微针递送系统用于皮肤疾病的局部增效治疗——应用、挑战和前景

龚明宇, 陈杨燕, 胡婉姗, 陆超, 潘昕, 彭婷婷, 陈天祥, 吴传斌

工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 170-189.

PDF(4957 KB)
PDF(4957 KB)
工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 170-189. DOI: 10.1016/j.eng.2023.05.009
Review

微针递送系统用于皮肤疾病的局部增效治疗——应用、挑战和前景

作者信息 +

Microneedles for Enhanced Topical Treatment of Skin Disorders: Applications, Challenges, and Prospects

Author information +
History +

摘要

微针能直接将治疗药物递送到皮肤病变部位,从而提高治疗效果和降低副作用,因而可用于皮肤疾病的局部治疗。微针可以递送不同种类的治疗药物(如小分子药物、大分子药物、纳米药物、活细胞、细菌和外泌体)来治疗各种皮肤疾病,包括浅表肿瘤、伤口、皮肤感染、炎症性皮肤病和异常皮肤外观。微针的治疗效率可以通过以下几种策略来提高:①整合不同治疗方法的优点来进行联合治疗;②对微针的结构进行仿生设计或者赋予微针内外源响应性释药性能来提高药物的经皮递送效率。一些研究提出将无药物微针发展为一种有前景的机械治疗方法,即通过微针的机械刺激产生机械转导信号来促进伤口愈合、疤痕消退和毛发再生。虽然微针具有诸多优点,但微针的实际应用还存在工业化生产和临床评价难等问题,进而制约微针的临床转化。本文总结了微针在皮肤疾病中的各种应用、新出现的挑战和发展前景,为微针的临床转化思路提供借鉴。

Abstract

Microneedles (MNs) can be used for the topical treatment of skin disorders as they directly deliver therapeutics to the site of skin lesions, resulting in increased therapeutic efficacy while having minimum side effects. MNs are used to deliver different kinds of therapeutics (e.g., small molecules, macromolecules, nanomedicines, living cells, bacteria, and exosomes) for treating various skin disorders, including superficial tumors, wounds, skin infections, inflammatory skin diseases, and abnormal skin appearance. The therapeutic efficacy of MNs can be improved by integrating the advantages of multiple therapeutics to perform combination therapy. Through careful designing, MNs can be further modified with biomimetic structures for the responsive drug release from internal and external stimuli and to enhance the transdermal delivery efficiency for robust therapeutic outcomes. Some studies have proposed the use of drug-free MNs as a promising mechanotherapeutic strategy to promote wound healing, scar removal, and hair regeneration via a mechanical communication pathway. Although MNs have several advantages, the practical application of MNs suffers from problems related to industrial manufacture and clinical evaluation, making it difficult for clinical translation. In this study, we summarized the various applications, emerging challenges, and developmental prospects of MNs in skin disorders to provide information on ways to advance clinical translation.

关键词

微针 / 经皮给药系统 / 皮肤疾病 / 治疗 / 挑战 / 前景

Keywords

Microneedles / Transdermal drug delivery system / Skin disorders / Treatments / Challenges / Prospects

引用本文

导出引用
龚明宇, 陈杨燕, 胡婉姗. 微针递送系统用于皮肤疾病的局部增效治疗——应用、挑战和前景. Engineering. 2023, 30(11): 170-189 https://doi.org/10.1016/j.eng.2023.05.009

参考文献

[1]
T.A. Harris-Tryon, E.A. Grice. Microbiota and maintenance of skin barrier function. Science, 376 (6596) ( 2022), pp. 940-945 DOI: 10.1126/science.abo0693
[2]
Y. Chen, X. Feng, S. Meng. Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin Drug Deliv, 16 (8) ( 2019), pp. 847-867 DOI: 10.1080/17425247.2019.1645119
[3]
D. Yang, M. Chen, Y. Sun, Y. Jin, C. Lu, X. Pan, et al.. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater, 121 ( 2021), pp. 119-133
[4]
M.R. Chowdhury, R.M. Moshikur, R. Wakabayashi, M. Moniruzzaman, M. Goto. Biocompatible ionic liquids assisted transdermal co-delivery of antigenic protein and adjuvant for cancer immunotherapy. Int J Pharm, 601 ( 2021), Article 120582
[5]
D. Li, D. Hu, H. Xu, H.K. Patra, X. Liu, Z. Zhou, et al.. Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials, 264 ( 2021), Article 120410
[6]
L. Sun, Z. Liu, L. Wang, D. Cun, H.H.Y. Tong, R. Yan, et al.. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J Control Release, 254 ( 2017), pp. 44-54
[7]
Y. Li, X. Hu, Z. Dong, Y. Chen, W. Zhao, Y. Wang, et al.. Dissolving microneedle arrays with optimized needle geometry for transcutaneous immunization. Eur J Pharm Sci, 151 ( 2020), Article 105361
[8]
A. Liu, Q. Wang, Z. Zhao, R. Wu, M. Wang, J. Li, et al.. Nitric oxide nanomotor driving exosomes-loaded microneedles for achilles tendinopathy healing. ACS Nano, 15 (8) ( 2021), pp. 13339-13350 DOI: 10.1021/acsnano.1c03177
[9]
S.X. Chen, M. Ma, F. Xue, S. Shen, Q. Chen, Y. Kuang, et al.. Construction of microneedle-assisted co-delivery platform and its combining photodynamic/immunotherapy. J Control Release, 324 ( 2020), pp. 218-227
[10]
M. Guo, Y. Wang, B. Gao, B. He. Shark tooth-inspired microneedle dressing for intelligent wound management. ACS Nano, 15 (9) ( 2021), pp. 15316-15327 DOI: 10.1021/acsnano.1c06279
[11]
Y. Deng, C. Yang, Y. Zhu, W. Liu, H. Li, L. Wang, et al.. Lamprey-teeth-inspired oriented antibacterial sericin microneedles for infected wound healing improvement. Nano Lett, 22 (7) ( 2022), pp. 2702-2711 DOI: 10.1021/acs.nanolett.1c04573
[12]
Y.S. Kim, K.H. Jeong, J.E. Kim, Y.J. Woo, B.J. Kim, H. Kang. Repeated microneedle stimulation induces enhanced hair growth in a murine model. Ann Dermatol, 28 (5) ( 2016), pp. 586-592 DOI: 10.5021/ad.2016.28.5.586
[13]
Q. Zhang, L. Shi, H. He, X. Liu, Y. Huang, D. Xu, et al.. Down-regulating scar formation by microneedles directly via a mechanical communication pathway. ACS Nano, 16 (7) ( 2022), pp. 10163-10178 DOI: 10.1021/acsnano.1c11016
[14]
D. Jang, J. Shim, D.M. Shin, H. Noh, S.J. Oh, J.H. Park, et al.. Magnesium microneedle patches for under-eye wrinkles. Dermatol Ther, 35 (9) ( 2022), Article e15732
[15]
M. Iapichino, H. Maibach, B. Stoeber. Quantification methods comparing in vitro and in vivo percutaneous permeation by microneedles and passive diffusion. Int J Pharm, 638 ( 2023), Article 122885
[16]
A.H. Sabri, J. Ogilvie, K. Abdulhamid, V. Shpadaruk, J. McKenna, J. Segal, et al.. Expanding the applications of microneedles in dermatology. Eur J Pharm Biopharm, 140 ( 2019), pp. 121-140
[17]
S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci, 88 (9) ( 1999), p. 948
[18]
O. Howells, G.J. Blayney, B. Gualeni, J.C. Birchall, P.F. Eng, H. Ashraf, et al.. Design, fabrication, and characterisation of a silicon microneedle array for transdermal therapeutic delivery using a single step wet etch process. Eur J Pharm Biopharm, 171 ( 2022), pp. 19-28
[19]
M. Kaur, K.B. Ita, I.E. Popova, S.J. Parikh, D.A. Bair. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Eur J Pharm Biopharm, 86 (2) ( 2014), pp. 284-291
[20]
O. Khandan, A. Famili, M.Y. Kahook, M.P. Rao. Titanium-based, fenestrated, in-plane microneedles for passive ocular drug delivery. Annu Int Conf IEEE Eng Med Biol Soc, 2012 ( 2012), pp. 6572-6575 DOI: 10.1109/EMBC.2012.6347500
[21]
G. Anbazhagan, S.B. Suseela, R. Sankararajan. Design, analysis and fabrication of solid polymer microneedle patch using CO2 laser and polymer molding. Drug Deliv Transl Res, 13 (6) ( 2023), pp. 1813-1827 DOI: 10.1007/s13346-023-01296-w
[22]
I. , A. Kafadenk, M.B. Gormus, F. Inci. Xenon difluoride dry etching for the microfabrication of solid microneedles as a potential strategy in transdermal drug delivery. Small ( 2023)[In press]
[23]
H. Roh, Y.J. Yoon, J.S. Park, D.H. Kang, S.M. Kwak, B.C. Lee, et al.. Fabrication of high-density out-of-plane microneedle arrays with various heights and diverse cross-sectional shapes. Nano-Micro Lett, 14 (1) ( 2021), p. 24
[24]
H.S. Gill, M.R. Prausnitz. Coating formulations for microneedles. Pharm Res, 24 (7) ( 2007), pp. 1369-1380 DOI: 10.1007/s11095-007-9286-4
[25]
S.O. Choi, Y.C. Kim, J.H. Park, J. Hutcheson, H.S. Gill, Y.K. Yoon, et al.. An electrically active microneedle array for electroporation. Biomed Microdevices, 12 (2) ( 2010), pp. 263-273 DOI: 10.1007/s10544-009-9381-x
[26]
J.Y. Tan, Y. Li, F. Chamani, A. Tharzeen, P. Prakash, B. Natarajan, et al.. Experimental validation of diffraction lithography for fabrication of solid microneedles. Materials, 15 (24) ( 2022), p. 8934 DOI: 10.3390/ma15248934
[27]
Y.C. Kim, J.H. Park, M.R. Prausnitz. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev, 64 (14) ( 2012), pp. 1547-1568
[28]
Á. Cárcamo-Martínez, B. Mallon, J. Domínguez-Robles, L.K. Vora, Q.K. Anjani, R.F. Donnelly. Hollow microneedles: a perspective in biomedical applications. Int J Pharm, 599 ( 2021), Article 120455
[29]
C.J.W. Bolton, O. Howells, G.J. Blayney, P.F. Eng, J.C. Birchall, B. Gualeni, et al.. Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab Chip, 20 (15) ( 2020), pp. 2788-2795 DOI: 10.1039/d0lc00567c
[30]
C. O’Mahony, R. Sebastian, F. Tjulkins, D. Whelan, A. Bocchino, Y. Hu, et al.. Hollow silicon microneedles, fabricated using combined wet and dry etching techniques, for transdermal delivery and diagnostics. Int J Pharm, 637 ( 2023), Article 122888
[31]
K. Lee, H. Jung. Drawing lithography for microneedles: a review of fundamentals and biomedical applications. Biomaterials, 33 (30) ( 2012), pp. 7309-7326
[32]
V. Yadav, P.K. Sharma, U.S. Murty, N.H. Mohan, R. Thomas, S.K. Dwivedy, et al.. 3D printed hollow microneedles array using stereolithography for efficient transdermal delivery of rifampicin. Int J Pharm, 605 ( 2021), Article 120815
[33]
C.L. Caudill, J.L. Perry, S. Tian, J.C. Luft, J.M. DeSimone. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J Control Release, 284 ( 2018), pp. 122-132
[34]
R.D. Boehm, P. Jaipan, S.A. Skoog, S. Stafslien, L. VanderWal, R.J. Narayan. Inkjet deposition of itraconazole onto poly(glycolic acid) microneedle arrays. Biointerphases, 11 (1) ( 2016), Article 011008
[35]
M.J. Uddin, N. Scoutaris, P. Klepetsanis, B. Chowdhry, M.R. Prausnitz, D. Douroumis. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int J Pharm, 494 (2) ( 2015), pp. 593-602
[36]
M.G. McGrath, A. Vrdoljak, C. O’Mahony, J.C. Oliveira, A.C. Moore, A.M. Crean. Determination of parameters for successful spray coating of silicon microneedle arrays. Int J Pharm, 415 (1-2) ( 2011), pp. 140-149
[37]
B.Z. Chen, M.C. He, X.P. Zhang, W.M. Fei, Y. Cui, X.D. Guo. A novel method for fabrication of coated microneedles with homogeneous and controllable drug dosage for transdermal drug delivery. Drug Deliv Transl Res, 12 (11) ( 2022), pp. 2730-2739 DOI: 10.1007/s13346-022-01123-8
[38]
A.J. Courtenay, E. McAlister, M.T.C. McCrudden, L. Vora, L. Steiner, G. Levin, et al.. Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery. J Control Release, 322 ( 2020), pp. 177-186
[39]
P. Ranjan Yadav, M. Iqbal Nasiri, L.K. Vora, E. Larrañeta, R.F. Donnelly, S.K. Pattanayek, et al.. Super-swelling hydrogel-forming microneedle based transdermal drug delivery: mathematical modelling, simulation and experimental validation. Int J Pharm, 622 ( 2022), Article 121835
[40]
L. Barnum, J. Quint, H. Derakhshandeh, M. Samandari, F. Aghabaglou, A. Farzin, et al.. 3D-printed hydrogel-filled microneedle arrays. Adv Healthc Mater, 10 (13) ( 2021), p. e2001922
[41]
J.G. Turner, L.R. White, P. Estrela, H.S. Leese. Hydrogel-forming microneedles: current advancements and future trends. Macromol Biosci, 21 (2) ( 2021), Article e2000307
[42]
G. Xu, Y. Mao, T. Jiang, B. Gao, B. He. Structural design strategies of microneedle-based vaccines for transdermal immunity augmentation. J Control Release, 351 ( 2022), pp. 907-922
[43]
Z. Wang, Z. Yang, J. Jiang, Z. Shi, Y. Mao, N. Qin, et al.. Silk microneedle patch capable of on-demand multidrug delivery to the brain for glioblastoma treatment. Adv Mater, 34 (1) ( 2022), Article e2106606
[44]
M. Rabiei, S. Kashanian, G. Bahrami, H. Derakhshankhah, E. Barzegari, S.S. Samavati, et al.. Dissolving microneedle-assisted long-acting Liraglutide delivery to control type 2 diabetes and obesity. Eur J Pharm Sci, 167 ( 2021), Article 106040
[45]
H. Chen, B. Wu, M. Zhang, P. Yang, B. Yang, W. Qin, et al.. A novel scalable fabrication process for the production of dissolving microneedle arrays. Drug Deliv Transl Res, 9 (1) ( 2019), pp. 240-248 DOI: 10.1007/s13346-018-00593-z
[46]
J.D. Kim, M. Kim, H. Yang, K. Lee, H. Jung. Droplet-born air blowing: novel dissolving microneedle fabrication. J Control Release, 170 (3) ( 2013), pp. 430-436 DOI: 10.7464/ksct.2013.19.4.430
[47]
S.C. Balmert, C.D. Carey, G.D. Falo, S.K. Sethi, G. Erdos, E. Korkmaz, et al.. Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. J Control Release, 317 ( 2020), pp. 336-346
[48]
H. Kathuria, K. Kang, J. Cai, L. Kang. Rapid microneedle fabrication by heating and photolithography. Int J Pharm, 575 ( 2020), Article 118992
[49]
M. Wu, T. Xia, Y. Li, T. Wang, S. Yang, J. Yu, et al.. Design and fabrication of r-hirudin loaded dissolving microneedle patch for minimally invasive and long-term treatment of thromboembolic disease. Asian J Pharm Sci, 17 (2) ( 2022), pp. 284-297
[50]
H. Chang, S.W.T. Chew, M. Zheng, D.C.S. Lio, C. Wiraja, Y. Mei, et al.. Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng, 5 (9) ( 2021), pp. 1008-1018 DOI: 10.1038/s41551-021-00720-1
[51]
M. Cui, M. Zheng, C. Wiraja, S.W.T. Chew, A. Mishra, V. Mayandi, et al.. Ocular delivery of predatory bacteria with cryomicroneedles against eye infection. Adv Sci, 8 (21) ( 2021), p. e2102327
[52]
M. Avcil, A. Çelik. Microneedles in drug delivery: progress and challenges. Micromachines, 12 (11) ( 2021), p. 1321 DOI: 10.3390/mi12111321
[53]
T.T. Nguyen, T.T.D. Nguyen, N.M. Tran, G.V. Vo. Advances of microneedles in hormone delivery. Biomed Pharmacother, 145 ( 2022), Article 112393
[54]
X. Han, H. Li, D. Zhou, Z. Chen, Z. Gu. Local and targeted delivery of immune checkpoint blockade therapeutics. Acc Chem Res, 53 (11) ( 2020), pp. 2521-2533 DOI: 10.1021/acs.accounts.0c00339
[55]
M. Dul, M. Stefanidou, P. Porta, J. Serve, C. O’Mahony, B. Malissen, et al.. Hydrodynamic gene delivery in human skin using a hollow microneedle device. J Control Release, 265 ( 2017), pp. 120-131
[56]
L. Niu, L.Y. Chu, S.A. Burton, K.J. Hansen, J. Panyam. Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. J Control Release, 294 ( 2019), pp. 268-278
[57]
T. Waghule, G. Singhvi, S.K. Dubey, M.M. Pandey, G. Gupta, M. Singh, et al.. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother, 109 ( 2019), pp. 1249-1258
[58]
X. Li, Z. Zhao, M. Zhang, G. Ling, P. Zhang. Research progress of microneedles in the treatment of melanoma. J Control Release, 348 ( 2022), pp. 631-647 DOI: 10.3390/sym14030631
[59]
E.M. Migdadi, A.J. Courtenay, I.A. Tekko, M.T.C. McCrudden, M.C. Kearney, E. McAlister, et al.. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Control Release, 285 ( 2018), pp. 142-151
[60]
S. Lin, G. Quan, A. Hou, P. Yang, T. Peng, Y. Gu, et al.. Strategy for hypertrophic scar therapy: improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J Control Release, 306 ( 2019), pp. 69-82
[61]
A. Hou, G. Quan, B. Yang, C. Lu, M. Chen, D. Yang, et al.. Rational design of rapidly separating dissolving microneedles for precise drug delivery by balancing the mechanical performance and disintegration rate. Adv Healthc Mater, 8 (21) ( 2019), Article e1900898
[62]
W. Hu, T. Peng, Y. Huang, T. Ren, H. Chen, Y. Chen, et al.. Hyaluronidase-powered microneedles for significantly enhanced transdermal delivery efficiency. J Control Release, 353 ( 2023), pp. 380-390
[63]
K.J. Lee, S.S. Jeong, D.H. Roh, D.Y. Kim, H.K. Choi, E.H. Lee. A practical guide to the development of microneedle systems—in clinical trials or on the market. Int J Pharm, 573 ( 2020), Article 118778
[64]
E. Tkachenko, S. Singer, A. Mostaghimi, R.I. Hartman. Association of poor mental health and skin cancer development: a cross-sectional study of adults in the United States. Eur J Cancer Prev, 29 (6) ( 2020), pp. 520-522 DOI: 10.1097/cej.0000000000000567
[65]
X. Lan, J. She, D.A. Lin, Y. Xu, X. Li, W.F. Yang, et al.. Microneedle-mediated delivery of lipid-coated cisplatin nanoparticles for efficient and safe cancer therapy. ACS Appl Mater Interfaces, 10 (39) ( 2018), pp. 33060-33069 DOI: 10.1021/acsami.8b12926
[66]
S. Bhatnagar, N.G. Bankar, M.V. Kulkarni, V.V.K. Venuganti. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. Int J Pharm, 556 ( 2019), pp. 263-275
[67]
Z. Chen, H. Li, Y. Bian, Z. Wang, G. Chen, X. Zhang, et al.. Bioorthogonal catalytic patch. Nat Nanotechnol, 16 (8) ( 2021), pp. 933-941 DOI: 10.1038/s41565-021-00910-7
[68]
J. Usuda, H. Kato, T. Okunaka, K. Furukawa, H. Tsutsui, K. Yamada, et al.. Photodynamic therapy (PDT) for lung cancers. J Thorac Oncol, 1 (5) ( 2006), pp. 489-493 DOI: 10.1097/01243894-200606000-00018
[69]
R.F. Donnelly, D.I.J. Morrow, P.A. McCarron, A.D. Woolfson, A. Morrissey, P. Juzenas, et al.. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy. J Control Release, 129 (3) ( 2008), pp. 154-162
[70]
X. Zhao, X. Li, P. Zhang, J. Du, Y. Wang. Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor. J Control Release, 286 ( 2018), pp. 201-209
[71]
H. Abd-El-Azim, I.A. Tekko, A. Ali, A. Ramadan, N. Nafee, N. Khalafallah, et al.. Hollow microneedle assisted intradermal delivery of hypericin lipid nanocapsules with light enabled photodynamic therapy against skin cancer. J Control Release, 348 ( 2022), pp. 849-869
[72]
H.P. Tham, K. Xu, W.Q. Lim, H. Chen, M. Zheng, T.G.S. Thng, et al.. Microneedle-assisted topical delivery of photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma. ACS Nano, 12 (12) ( 2018), pp. 11936-11948 DOI: 10.1021/acsnano.8b03007
[73]
P. Liu, Y. Fu, F. Wei, T. Ma, J. Ren, Z. Xie, et al.. Microneedle patches with O2 propellant for deeply and fast delivering photosensitizers: towards improved photodynamic therapy. Adv Sci, 9 (25) ( 2022), Article e2202591
[74]
Y. Li, G. He, L.H. Fu, M.R. Younis, T. He, Y. Chen, et al.. A microneedle patch with self-oxygenation and glutathione depletion for repeatable photodynamic therapy. ACS Nano, 16 (10) ( 2022), pp. 17298-17312 DOI: 10.1021/acsnano.2c08098
[75]
G. He, Y. Li, M.R. Younis, L.H. Fu, T. He, S. Lei, et al.. Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy. Nat Commun, 13 (1) ( 2022), p. 6238
[76]
W. Qin, G. Quan, Y. Sun, M. Chen, P. Yang, D. Feng, et al.. Dissolving microneedles with spatiotemporally controlled pulsatile release nanosystem for synergistic chemo-photothermal therapy of melanoma. Theranostics, 10 (18) ( 2020), pp. 8179-8196 DOI: 10.7150/thno.44194
[77]
T. Peng, Y. Huang, X. Feng, C. Zhu, S. Yin, X. Wang, et al.. TPGS/hyaluronic acid dual-functionalized PLGA nanoparticles delivered through dissolving microneedles for markedly improved chemo-photothermal combined therapy of superficial tumor. Acta Pharm Sin B, 11 (10) ( 2021), pp. 3297-3309
[78]
S. Wei, G. Quan, C. Lu, X. Pan, C. Wu. Dissolving microneedles integrated with pH-responsive micelles containing AIEgen with ultra-photostability for enhancing melanoma photothermal therapy. Biomater Sci, 8 (20) ( 2020), pp. 5739-5750 DOI: 10.1039/d0bm00914h
[79]
S. Lin, H. Lin, M. Yang, M. Ge, Y. Chen, Y. Zhu. A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. Nanoscale, 12 (18) ( 2020), pp. 10265-10276 DOI: 10.1039/d0nr01444c
[80]
P. Pei, F. Yang, J. Liu, H. Hu, X. Du, N. Hanagata, et al.. Composite-dissolving microneedle patches for chemotherapy and photothermal therapy in superficial tumor treatment. Biomater Sci, 6 (6) ( 2018), pp. 1414-1423 DOI: 10.1039/c8bm00005k
[81]
M.C. Chen, Z.W. Lin, M.H. Ling. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano, 10 (1) ( 2016), pp. 93-101 DOI: 10.1021/acsnano.5b05043
[82]
L. Dong, Y. Li, Z. Li, N. Xu, P. Liu, H. Du, et al.. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl Mater Interfaces, 10 (11) ( 2018), pp. 9247-9256 DOI: 10.1021/acsami.7b18293
[83]
Y. Zhao, Y. Zhou, D. Yang, X. Gao, T. Wen, J. Fu, et al.. Intelligent and spatiotemporal drug release based on multifunctional nanoparticle-integrated dissolving microneedle system for synergetic chemo-photothermal therapy to eradicate melanoma. Acta Biomater, 135 ( 2021), pp. 164-178
[84]
Z. Tang, Y. Liu, M. He, W. Bu. Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reactions. Angew Chem Int Ed Engl, 58 (4) ( 2019), pp. 946-956 DOI: 10.1002/anie.201805664
[85]
L. Ruan, G. Song, X. Zhang, T. Liu, Y. Sun, J. Zhu, et al.. Transdermal delivery of multifunctional CaO2@Mn-PDA nanoformulations by microneedles for NIR-induced synergistic therapy against skin melanoma. Biomater Sci, 9 (20) ( 2021), pp. 6830-6841 DOI: 10.1039/d1bm01117k
[86]
K. Liao, B. Niu, H. Dong, L. He, Y. Zhou, Y. Sun, et al.. A spark to the powder keg: microneedle-based antitumor nanomedicine targeting reactive oxygen species accumulation for chemodynamic/photothermal/chemotherapy. J Colloid Interface, 628 (Pt B) ( 2022), pp. 189-203
[87]
Y. Zhou, B. Niu, Y. Zhao, J. Fu, T. Wen, K. Liao, et al.. Multifunctional nanoreactors-integrated microneedles for cascade reaction-enhanced cancer therapy. J Control Release, 339 ( 2021), pp. 335-349
[88]
Y. Zeng, H. Zhou, J. Ding, W. Zhou. Cell membrane inspired nano-shell enabling long-acting glucose oxidase for melanoma starvation therapy via microneedles-based percutaneous delivery. Theranostics, 11 (17) ( 2021), pp. 8270-8282 DOI: 10.7150/thno.60758
[89]
J. McCaffrey, R.F. Donnelly, H.O. McCarthy. Microneedles: an innovative platform for gene delivery. Drug Deliv Transl Res, 5 (4) ( 2015), pp. 424-437 DOI: 10.1007/s13346-015-0243-1
[90]
J. Pan, W. Ruan, M. Qin, Y. Long, T. Wan, K. Yu, et al.. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep, 8 (1) ( 2018), p. 1117
[91]
X. Li, Q. Xu, P. Zhang, X. Zhao, Y. Wang. Cutaneous microenvironment responsive microneedle patch for rapid gene release to treat subdermal tumor. J Control Release, 314 ( 2019), pp. 72-80
[92]
W. Ruan, Y. Zhai, K. Yu, C. Wu, Y. Xu. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment. Int J Pharm, 553 (1-2) ( 2018), pp. 298-309
[93]
Q. Xu, X. Li, P. Zhang, Y. Wang. Rapidly dissolving microneedle patch for synergistic gene and photothermal therapy of subcutaneous tumor. J Mater Chem B Mater Biol Med, 8 (19) ( 2020), pp. 4331-4339 DOI: 10.1039/d0tb00105h
[94]
C. Wang, Y. Ye, G.M. Hochu, H. Sadeghifar, Z. Gu. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett, 16 (4) ( 2016), pp. 2334-2340 DOI: 10.1021/acs.nanolett.5b05030
[95]
M. Saxena, N. Bhardwaj. Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer, 4 (2) ( 2018), pp. 119-137
[96]
H.T.T. Duong, Y. Yin, T. Thambi, T.L. Nguyen, V.H. Giang Phan, M.S. Lee, et al.. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials, 185 ( 2018), pp. 13-24
[97]
Y. Ye, C. Wang, X. Zhang, Q. Hu, Y. Zhang, Q. Liu, et al.. A melanin-mediated cancer immunotherapy patch. Sci Immunol, 2 (17) ( 2017), Article eaan5692
[98]
M. Chen, G. Quan, T. Wen, P. Yang, W. Qin, H. Mai, et al.. Cold to hot: binary cooperative microneedle array-amplified photoimmunotherapy for eliciting antitumor immunity and the abscopal effect. ACS Appl Mater Interfaces, 12 (29) ( 2020), pp. 32259-32269 DOI: 10.1021/acsami.0c05090
[99]
M. Chen, D. Yang, Y. Sun, T. Liu, W. Wang, J. Fu, et al.. In situ self-assembly nanomicelle microneedles for enhanced photoimmunotherapy via autophagy regulation strategy. ACS Nano, 15 (2) ( 2021), pp. 3387-3401 DOI: 10.1021/acsnano.0c10396
[100]
A.J. Singer, R.A. Clark. Cutaneous wound healing. N Engl J Med, 341 (10) ( 1999), pp. 738-746
[101]
P.G. Bowler, B.I. Duerden, D.G. Armstrong. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev, 14 (2) ( 2001), pp. 244-269
[102]
C. Wang, X. Jiang, H.J. Kim, S. Zhang, X. Zhou, Y. Chen, et al.. Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing. Biomaterials, 285 ( 2022), Article 121479
[103]
Y. Zhang, Y. Xu, H. Kong, J. Zhang, H.F. Chan, J. Wang, et al.. Microneedle system for tissue engineering and regenerative medicine. Exploration, 3 (1) ( 2023), Article 20210170
[104]
J. Chi, X. Zhang, C. Chen, C. Shao, Y. Zhao, Y. Wang. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact Mater, 5 (2) ( 2020), pp. 253-259
[105]
M. Yin, J. Wu, M. Deng, P. Wang, G. Ji, M. Wang, et al.. Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing. ACS Nano, 15 (11) ( 2021), pp. 17842-17853 DOI: 10.1021/acsnano.1c06036
[106]
L. Sun, L. Fan, F. Bian, G. Chen, Y. Wang, Y. Zhao. MXene-integrated microneedle patches with innate molecule encapsulation for wound healing. Research, 2021 ( 2021), Article 9838490
[107]
X. Zhang, G. Chen, Y. Liu, L. Sun, L. Sun, Y. Zhao. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano, 14 (5) ( 2020), pp. 5901-5908 DOI: 10.1021/acsnano.0c01059
[108]
S. Yao, Y. Wang, J. Chi, Y. Yu, Y. Zhao, Y. Luo, et al.. Porous MOF microneedle array patch with photothermal responsive nitric oxide delivery for wound healing. Adv Sci, 9 (3) ( 2022), Article e2103449
[109]
K. Lee, Y. Xue, J. Lee, H.J. Kim, Y. Liu, P. Tebon, et al.. A patch of detachable hybrid microneedle depot for localized delivery of mesenchymal stem cells in regeneration therapy. Adv Funct Mater, 30 (23) ( 2020), p. 2000086
[110]
R. Kalluri, V.S. LeBleu. The biology, function, and biomedical applications of exosomes. Science, 367 (6478) ( 2020), Article eaau6977
[111]
M. Yuan, K. Liu, T. Jiang, S. Li, J. Chen, Z. Wu, et al.. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. J Nanobiotechnology, 20 (1) ( 2022), p. 147
[112]
W. Ma, X. Zhang, Y. Liu, L. Fan, J. Gan, W. Liu, et al.. Polydopamine decorated microneedles with Fe-MSC-derived nanovesicles encapsulation for wound healing. Adv Sci, 9 (13) ( 2022), Article e2103317
[113]
Y. Zheng, Y. Yan, L. Lin, Q. He, H. Hu, R. Luo, et al.. Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomater, 142 ( 2022), pp. 113-123
[114]
Y. Shi, X. Feng, L. Lin, J. Wang, J. Chi, B. Wu, et al.. Virus-inspired surface-nanoengineered antimicrobial liposome: a potential system to simultaneously achieve high activity and selectivity. Bioact Mater, 6 (10) ( 2021), pp. 3207-3217
[115]
K. Peng, L.K. Vora, I.A. Tekko, A.D. Permana, J. Domínguez-Robles, D. Ramadon, et al.. Dissolving microneedle patches loaded with amphotericin B microparticles for localised and sustained intradermal delivery: potential for enhanced treatment of cutaneous fungal infections. J Control Release, 339 ( 2021), pp. 361-380
[116]
B. Pamornpathomkul, T. Ngawhirunpat, I.A. Tekko, L. Vora, H.O. McCarthy, R.F. Donnelly. Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery. Eur J Pharm Sci, 121 ( 2018), pp. 200-209
[117]
J. Ziesmer, P. Tajpara, N.J. Hempel, M. Ehrström, K. Melican, L. Eidsmo, et al.. Vancomycin-loaded microneedle arrays against methicillin-resistant Staphylococcus aureus skin infections. Adv Mater Technol, 6 (7) ( 2021), Article 2001307
[118]
R. Jamaledin, C.K.Y. Yiu, E.N. Zare, L.N. Niu, R. Vecchione, G. Chen, et al.. Advances in antimicrobial microneedle patches for combating infections. Adv Mater, 32 (33) ( 2020), p. e2002129
[119]
M. Zhao, M. Zhou, P. Gao, X. Zheng, W. Yu, Z. Wang, et al.. AgNPs/nGOx/Apra nanocomposites for synergistic antimicrobial therapy and scarless skin recovery. J Mater Chem B Mater Biol Med, 10 (9) ( 2022), pp. 1393-1402 DOI: 10.1039/d1tb01991k
[120]
A. Omolu, M. Bailly, R.M. Day. Assessment of solid microneedle rollers to enhance transmembrane delivery of doxycycline and inhibition of MMP activity. Drug Deliv, 24 (1) ( 2017), pp. 942-951 DOI: 10.1080/10717544.2017.1337826
[121]
J. Xu, R. Danehy, H. Cai, Z. Ao, M. Pu, A. Nusawardhana, et al.. Microneedle patch-mediated treatment of bacterial biofilms. ACS Appl Mater Interfaces, 11 (16) ( 2019), pp. 14640-14646 DOI: 10.1021/acsami.9b02578
[122]
E. Caffarel-Salvador, M.C. Kearney, R. Mairs, L. Gallo, S.A. Stewart, A.J. Brady, et al.. Methylene blue-loaded dissolving microneedles: potential use in photodynamic antimicrobial chemotherapy of infected wounds. Pharmaceutics, 7 (4) ( 2015), pp. 397-412 DOI: 10.3390/pharmaceutics7040397
[123]
J.H. Gong, L.J. Chen, X. Zhao, X.P. Yan. Persistent production of reactive oxygen species with Zn2GeO4: Cu nanorod-loaded microneedles for methicillin-resistant Staphylococcus aureus infectious wound healing. ACS Appl Mater Interfaces, 14 (15) ( 2022), pp. 17142-17152 DOI: 10.1021/acsami.2c02503
[124]
Y. Gao, W. Zhang, Y.F. Cheng, Y. Cao, Z. Xu, L.Q. Xu, et al.. Intradermal administration of green synthesized nanosilver (NS) through film-coated PEGDA microneedles for potential antibacterial applications. Biomater Sci, 9 (6) ( 2021), pp. 2244-2254 DOI: 10.1039/d0bm02136a
[125]
S. Yao, J. Chi, Y. Wang, Y. Zhao, Y. Luo, Y. Wang. Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing. Adv Healthc Mater, 10 (12) ( 2021), Article e2100056
[126]
F. Wang, X. Zhang, G. Chen, Y. Zhao. Living bacterial microneedles for fungal infection treatment. Research, 2020 ( 2020), p. 2760594
[127]
Y. Su, A. McCarthy, S.L. Wong, R.R. Hollins, G. Wang, J. Xie. Simultaneous delivery of multiple antimicrobial agents by biphasic scaffolds for effective treatment of wound biofilms. Adv Healthc Mater, 10 (12) ( 2021), Article e2100135
[128]
X. Feng, D. Xian, J. Fu, R. Luo, W. Wang, Y. Zheng, et al.. Four-armed host-defense peptidomimetics-augmented vanadium carbide MXene-based microneedle array for efficient photo-excited bacteria-killing. Chem Eng J, 456 ( 2023), Article 141121
[129]
M. Sala, A. Elaissari, H. Fessi. Advances in psoriasis physiopathology and treatments: up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J Control Release, 239 ( 2016), pp. 182-202
[130]
J. Xie, S. Huang, H. Huang, X. Deng, P. Yue, J. Lin, et al.. Advances in the application of natural products and the novel drug delivery systems for psoriasis. Front Pharmacol, 12 ( 2021), Article 644952
[131]
H. Du, P. Liu, J. Zhu, J. Lan, Y. Li, L. Zhang, et al.. Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl Mater Interfaces, 11 (46) ( 2019), pp. 43588-43598 DOI: 10.1021/acsami.9b15668
[132]
I.A. Tekko, A.D. Permana, L. Vora, T. Hatahet, H.O. McCarthy, R.F. Donnelly. Localised and sustained intradermal delivery of methotrexate using nanocrystal-loaded microneedle arrays: potential for enhanced treatment of psoriasis. Eur J Pharm Sci, 152 ( 2020), Article 105469
[133]
Q. Jing, H. Ruan, J. Li, Z. Wang, L. Pei, H. Hu, et al.. Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials, 278 ( 2021), Article 121142
[134]
C.J. Oh, K.M. Das, A.B. Gottlieb. Treatment with anti-tumor necrosis factor α (TNF-α) monoclonal antibody dramatically decreases the clinical activity of psoriasis lesions. J Am Acad Dermatol, 42 (5 Pt 1) ( 2000), pp. 829-830
[135]
E. Korkmaz, E.E. Friedrich, M.H. Ramadan, G. Erdos, A.R. Mathers, O. Burak Ozdoganlar, et al.. Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. Acta Biomater, 24 ( 2015), pp. 96-105
[136]
D. Wu, X. Shou, Y. Yu, X. Wang, G. Chen, Y. Zhao, et al.. Biologics-loaded photothermally dissolvable hyaluronic acid microneedle patch for psoriasis treatment. Adv Funct Mater, 32 (47) ( 2022), Article 2205847
[137]
J. Sroka-Tomaszewska, M. Trzeciak. Molecular mechanisms of atopic dermatitis pathogenesis. Int J Mol Sci, 22 (8) ( 2021), p. 4130 DOI: 10.3390/ijms22084130
[138]
M. Arrais, O. Lulua, F. Quifica, J. Rosado-Pinto, J.M.R. Gama, L. Taborda-Barata. Prevalence of asthma, allergic rhinitis and eczema in 6-7-year-old schoolchildren from Luanda. Angola Allergol Immunopathol, 47 (6) ( 2019), pp. 523-534 DOI: 10.1016/j.aller.2018.12.002
[139]
S. Weidinger, N. Novak. Atopic dermatitis. Lancet, 387 (10023) ( 2016), pp. 1109-1122
[140]
K. Kabashima. New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity. J Dermatol Sci, 70 (1) ( 2013), pp. 3-11
[141]
P.P. Vakharia, J.I. Silverberg. New therapies for atopic dermatitis: additional treatment classes. J Am Acad Dermatol, 78 (3 Suppl 1) ( 2018), pp. S76-S83
[142]
M. Jang, B.M. Kang, H. Yang, J. Ohn, O. Kwon, H. Jung. High-dose steroid dissolving microneedle for relieving atopic dermatitis. Adv Healthc Mater, 10 (7) ( 2021), p. e2001691
[143]
T. Wan, Q. Pan, Y. Ping. Microneedle-assisted genome editing: a transdermal strategy of targeting NLRP 3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci Adv, 11 (7) ( 2021), Article eabe2888
[144]
J.H. Kim, J.U. Shin, S.H. Kim, J.Y. Noh, H.R. Kim, J. Lee, et al.. Successful transdermal allergen delivery and allergen-specific immunotherapy using biodegradable microneedle patches. Biomaterials, 150 ( 2018), pp. 38-48
[145]
M.C. Chen, C.S. Chen, Y.W. Wu, Y.Y. Yang. Poly-γ-glutamate microneedles as transdermal immunomodulators for ameliorating atopic dermatitis-like skin lesions in Nc/Nga mice. Acta Biomater, 114 ( 2020), pp. 183-192
[146]
Y.H. Chiu, Y.W. Wu, J.I. Hung, M.C. Chen. Epigallocatechin gallate/L-ascorbic acid-loaded poly-γ-glutamate microneedles with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis. Acta Biomater, 130 ( 2021), pp. 223-233
[147]
G. Yang, G. Chen, Z. Gu. Transdermal drug delivery for hair regrowth. Mol Pharm, 18 (2) ( 2021), pp. 483-490 DOI: 10.1021/acs.molpharmaceut.0c00041
[148]
A. Anzai, E.H.C. Wang, E.Y. Lee, V. Aoki, A.M. Christiano. Pathomechanisms of immune-mediated alopecia. Int Immunol, 31 (7) ( 2019), pp. 439-447 DOI: 10.1093/intimm/dxz039
[149]
A.K. Gupta, E.M. Quinlan, M. Venkataraman, M.A. Bamimore. Microneedling for hair loss. J Cosmet Dermatol, 21 (1) ( 2021), pp. 108-117 DOI: 10.1200/go.20.00288
[150]
Y.S. Liu, S.H. Jee, J.L. Chan. Hair transplantation for the treatment of lichen planopilaris and frontal fibrosing alopecia: a report of two cases. Australas J Dermatol, 59 (2) ( 2018), pp. e118-e122
[151]
F. Lolli, F. Pallotti, A. Rossi, M.C. Fortuna, G. Caro, A. Lenzi, et al.. Androgenetic alopecia: a review. Endocrine, 57 (1) ( 2017), pp. 9-17 DOI: 10.1007/s12020-017-1280-y
[152]
C. Iriarte, O. Awosika, M. Rengifo-Pardo, A. Ehrlich. Review of applications of microneedling in dermatology. Clin Cosmet Investig Dermatol, 10 ( 2017), pp. 289-298 DOI: 10.2147/CCID.S142450
[153]
A. Yuan, F. Xia, Q. Bian, H. Wu, Y. Gu, T. Wang, et al.. Ceria nanozyme-integrated microneedles reshape the perifollicular microenvironment for androgenetic alopecia treatment. ACS Nano, 15 (8) ( 2021), pp. 13759-13769 DOI: 10.1021/acsnano.1c05272
[154]
A. Flores, J. Schell, A.S. Krall, D. Jelinek, M. Miranda, M. Grigorian, et al.. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat Cell Biol, 19 (9) ( 2017), pp. 1017-1026 DOI: 10.1038/ncb3575
[155]
Y. Shi, J. Zhao, H. Li, M. Yu, W. Zhang, D. Qin, et al.. A drug-free, hair follicle cycling regulatable, separable, antibacterial microneedle patch for hair regeneration therapy. Adv Healthc Mater, 11 (19) ( 2022), Article e2200908
[156]
G. Yang, Q. Chen, D. Wen, Z. Chen, J. Wang, G. Chen, et al.. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano, 13 (4) ( 2019), pp. 4354-4360 DOI: 10.1021/acsnano.8b09573
[157]
S. Kim, J. Eum, H. Yang, H. Jung. Transdermal finasteride delivery via powder-carrying microneedles with a diffusion enhancer to treat androgenetic alopecia. J Control Release, 316 ( 2019), pp. 1-11
[158]
S. Cao, Y. Wang, M. Wang, X. Yang, Y. Tang, M. Pang, et al.. Microneedles mediated bioinspired lipid nanocarriers for targeted treatment of alopecia. J Control Release, 329 ( 2021), pp. 1-15 DOI: 10.37188/lam.2021.020
[159]
L.C. Strazzulla, E.H.C. Wang, L. Avila, K. Lo Sicco, N. Brinster, A.M. Christiano, et al.. Alopecia areata: disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J Am Acad Dermatol, 78 (1) ( 2018), pp. 1-12
[160]
C.M. Giorgio, G. Babino, S. Caccavale, T. Russo, A.B. De Rosa, R. Alfano, et al.. Combination of photodynamic therapy with 5-aminolaevulinic acid and microneedling in the treatment of alopecia areata resistant to conventional therapies: our experience with 41 patients. Clin Exp Dermatol, 45 (3) ( 2020), pp. 323-326 DOI: 10.1111/ced.14084
[161]
A. Sterkens, J. Lambert, A. Bervoets. Alopecia areata: a review on diagnosis, immunological etiopathogenesis and treatment options. Clin Exp Med, 21 (2) ( 2021), pp. 215-230 DOI: 10.1007/s10238-020-00673-w
[162]
C. Zhou, X. Li, C. Wang, J. Zhang. Alopecia areata: an update on etiopathogenesis, diagnosis, and management. Clin Rev Allergy Immunol, 61 (3) ( 2021), pp. 403-423 DOI: 10.1007/s12016-021-08883-0
[163]
L.C. Strazzulla, E.H.C. Wang, L. Avila, K. Lo Sicco, N. Brinster, A.M. Christiano, et al.. Alopecia areata: an appraisal of new treatment approaches and overview of current therapies. J Am Acad Dermatol, 78 (1) ( 2018), pp. 15-24
[164]
J. He, B. Fang, S. Shan, Y. Xie, C. Wang, Y. Zhang, et al.. Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1. Cell Death Dis, 12 (3) ( 2021), p. 226
[165]
K. Kaplani, S. Koutsi, V. Armenis, F.G. Skondra, N. Karantzelis, S. Champeris Tsaniras, et al.. Wound healing related agents: ongoing research and perspectives. Adv Drug Deliv Rev, 129 ( 2018), pp. 242-253
[166]
S.M. Karppinen, R. Heljasvaara, D. Gullberg, K. Tasanen, T. Pihlajaniemi. Toward understanding scarless skin wound healing and pathological scarring. F1000 Res, 8 ( 2019), p. 8
[167]
J.W. Lawrence, S.T. Mason, K. Schomer, M.B. Klein. Epidemiology and impact of scarring after burn injury: a systematic review of the literature. J Burn Care Res, 33 (1) ( 2012), pp. 136-146
[168]
K.E. Hietanen, T.A. Järvinen, H. Huhtala, T.T. Tolonen, H.O. Kuokkanen, I.S. Kaartinen. Treatment of keloid scars with intralesional triamcinolone and 5-fluorouracil injections—a randomized controlled trial. J Plast Reconstr Aesthet Surg, 72 (1) ( 2019), pp. 4-11
[169]
D.C. Yeo, E.R. Balmayor, J.T. Schantz, C. Xu. Microneedle physical contact as a therapeutic for abnormal scars. Eur J Med Res, 22 (1) ( 2017), p. 28
[170]
Y. Huang, T. Peng, W. Hu, X. Gao, Y. Chen, Q. Zhang, et al.. Fully armed photodynamic therapy with spear and shear for topical deep hypertrophic scar treatment. J Control Release, 343 ( 2022), pp. 408-419
[171]
B. Yang, Y. Dong, Y. Shen, A. Hou, G. Quan, X. Pan, et al.. Bilayer dissolving microneedle array containing 5-fluorouracil and triamcinolone with biphasic release profile for hypertrophic scar therapy. Bioact Mater, 6 (8) ( 2021), pp. 2400-2411
[172]
T. Wu, X. Hou, J. Li, H. Ruan, L. Pei, T. Guo, et al.. Microneedle-mediated biomimetic cyclodextrin metal organic frameworks for active targeting and treatment of hypertrophic scars. ACS Nano, 15 (12) ( 2021), pp. 20087-20104 DOI: 10.1021/acsnano.1c07829
[173]
M. Wang, Y. Han, X. Yu, L. Liang, H. Chang, D.C. Yeo, et al.. Upconversion nanoparticle powered microneedle patches for transdermal delivery of siRNA. Adv Healthc Mater, 9 (2) ( 2020), Article e1900635
[174]
C.W.X. Tan, W.D. Tan, R. Srivastava, A.P. Yow, D.W.K. Wong, H.L. Tey. Dissolving triamcinolone-embedded microneedles for the treatment of keloids: a single-blinded intra-individual controlled clinical trial. Dermatol Ther, 9 (3) ( 2019), pp. 601-611 DOI: 10.1007/s13555-019-00316-3
[175]
J. Park, Y.C. Kim. Topical delivery of 5-fluorouracil-loaded carboxymethyl chitosan nanoparticles using microneedles for keloid treatment. Drug Deliv Transl Res, 11 (1) ( 2021), pp. 205-213
[176]
I.B.S. Sitohang, S.A.P. Sirait, J. Suryanegara. Microneedling in the treatment of atrophic scars: a systematic review of randomised controlled trials. Int Wound J, 18 (5) ( 2021), pp. 577-585 DOI: 10.1111/iwj.13559
[177]
A.M. Layton, C.A. Henderson, W.J. Cunliffe. A clinical evaluation of acne scarring and its incidence. Clin Exp Dermatol, 19 (4) (1994), pp. 303-308 DOI: 10.1111/j.1365-2230.1994.tb01200.x
[178]
M. Gupta, K.D. Barman, R. Sarkar. A comparative study of microneedling alone versus along with platelet-rich plasma in acne scars. J Cutan Aesthet Surg, 14 (1) ( 2021), pp. 64-71 DOI: 10.4103/jcas.jcas_190_20
[179]
D. Yan, H. Zhao, C. Li, A. Xia, J. Zhang, S. Zhang, et al.. A clinical study of carbon dioxide lattice laser-assisted or microneedle-assisted 5-aminolevulinic acid-based photodynamic therapy for the treatment of hypertrophic acne scars. Photodermatol Photoimmunol Photomed, 38 (1) ( 2022), pp. 53-59 DOI: 10.1111/phpp.12716
[180]
J. Sharad. Combination of microneedling and glycolic acid peels for the treatment of acne scars in dark skin. J Cosmet Dermatol, 10 (4) ( 2011), pp. 317-323 DOI: 10.1111/j.1473-2165.2011.00583.x
[181]
T. Wen, Z. Lin, Y. Zhao, Y. Zhou, B. Niu, C. Shi, et al.. Bioresponsive nanoarchitectonics-integrated microneedles for amplified chemo-photodynamic therapy against acne vulgaris. ACS Appl Mater Interfaces, 13 (41) ( 2021), pp. 48433-48448 DOI: 10.1021/acsami.1c15673
[182]
Y. Xiang, J. Lu, C. Mao, Y. Zhu, C. Wang, J. Wu, et al.. Ultrasound-triggered interfacial engineering-based microneedle for bacterial infection acne treatment. Sci Adv, 9 (10) ( 2023), Article eadf0854
[183]
T. Zhang, B. Sun, J. Guo, M. Wang, H. Cui, H. Mao, et al.. Active pharmaceutical ingredient poly(ionic liquid)-based microneedles for the treatment of skin acne infection. Acta Biomater, 115 ( 2020), pp. 136-147 DOI: 10.2112/jcr-si115-041.1
[184]
R. Zeng, Y. Liu, W. Zhao, Y. Yang, Q. Wu, M. Li, et al.. A split-face comparison of a fractional microneedle radiofrequency device and fractional radiofrequency therapy for moderate-to-severe acne vulgaris. J Cosmet Dermatol, 19 (10) ( 2020), pp. 2566-2571 DOI: 10.1111/jocd.13299
[185]
Z. Cao, S. Jin, P. Wang, Q. He, Y. Yang, Z. Gao, et al.. Microneedle based adipose derived stem cells-derived extracellular vesicles therapy ameliorates UV-induced photoaging in SKH-1 mice. J Biomed Mater Res A, 109 (10) ( 2021), pp. 1849-1857 DOI: 10.1002/jbm.a.37177
[186]
X. Jin, X. Zhang, Y. Li, M. Xu, Y. Yao, Z. Wu, et al.. Long-acting microneedle patch loaded with adipose collagen fragment for preventing the skin photoaging in mice. Biomater Adv, 135 ( 2022), Article 212744
[187]
Y. You, Y. Tian, Z. Yang, J. Shi, K.J. Kwak, Y. Tong, et al.. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat Biomed Eng ( 2023)
[188]
T.A. Petukhova, L.A. Hassoun, N. Foolad, M. Barath, R.K. Sivamani. Effect of expedited microneedle-assisted photodynamic therapy for field treatment of actinic keratoses: a randomized clinical trial. JAMA Dermatol, 153 (7) ( 2017), pp. 637-643 DOI: 10.1001/jamadermatol.2017.0849
[189]
S.H. Lim, H. Kathuria, M.H.B. Amir, X. Zhang, H.T.T. Duong, P.C. Ho, et al.. High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide. J Control Release, 329 ( 2021), pp. 907-918
[190]
J.Y. Hong, E.J. Ko, S.Y. Choi, K. Li, A.R. Kim, J.O. Park, et al.. Efficacy and safety of a novel, soluble microneedle patch for the improvement of facial wrinkle. J Cosmet Dermatol, 17 (2) ( 2018), pp. 235-241 DOI: 10.1111/jocd.12426
[191]
J.H. An, H.J. Lee, M.S. Yoon, D.H. Kim. Anti-wrinkle efficacy of cross-linked hyaluronic acid-based microneedle patch with acetyl hexapeptide-8 and epidermal growth factor on korean skin. Ann Dermatol, 31 (3) ( 2019), pp. 263-271 DOI: 10.5021/ad.2019.31.3.263
[192]
M. Avcil, G. Akman, J. Klokkers, D. Jeong, A. Çelik. Clinical efficacy of dissolvable microneedles armed with anti-melanogenic compounds to counter hyperpigmentation. J Cosmet Dermatol, 20 (2) ( 2021), pp. 605-614 DOI: 10.1111/jocd.13571
[193]
Y.S. Wang, W.H. Yang, W. Gao, L. Zhang, F. Wei, H. Liu, et al.. Combination and efficiency: preparation of dissolving microneedles array loaded with two active ingredients and its anti-pigmentation effects on guinea pigs. Eur J Pharm Sci, 160 ( 2021), Article 105749
[194]
S. Kim, H. Yang, M. Kim, J.H. Baek, S.J. Kim, S.M. An, et al.. 4-n-butylresorcinol dissolving microneedle patch for skin depigmentation: a randomized, double-blind, placebo-controlled trial. J Cosmet Dermatol, 15 (1) ( 2016), pp. 16-23
[195]
R.F. Donnelly, T.R. Singh, M.M. Tunney, D.I. Morrow, P.A. McCarron, C. O’Mahony, et al.. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res, 26 (11) ( 2009), pp. 2513-2522 DOI: 10.1007/s11095-009-9967-2
[196]
J.H. Cary, B.S. Li, H.I. Maibach. Dermatotoxicology of microneedles (MNs) in man. Biomed Microdevices, 21 (3) ( 2019), p. 66
[197]
S. Chu, D.P. Foulad, M.N. Atanaskova. Safety profile for microneedling: a systematic review. Dermatol Surg, 47 (9) ( 2021), pp. 1249-1254 DOI: 10.1097/01.dss.0000790428.70373.f6
[198]
B. Creelman, C. Frivold, S. Jessup, G. Saxon, C. Jarrahian. Manufacturing readiness assessment for evaluation of the microneedle array patch industry: an exploration of barriers to full-scale manufacturing. Drug Deliv Transl Res, 12 (2) ( 2022), pp. 368-375 DOI: 10.1007/s13346-021-01076-4
[199]
R.E. Lutton, J. Moore, E. Larrañeta, S. Ligett, A.D. Woolfson, R.F. Donnelly. Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Deliv Transl Res, 5 (4) ( 2015), pp. 313-331 DOI: 10.1007/s13346-015-0237-z
[200]
J. Zhao, G. Xu, X. Yao, H. Zhou, B. Lyu, S. Pei, et al.. Microneedle-based insulin transdermal delivery system: current status and translation challenges. Drug Deliv Transl Res, 12 (10) ( 2022), pp. 2403-2427 DOI: 10.1007/s13346-021-01077-3
[201]
F. Tehrani, H. Teymourian, B. Wuerstle, J. Kavner, R. Patel, A. Furmidge, et al.. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat Biomed Eng, 6 (11) ( 2022), pp. 1214-1224 DOI: 10.1038/s41551-022-00887-1
[202]
M. Dervisevic, E. Dervisevic, L. Esser, C.D. Easton, V.J. Cadarso, N.H. Voelcker. Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Biosens Bioelectron, 222 ( 2023), Article 114955
[203]
R. He, H. Liu, T. Fang, Y. Niu, H. Zhang, F. Han, et al.. A colorimetric dermal tattoo biosensor fabricated by microneedle patch for multiplexed detection of health-related biomarkers. Adv Sci, 8 (24) ( 2021), Article e2103030
[204]
J. Shan, X. Zhang, B. Kong, Y. Zhu, Z. Gu, L. Ren, et al.. Coordination polymer nanozymes-integrated colorimetric microneedle patches for intelligent wound infection management. Chem Eng J, 444 ( 2022), Article 136640
[205]
T. Sheng, R. Jin, C. Yang, K. Qiu, M. Wang, J. Shi, et al.. Unmanned aerial vehicle mediated drug delivery for first aid. Adv Mater, 35 (10) ( 2023), p. e2208648
PDF(4957 KB)

Accesses

Citation

Detail

段落导航
相关文章

/