludwigshafen: BASF SE; 2021 Mar 24 [cited 2022 Nov 5]. Available from: https://www.basf.com/cn/en/media/news-releases/global/2021/03/p-21-165.html
[17]
G. Centi, S. Perathoner. Catalysis for an electrified chemical production. Catal Today, 423 ( 2022), Article 113935
[18]
A.M. Oliveira, R.R. Beswick, Y. Yan. A green hydrogen economy for a renewable energy society. Curr Opin Chem Eng, 33 ( 2021), Article 100701
[19]
S. Satyapal, N. Rustagi, T. Green, M. Melaina, M. Penev, M. Koleva. U.S. national clean hydrogen strategy and roadmap. Report, US Department of Energy, Washington, DC ( 2022)
[20]
F. Ueckerdt, C. Bauer, A. Dirnaichner, J. Everall, R. Sacchi, G. Luderer. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nat Clim Chang, 11 (5) ( 2021), pp. 384-393. DOI: 10.1038/s41558-021-01032-7
[21]
A. Ramirez, S.M. Sarathy, J. Gascon. CO2 derived e-fuels: research trends, misconceptions, and future directions. Trends Chem, 2 (9) ( 2020), pp. 785-795
[22]
D. Yao, C. Tang, P. Wang, H. Cheng, H. Jin, L.X. Ding, et al.. Electrocatalytic green ammonia production beyond ambient aqueous nitrogen reduction. Chem Eng Sci, 257 ( 2022), Article 117735
[23]
G. Papanikolaou, G. Centi, S. Perathoner, P. Lanzafame. Transforming catalysis to produce e-fuels: prospects and gaps. Chin J Catal, 43 (5) ( 2022), pp. 1194-1203
[24]
R. Xia, S. Overa, F. Jiao. Emerging electrochemical processes to decarbonize the chemical industry. JACS Au, 2 (5) ( 2022), pp. 1054-1070. DOI: 10.1021/jacsau.2c00138

This work was supported by the National Natural Science Foundation of China (21825501) and the Ordos-Tsinghua Innovative and Collaborative Research Program in Carbon Neutrality.

PDF(775 KB)

Accesses

Citation

Detail

段落导航
相关文章

/