[1] |
T.A. Harris-Tryon, E.A. Grice. Microbiota and maintenance of skin barrier function. Science, 376 (6596) ( 2022), pp. 940-945 DOI: 10.1126/science.abo0693
|
[2] |
Y. Chen, X. Feng, S. Meng. Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin Drug Deliv, 16 (8) ( 2019), pp. 847-867 DOI: 10.1080/17425247.2019.1645119
|
[3] |
D. Yang, M. Chen, Y. Sun, Y. Jin, C. Lu, X. Pan, et al.. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater, 121 ( 2021), pp. 119-133
|
[4] |
M.R. Chowdhury, R.M. Moshikur, R. Wakabayashi, M. Moniruzzaman, M. Goto. Biocompatible ionic liquids assisted transdermal co-delivery of antigenic protein and adjuvant for cancer immunotherapy. Int J Pharm, 601 ( 2021), Article 120582
|
[5] |
D. Li, D. Hu, H. Xu, H.K. Patra, X. Liu, Z. Zhou, et al.. Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials, 264 ( 2021), Article 120410
|
[6] |
L. Sun, Z. Liu, L. Wang, D. Cun, H.H.Y. Tong, R. Yan, et al.. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J Control Release, 254 ( 2017), pp. 44-54
|
[7] |
Y. Li, X. Hu, Z. Dong, Y. Chen, W. Zhao, Y. Wang, et al.. Dissolving microneedle arrays with optimized needle geometry for transcutaneous immunization. Eur J Pharm Sci, 151 ( 2020), Article 105361
|
[8] |
A. Liu, Q. Wang, Z. Zhao, R. Wu, M. Wang, J. Li, et al.. Nitric oxide nanomotor driving exosomes-loaded microneedles for achilles tendinopathy healing. ACS Nano, 15 (8) ( 2021), pp. 13339-13350 DOI: 10.1021/acsnano.1c03177
|
[9] |
S.X. Chen, M. Ma, F. Xue, S. Shen, Q. Chen, Y. Kuang, et al.. Construction of microneedle-assisted co-delivery platform and its combining photodynamic/immunotherapy. J Control Release, 324 ( 2020), pp. 218-227
|
[10] |
M. Guo, Y. Wang, B. Gao, B. He. Shark tooth-inspired microneedle dressing for intelligent wound management. ACS Nano, 15 (9) ( 2021), pp. 15316-15327 DOI: 10.1021/acsnano.1c06279
|
[11] |
Y. Deng, C. Yang, Y. Zhu, W. Liu, H. Li, L. Wang, et al.. Lamprey-teeth-inspired oriented antibacterial sericin microneedles for infected wound healing improvement. Nano Lett, 22 (7) ( 2022), pp. 2702-2711 DOI: 10.1021/acs.nanolett.1c04573
|
[12] |
Y.S. Kim, K.H. Jeong, J.E. Kim, Y.J. Woo, B.J. Kim, H. Kang. Repeated microneedle stimulation induces enhanced hair growth in a murine model. Ann Dermatol, 28 (5) ( 2016), pp. 586-592 DOI: 10.5021/ad.2016.28.5.586
|
[13] |
Q. Zhang, L. Shi, H. He, X. Liu, Y. Huang, D. Xu, et al.. Down-regulating scar formation by microneedles directly via a mechanical communication pathway. ACS Nano, 16 (7) ( 2022), pp. 10163-10178 DOI: 10.1021/acsnano.1c11016
|
[14] |
D. Jang, J. Shim, D.M. Shin, H. Noh, S.J. Oh, J.H. Park, et al.. Magnesium microneedle patches for under-eye wrinkles. Dermatol Ther, 35 (9) ( 2022), Article e15732
|
[15] |
M. Iapichino, H. Maibach, B. Stoeber. Quantification methods comparing in vitro and in vivo percutaneous permeation by microneedles and passive diffusion. Int J Pharm, 638 ( 2023), Article 122885
|
[16] |
A.H. Sabri, J. Ogilvie, K. Abdulhamid, V. Shpadaruk, J. McKenna, J. Segal, et al.. Expanding the applications of microneedles in dermatology. Eur J Pharm Biopharm, 140 ( 2019), pp. 121-140
|
[17] |
S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci, 88 (9) ( 1999), p. 948
|
[18] |
O. Howells, G.J. Blayney, B. Gualeni, J.C. Birchall, P.F. Eng, H. Ashraf, et al.. Design, fabrication, and characterisation of a silicon microneedle array for transdermal therapeutic delivery using a single step wet etch process. Eur J Pharm Biopharm, 171 ( 2022), pp. 19-28
|
[19] |
M. Kaur, K.B. Ita, I.E. Popova, S.J. Parikh, D.A. Bair. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Eur J Pharm Biopharm, 86 (2) ( 2014), pp. 284-291
|
[20] |
O. Khandan, A. Famili, M.Y. Kahook, M.P. Rao. Titanium-based, fenestrated, in-plane microneedles for passive ocular drug delivery. Annu Int Conf IEEE Eng Med Biol Soc, 2012 ( 2012), pp. 6572-6575 DOI: 10.1109/EMBC.2012.6347500
|
[21] |
G. Anbazhagan, S.B. Suseela, R. Sankararajan. Design, analysis and fabrication of solid polymer microneedle patch using CO 2 laser and polymer molding. Drug Deliv Transl Res, 13 (6) ( 2023), pp. 1813-1827 DOI: 10.1007/s13346-023-01296-w
|
[22] |
I. Eş, A. Kafadenk, M.B. Gormus, F. Inci. Xenon difluoride dry etching for the microfabrication of solid microneedles as a potential strategy in transdermal drug delivery. Small ( 2023)[In press]
|
[23] |
H. Roh, Y.J. Yoon, J.S. Park, D.H. Kang, S.M. Kwak, B.C. Lee, et al.. Fabrication of high-density out-of-plane microneedle arrays with various heights and diverse cross-sectional shapes. Nano-Micro Lett, 14 (1) ( 2021), p. 24
|
[24] |
H.S. Gill, M.R. Prausnitz. Coating formulations for microneedles. Pharm Res, 24 (7) ( 2007), pp. 1369-1380 DOI: 10.1007/s11095-007-9286-4
|
[25] |
S.O. Choi, Y.C. Kim, J.H. Park, J. Hutcheson, H.S. Gill, Y.K. Yoon, et al.. An electrically active microneedle array for electroporation. Biomed Microdevices, 12 (2) ( 2010), pp. 263-273 DOI: 10.1007/s10544-009-9381-x
|
[26] |
J.Y. Tan, Y. Li, F. Chamani, A. Tharzeen, P. Prakash, B. Natarajan, et al.. Experimental validation of diffraction lithography for fabrication of solid microneedles. Materials, 15 (24) ( 2022), p. 8934 DOI: 10.3390/ma15248934
|
[27] |
Y.C. Kim, J.H. Park, M.R. Prausnitz. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev, 64 (14) ( 2012), pp. 1547-1568
|
[28] |
Á. Cárcamo-Martínez, B. Mallon, J. Domínguez-Robles, L.K. Vora, Q.K. Anjani, R.F. Donnelly. Hollow microneedles: a perspective in biomedical applications. Int J Pharm, 599 ( 2021), Article 120455
|
[29] |
C.J.W. Bolton, O. Howells, G.J. Blayney, P.F. Eng, J.C. Birchall, B. Gualeni, et al.. Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab Chip, 20 (15) ( 2020), pp. 2788-2795 DOI: 10.1039/d0lc00567c
|
[30] |
C. O’Mahony, R. Sebastian, F. Tjulkins, D. Whelan, A. Bocchino, Y. Hu, et al.. Hollow silicon microneedles, fabricated using combined wet and dry etching techniques, for transdermal delivery and diagnostics. Int J Pharm, 637 ( 2023), Article 122888
|
[31] |
K. Lee, H. Jung. Drawing lithography for microneedles: a review of fundamentals and biomedical applications. Biomaterials, 33 (30) ( 2012), pp. 7309-7326
|
[32] |
V. Yadav, P.K. Sharma, U.S. Murty, N.H. Mohan, R. Thomas, S.K. Dwivedy, et al.. 3D printed hollow microneedles array using stereolithography for efficient transdermal delivery of rifampicin. Int J Pharm, 605 ( 2021), Article 120815
|
[33] |
C.L. Caudill, J.L. Perry, S. Tian, J.C. Luft, J.M. DeSimone. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J Control Release, 284 ( 2018), pp. 122-132
|
[34] |
R.D. Boehm, P. Jaipan, S.A. Skoog, S. Stafslien, L. VanderWal, R.J. Narayan. Inkjet deposition of itraconazole onto poly(glycolic acid) microneedle arrays. Biointerphases, 11 (1) ( 2016), Article 011008
|
[35] |
M.J. Uddin, N. Scoutaris, P. Klepetsanis, B. Chowdhry, M.R. Prausnitz, D. Douroumis. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int J Pharm, 494 (2) ( 2015), pp. 593-602
|
[36] |
M.G. McGrath, A. Vrdoljak, C. O’Mahony, J.C. Oliveira, A.C. Moore, A.M. Crean. Determination of parameters for successful spray coating of silicon microneedle arrays. Int J Pharm, 415 (1-2) ( 2011), pp. 140-149
|
[37] |
B.Z. Chen, M.C. He, X.P. Zhang, W.M. Fei, Y. Cui, X.D. Guo. A novel method for fabrication of coated microneedles with homogeneous and controllable drug dosage for transdermal drug delivery. Drug Deliv Transl Res, 12 (11) ( 2022), pp. 2730-2739 DOI: 10.1007/s13346-022-01123-8
|
[38] |
A.J. Courtenay, E. McAlister, M.T.C. McCrudden, L. Vora, L. Steiner, G. Levin, et al.. Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery. J Control Release, 322 ( 2020), pp. 177-186
|
[39] |
P. Ranjan Yadav, M. Iqbal Nasiri, L.K. Vora, E. Larrañeta, R.F. Donnelly, S.K. Pattanayek, et al.. Super-swelling hydrogel-forming microneedle based transdermal drug delivery: mathematical modelling, simulation and experimental validation. Int J Pharm, 622 ( 2022), Article 121835
|
[40] |
L. Barnum, J. Quint, H. Derakhshandeh, M. Samandari, F. Aghabaglou, A. Farzin, et al.. 3D-printed hydrogel-filled microneedle arrays. Adv Healthc Mater, 10 (13) ( 2021), p. e2001922
|
[41] |
J.G. Turner, L.R. White, P. Estrela, H.S. Leese. Hydrogel-forming microneedles: current advancements and future trends. Macromol Biosci, 21 (2) ( 2021), Article e2000307
|
[42] |
G. Xu, Y. Mao, T. Jiang, B. Gao, B. He. Structural design strategies of microneedle-based vaccines for transdermal immunity augmentation. J Control Release, 351 ( 2022), pp. 907-922
|
[43] |
Z. Wang, Z. Yang, J. Jiang, Z. Shi, Y. Mao, N. Qin, et al.. Silk microneedle patch capable of on-demand multidrug delivery to the brain for glioblastoma treatment. Adv Mater, 34 (1) ( 2022), Article e2106606
|
[44] |
M. Rabiei, S. Kashanian, G. Bahrami, H. Derakhshankhah, E. Barzegari, S.S. Samavati, et al.. Dissolving microneedle-assisted long-acting Liraglutide delivery to control type 2 diabetes and obesity. Eur J Pharm Sci, 167 ( 2021), Article 106040
|
[45] |
H. Chen, B. Wu, M. Zhang, P. Yang, B. Yang, W. Qin, et al.. A novel scalable fabrication process for the production of dissolving microneedle arrays. Drug Deliv Transl Res, 9 (1) ( 2019), pp. 240-248 DOI: 10.1007/s13346-018-00593-z
|
[46] |
J.D. Kim, M. Kim, H. Yang, K. Lee, H. Jung. Droplet-born air blowing: novel dissolving microneedle fabrication. J Control Release, 170 (3) ( 2013), pp. 430-436 DOI: 10.7464/ksct.2013.19.4.430
|
[47] |
S.C. Balmert, C.D. Carey, G.D. Falo, S.K. Sethi, G. Erdos, E. Korkmaz, et al.. Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. J Control Release, 317 ( 2020), pp. 336-346
|
[48] |
H. Kathuria, K. Kang, J. Cai, L. Kang. Rapid microneedle fabrication by heating and photolithography. Int J Pharm, 575 ( 2020), Article 118992
|
[49] |
M. Wu, T. Xia, Y. Li, T. Wang, S. Yang, J. Yu, et al.. Design and fabrication of r-hirudin loaded dissolving microneedle patch for minimally invasive and long-term treatment of thromboembolic disease. Asian J Pharm Sci, 17 (2) ( 2022), pp. 284-297
|
[50] |
H. Chang, S.W.T. Chew, M. Zheng, D.C.S. Lio, C. Wiraja, Y. Mei, et al.. Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng, 5 (9) ( 2021), pp. 1008-1018 DOI: 10.1038/s41551-021-00720-1
|
[51] |
M. Cui, M. Zheng, C. Wiraja, S.W.T. Chew, A. Mishra, V. Mayandi, et al.. Ocular delivery of predatory bacteria with cryomicroneedles against eye infection. Adv Sci, 8 (21) ( 2021), p. e2102327
|
[52] |
M. Avcil, A. Çelik. Microneedles in drug delivery: progress and challenges. Micromachines, 12 (11) ( 2021), p. 1321 DOI: 10.3390/mi12111321
|
[53] |
T.T. Nguyen, T.T.D. Nguyen, N.M. Tran, G.V. Vo. Advances of microneedles in hormone delivery. Biomed Pharmacother, 145 ( 2022), Article 112393
|
[54] |
X. Han, H. Li, D. Zhou, Z. Chen, Z. Gu. Local and targeted delivery of immune checkpoint blockade therapeutics. Acc Chem Res, 53 (11) ( 2020), pp. 2521-2533 DOI: 10.1021/acs.accounts.0c00339
|
[55] |
M. Dul, M. Stefanidou, P. Porta, J. Serve, C. O’Mahony, B. Malissen, et al.. Hydrodynamic gene delivery in human skin using a hollow microneedle device. J Control Release, 265 ( 2017), pp. 120-131
|
[56] |
L. Niu, L.Y. Chu, S.A. Burton, K.J. Hansen, J. Panyam. Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. J Control Release, 294 ( 2019), pp. 268-278
|
[57] |
T. Waghule, G. Singhvi, S.K. Dubey, M.M. Pandey, G. Gupta, M. Singh, et al.. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother, 109 ( 2019), pp. 1249-1258
|
[58] |
X. Li, Z. Zhao, M. Zhang, G. Ling, P. Zhang. Research progress of microneedles in the treatment of melanoma. J Control Release, 348 ( 2022), pp. 631-647 DOI: 10.3390/sym14030631
|
[59] |
E.M. Migdadi, A.J. Courtenay, I.A. Tekko, M.T.C. McCrudden, M.C. Kearney, E. McAlister, et al.. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Control Release, 285 ( 2018), pp. 142-151
|
[60] |
S. Lin, G. Quan, A. Hou, P. Yang, T. Peng, Y. Gu, et al.. Strategy for hypertrophic scar therapy: improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J Control Release, 306 ( 2019), pp. 69-82
|
[61] |
A. Hou, G. Quan, B. Yang, C. Lu, M. Chen, D. Yang, et al.. Rational design of rapidly separating dissolving microneedles for precise drug delivery by balancing the mechanical performance and disintegration rate. Adv Healthc Mater, 8 (21) ( 2019), Article e1900898
|
[62] |
W. Hu, T. Peng, Y. Huang, T. Ren, H. Chen, Y. Chen, et al.. Hyaluronidase-powered microneedles for significantly enhanced transdermal delivery efficiency. J Control Release, 353 ( 2023), pp. 380-390
|
[63] |
K.J. Lee, S.S. Jeong, D.H. Roh, D.Y. Kim, H.K. Choi, E.H. Lee. A practical guide to the development of microneedle systems—in clinical trials or on the market. Int J Pharm, 573 ( 2020), Article 118778
|
[64] |
E. Tkachenko, S. Singer, A. Mostaghimi, R.I. Hartman. Association of poor mental health and skin cancer development: a cross-sectional study of adults in the United States. Eur J Cancer Prev, 29 (6) ( 2020), pp. 520-522 DOI: 10.1097/cej.0000000000000567
|
[65] |
X. Lan, J. She, D.A. Lin, Y. Xu, X. Li, W.F. Yang, et al.. Microneedle-mediated delivery of lipid-coated cisplatin nanoparticles for efficient and safe cancer therapy. ACS Appl Mater Interfaces, 10 (39) ( 2018), pp. 33060-33069 DOI: 10.1021/acsami.8b12926
|
[66] |
S. Bhatnagar, N.G. Bankar, M.V. Kulkarni, V.V.K. Venuganti. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. Int J Pharm, 556 ( 2019), pp. 263-275
|
[67] |
Z. Chen, H. Li, Y. Bian, Z. Wang, G. Chen, X. Zhang, et al.. Bioorthogonal catalytic patch. Nat Nanotechnol, 16 (8) ( 2021), pp. 933-941 DOI: 10.1038/s41565-021-00910-7
|
[68] |
J. Usuda, H. Kato, T. Okunaka, K. Furukawa, H. Tsutsui, K. Yamada, et al.. Photodynamic therapy (PDT) for lung cancers. J Thorac Oncol, 1 (5) ( 2006), pp. 489-493 DOI: 10.1097/01243894-200606000-00018
|
[69] |
R.F. Donnelly, D.I.J. Morrow, P.A. McCarron, A.D. Woolfson, A. Morrissey, P. Juzenas, et al.. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy. J Control Release, 129 (3) ( 2008), pp. 154-162
|
[70] |
X. Zhao, X. Li, P. Zhang, J. Du, Y. Wang. Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor. J Control Release, 286 ( 2018), pp. 201-209
|
[71] |
H. Abd-El-Azim, I.A. Tekko, A. Ali, A. Ramadan, N. Nafee, N. Khalafallah, et al.. Hollow microneedle assisted intradermal delivery of hypericin lipid nanocapsules with light enabled photodynamic therapy against skin cancer. J Control Release, 348 ( 2022), pp. 849-869
|
[72] |
H.P. Tham, K. Xu, W.Q. Lim, H. Chen, M. Zheng, T.G.S. Thng, et al.. Microneedle-assisted topical delivery of photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma. ACS Nano, 12 (12) ( 2018), pp. 11936-11948 DOI: 10.1021/acsnano.8b03007
|
[73] |
P. Liu, Y. Fu, F. Wei, T. Ma, J. Ren, Z. Xie, et al.. Microneedle patches with O2 propellant for deeply and fast delivering photosensitizers: towards improved photodynamic therapy. Adv Sci, 9 (25) ( 2022), Article e2202591
|
[74] |
Y. Li, G. He, L.H. Fu, M.R. Younis, T. He, Y. Chen, et al.. A microneedle patch with self-oxygenation and glutathione depletion for repeatable photodynamic therapy. ACS Nano, 16 (10) ( 2022), pp. 17298-17312 DOI: 10.1021/acsnano.2c08098
|
[75] |
G. He, Y. Li, M.R. Younis, L.H. Fu, T. He, S. Lei, et al.. Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy. Nat Commun, 13 (1) ( 2022), p. 6238
|
[76] |
W. Qin, G. Quan, Y. Sun, M. Chen, P. Yang, D. Feng, et al.. Dissolving microneedles with spatiotemporally controlled pulsatile release nanosystem for synergistic chemo-photothermal therapy of melanoma. Theranostics, 10 (18) ( 2020), pp. 8179-8196 DOI: 10.7150/thno.44194
|
[77] |
T. Peng, Y. Huang, X. Feng, C. Zhu, S. Yin, X. Wang, et al.. TPGS/hyaluronic acid dual-functionalized PLGA nanoparticles delivered through dissolving microneedles for markedly improved chemo-photothermal combined therapy of superficial tumor. Acta Pharm Sin B, 11 (10) ( 2021), pp. 3297-3309
|
[78] |
S. Wei, G. Quan, C. Lu, X. Pan, C. Wu. Dissolving microneedles integrated with pH-responsive micelles containing AIEgen with ultra-photostability for enhancing melanoma photothermal therapy. Biomater Sci, 8 (20) ( 2020), pp. 5739-5750 DOI: 10.1039/d0bm00914h
|
[79] |
S. Lin, H. Lin, M. Yang, M. Ge, Y. Chen, Y. Zhu. A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. Nanoscale, 12 (18) ( 2020), pp. 10265-10276 DOI: 10.1039/d0nr01444c
|
[80] |
P. Pei, F. Yang, J. Liu, H. Hu, X. Du, N. Hanagata, et al.. Composite-dissolving microneedle patches for chemotherapy and photothermal therapy in superficial tumor treatment. Biomater Sci, 6 (6) ( 2018), pp. 1414-1423 DOI: 10.1039/c8bm00005k
|
[81] |
M.C. Chen, Z.W. Lin, M.H. Ling. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano, 10 (1) ( 2016), pp. 93-101 DOI: 10.1021/acsnano.5b05043
|
[82] |
L. Dong, Y. Li, Z. Li, N. Xu, P. Liu, H. Du, et al.. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl Mater Interfaces, 10 (11) ( 2018), pp. 9247-9256 DOI: 10.1021/acsami.7b18293
|
[83] |
Y. Zhao, Y. Zhou, D. Yang, X. Gao, T. Wen, J. Fu, et al.. Intelligent and spatiotemporal drug release based on multifunctional nanoparticle-integrated dissolving microneedle system for synergetic chemo-photothermal therapy to eradicate melanoma. Acta Biomater, 135 ( 2021), pp. 164-178
|
[84] |
Z. Tang, Y. Liu, M. He, W. Bu. Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reactions. Angew Chem Int Ed Engl, 58 (4) ( 2019), pp. 946-956 DOI: 10.1002/anie.201805664
|
[85] |
L. Ruan, G. Song, X. Zhang, T. Liu, Y. Sun, J. Zhu, et al.. Transdermal delivery of multifunctional CaO 2@Mn-PDA nanoformulations by microneedles for NIR-induced synergistic therapy against skin melanoma. Biomater Sci, 9 (20) ( 2021), pp. 6830-6841 DOI: 10.1039/d1bm01117k
|
[86] |
K. Liao, B. Niu, H. Dong, L. He, Y. Zhou, Y. Sun, et al.. A spark to the powder keg: microneedle-based antitumor nanomedicine targeting reactive oxygen species accumulation for chemodynamic/photothermal/chemotherapy. J Colloid Interface, 628 (Pt B) ( 2022), pp. 189-203
|
[87] |
Y. Zhou, B. Niu, Y. Zhao, J. Fu, T. Wen, K. Liao, et al.. Multifunctional nanoreactors-integrated microneedles for cascade reaction-enhanced cancer therapy. J Control Release, 339 ( 2021), pp. 335-349
|
[88] |
Y. Zeng, H. Zhou, J. Ding, W. Zhou. Cell membrane inspired nano-shell enabling long-acting glucose oxidase for melanoma starvation therapy via microneedles-based percutaneous delivery. Theranostics, 11 (17) ( 2021), pp. 8270-8282 DOI: 10.7150/thno.60758
|
[89] |
J. McCaffrey, R.F. Donnelly, H.O. McCarthy. Microneedles: an innovative platform for gene delivery. Drug Deliv Transl Res, 5 (4) ( 2015), pp. 424-437 DOI: 10.1007/s13346-015-0243-1
|
[90] |
J. Pan, W. Ruan, M. Qin, Y. Long, T. Wan, K. Yu, et al.. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep, 8 (1) ( 2018), p. 1117
|
[91] |
X. Li, Q. Xu, P. Zhang, X. Zhao, Y. Wang. Cutaneous microenvironment responsive microneedle patch for rapid gene release to treat subdermal tumor. J Control Release, 314 ( 2019), pp. 72-80
|
[92] |
W. Ruan, Y. Zhai, K. Yu, C. Wu, Y. Xu. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment. Int J Pharm, 553 (1-2) ( 2018), pp. 298-309
|
[93] |
Q. Xu, X. Li, P. Zhang, Y. Wang. Rapidly dissolving microneedle patch for synergistic gene and photothermal therapy of subcutaneous tumor. J Mater Chem B Mater Biol Med, 8 (19) ( 2020), pp. 4331-4339 DOI: 10.1039/d0tb00105h
|
[94] |
C. Wang, Y. Ye, G.M. Hochu, H. Sadeghifar, Z. Gu. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett, 16 (4) ( 2016), pp. 2334-2340 DOI: 10.1021/acs.nanolett.5b05030
|
[95] |
M. Saxena, N. Bhardwaj. Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer, 4 (2) ( 2018), pp. 119-137
|
[96] |
H.T.T. Duong, Y. Yin, T. Thambi, T.L. Nguyen, V.H. Giang Phan, M.S. Lee, et al.. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials, 185 ( 2018), pp. 13-24
|
[97] |
Y. Ye, C. Wang, X. Zhang, Q. Hu, Y. Zhang, Q. Liu, et al.. A melanin-mediated cancer immunotherapy patch. Sci Immunol, 2 (17) ( 2017), Article eaan5692
|
[98] |
M. Chen, G. Quan, T. Wen, P. Yang, W. Qin, H. Mai, et al.. Cold to hot: binary cooperative microneedle array-amplified photoimmunotherapy for eliciting antitumor immunity and the abscopal effect. ACS Appl Mater Interfaces, 12 (29) ( 2020), pp. 32259-32269 DOI: 10.1021/acsami.0c05090
|
[99] |
M. Chen, D. Yang, Y. Sun, T. Liu, W. Wang, J. Fu, et al.. In situ self-assembly nanomicelle microneedles for enhanced photoimmunotherapy via autophagy regulation strategy. ACS Nano, 15 (2) ( 2021), pp. 3387-3401 DOI: 10.1021/acsnano.0c10396
|
[100] |
A.J. Singer, R.A. Clark. Cutaneous wound healing. N Engl J Med, 341 (10) ( 1999), pp. 738-746
|
[101] |
P.G. Bowler, B.I. Duerden, D.G. Armstrong. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev, 14 (2) ( 2001), pp. 244-269
|
[102] |
C. Wang, X. Jiang, H.J. Kim, S. Zhang, X. Zhou, Y. Chen, et al.. Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing. Biomaterials, 285 ( 2022), Article 121479
|
[103] |
Y. Zhang, Y. Xu, H. Kong, J. Zhang, H.F. Chan, J. Wang, et al.. Microneedle system for tissue engineering and regenerative medicine. Exploration, 3 (1) ( 2023), Article 20210170
|
[104] |
J. Chi, X. Zhang, C. Chen, C. Shao, Y. Zhao, Y. Wang. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact Mater, 5 (2) ( 2020), pp. 253-259
|
[105] |
M. Yin, J. Wu, M. Deng, P. Wang, G. Ji, M. Wang, et al.. Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing. ACS Nano, 15 (11) ( 2021), pp. 17842-17853 DOI: 10.1021/acsnano.1c06036
|
[106] |
L. Sun, L. Fan, F. Bian, G. Chen, Y. Wang, Y. Zhao. MXene-integrated microneedle patches with innate molecule encapsulation for wound healing. Research, 2021 ( 2021), Article 9838490
|
[107] |
X. Zhang, G. Chen, Y. Liu, L. Sun, L. Sun, Y. Zhao. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano, 14 (5) ( 2020), pp. 5901-5908 DOI: 10.1021/acsnano.0c01059
|
[108] |
S. Yao, Y. Wang, J. Chi, Y. Yu, Y. Zhao, Y. Luo, et al.. Porous MOF microneedle array patch with photothermal responsive nitric oxide delivery for wound healing. Adv Sci, 9 (3) ( 2022), Article e2103449
|
[109] |
K. Lee, Y. Xue, J. Lee, H.J. Kim, Y. Liu, P. Tebon, et al.. A patch of detachable hybrid microneedle depot for localized delivery of mesenchymal stem cells in regeneration therapy. Adv Funct Mater, 30 (23) ( 2020), p. 2000086
|
[110] |
R. Kalluri, V.S. LeBleu. The biology, function, and biomedical applications of exosomes. Science, 367 (6478) ( 2020), Article eaau6977
|
[111] |
M. Yuan, K. Liu, T. Jiang, S. Li, J. Chen, Z. Wu, et al.. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing. J Nanobiotechnology, 20 (1) ( 2022), p. 147
|
[112] |
W. Ma, X. Zhang, Y. Liu, L. Fan, J. Gan, W. Liu, et al.. Polydopamine decorated microneedles with Fe-MSC-derived nanovesicles encapsulation for wound healing. Adv Sci, 9 (13) ( 2022), Article e2103317
|
[113] |
Y. Zheng, Y. Yan, L. Lin, Q. He, H. Hu, R. Luo, et al.. Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomater, 142 ( 2022), pp. 113-123
|
[114] |
Y. Shi, X. Feng, L. Lin, J. Wang, J. Chi, B. Wu, et al.. Virus-inspired surface-nanoengineered antimicrobial liposome: a potential system to simultaneously achieve high activity and selectivity. Bioact Mater, 6 (10) ( 2021), pp. 3207-3217
|
[115] |
K. Peng, L.K. Vora, I.A. Tekko, A.D. Permana, J. Domínguez-Robles, D. Ramadon, et al.. Dissolving microneedle patches loaded with amphotericin B microparticles for localised and sustained intradermal delivery: potential for enhanced treatment of cutaneous fungal infections. J Control Release, 339 ( 2021), pp. 361-380
|
[116] |
B. Pamornpathomkul, T. Ngawhirunpat, I.A. Tekko, L. Vora, H.O. McCarthy, R.F. Donnelly. Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery. Eur J Pharm Sci, 121 ( 2018), pp. 200-209
|
[117] |
J. Ziesmer, P. Tajpara, N.J. Hempel, M. Ehrström, K. Melican, L. Eidsmo, et al.. Vancomycin-loaded microneedle arrays against methicillin-resistant Staphylococcus aureus skin infections. Adv Mater Technol, 6 (7) ( 2021), Article 2001307
|
[118] |
R. Jamaledin, C.K.Y. Yiu, E.N. Zare, L.N. Niu, R. Vecchione, G. Chen, et al.. Advances in antimicrobial microneedle patches for combating infections. Adv Mater, 32 (33) ( 2020), p. e2002129
|
[119] |
M. Zhao, M. Zhou, P. Gao, X. Zheng, W. Yu, Z. Wang, et al.. AgNPs/nGOx/Apra nanocomposites for synergistic antimicrobial therapy and scarless skin recovery. J Mater Chem B Mater Biol Med, 10 (9) ( 2022), pp. 1393-1402 DOI: 10.1039/d1tb01991k
|
[120] |
A. Omolu, M. Bailly, R.M. Day. Assessment of solid microneedle rollers to enhance transmembrane delivery of doxycycline and inhibition of MMP activity. Drug Deliv, 24 (1) ( 2017), pp. 942-951 DOI: 10.1080/10717544.2017.1337826
|
[121] |
J. Xu, R. Danehy, H. Cai, Z. Ao, M. Pu, A. Nusawardhana, et al.. Microneedle patch-mediated treatment of bacterial biofilms. ACS Appl Mater Interfaces, 11 (16) ( 2019), pp. 14640-14646 DOI: 10.1021/acsami.9b02578
|
[122] |
E. Caffarel-Salvador, M.C. Kearney, R. Mairs, L. Gallo, S.A. Stewart, A.J. Brady, et al.. Methylene blue-loaded dissolving microneedles: potential use in photodynamic antimicrobial chemotherapy of infected wounds. Pharmaceutics, 7 (4) ( 2015), pp. 397-412 DOI: 10.3390/pharmaceutics7040397
|
[123] |
J.H. Gong, L.J. Chen, X. Zhao, X.P. Yan. Persistent production of reactive oxygen species with Zn 2GeO 4: Cu nanorod-loaded microneedles for methicillin-resistant Staphylococcus aureus infectious wound healing. ACS Appl Mater Interfaces, 14 (15) ( 2022), pp. 17142-17152 DOI: 10.1021/acsami.2c02503
|
[124] |
Y. Gao, W. Zhang, Y.F. Cheng, Y. Cao, Z. Xu, L.Q. Xu, et al.. Intradermal administration of green synthesized nanosilver (NS) through film-coated PEGDA microneedles for potential antibacterial applications. Biomater Sci, 9 (6) ( 2021), pp. 2244-2254 DOI: 10.1039/d0bm02136a
|
[125] |
S. Yao, J. Chi, Y. Wang, Y. Zhao, Y. Luo, Y. Wang. Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing. Adv Healthc Mater, 10 (12) ( 2021), Article e2100056
|
[126] |
F. Wang, X. Zhang, G. Chen, Y. Zhao. Living bacterial microneedles for fungal infection treatment. Research, 2020 ( 2020), p. 2760594
|
[127] |
Y. Su, A. McCarthy, S.L. Wong, R.R. Hollins, G. Wang, J. Xie. Simultaneous delivery of multiple antimicrobial agents by biphasic scaffolds for effective treatment of wound biofilms. Adv Healthc Mater, 10 (12) ( 2021), Article e2100135
|
[128] |
X. Feng, D. Xian, J. Fu, R. Luo, W. Wang, Y. Zheng, et al.. Four-armed host-defense peptidomimetics-augmented vanadium carbide MXene-based microneedle array for efficient photo-excited bacteria-killing. Chem Eng J, 456 ( 2023), Article 141121
|
[129] |
M. Sala, A. Elaissari, H. Fessi. Advances in psoriasis physiopathology and treatments: up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J Control Release, 239 ( 2016), pp. 182-202
|
[130] |
J. Xie, S. Huang, H. Huang, X. Deng, P. Yue, J. Lin, et al.. Advances in the application of natural products and the novel drug delivery systems for psoriasis. Front Pharmacol, 12 ( 2021), Article 644952
|
[131] |
H. Du, P. Liu, J. Zhu, J. Lan, Y. Li, L. Zhang, et al.. Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl Mater Interfaces, 11 (46) ( 2019), pp. 43588-43598 DOI: 10.1021/acsami.9b15668
|
[132] |
I.A. Tekko, A.D. Permana, L. Vora, T. Hatahet, H.O. McCarthy, R.F. Donnelly. Localised and sustained intradermal delivery of methotrexate using nanocrystal-loaded microneedle arrays: potential for enhanced treatment of psoriasis. Eur J Pharm Sci, 152 ( 2020), Article 105469
|
[133] |
Q. Jing, H. Ruan, J. Li, Z. Wang, L. Pei, H. Hu, et al.. Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials, 278 ( 2021), Article 121142
|
[134] |
C.J. Oh, K.M. Das, A.B. Gottlieb. Treatment with anti-tumor necrosis factor α (TNF-α) monoclonal antibody dramatically decreases the clinical activity of psoriasis lesions. J Am Acad Dermatol, 42 (5 Pt 1) ( 2000), pp. 829-830
|
[135] |
E. Korkmaz, E.E. Friedrich, M.H. Ramadan, G. Erdos, A.R. Mathers, O. Burak Ozdoganlar, et al.. Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. Acta Biomater, 24 ( 2015), pp. 96-105
|
[136] |
D. Wu, X. Shou, Y. Yu, X. Wang, G. Chen, Y. Zhao, et al.. Biologics-loaded photothermally dissolvable hyaluronic acid microneedle patch for psoriasis treatment. Adv Funct Mater, 32 (47) ( 2022), Article 2205847
|
[137] |
J. Sroka-Tomaszewska, M. Trzeciak. Molecular mechanisms of atopic dermatitis pathogenesis. Int J Mol Sci, 22 (8) ( 2021), p. 4130 DOI: 10.3390/ijms22084130
|
[138] |
M. Arrais, O. Lulua, F. Quifica, J. Rosado-Pinto, J.M.R. Gama, L. Taborda-Barata. Prevalence of asthma, allergic rhinitis and eczema in 6-7-year-old schoolchildren from Luanda. Angola Allergol Immunopathol, 47 (6) ( 2019), pp. 523-534 DOI: 10.1016/j.aller.2018.12.002
|
[139] |
S. Weidinger, N. Novak. Atopic dermatitis. Lancet, 387 (10023) ( 2016), pp. 1109-1122
|
[140] |
K. Kabashima. New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity. J Dermatol Sci, 70 (1) ( 2013), pp. 3-11
|
[141] |
P.P. Vakharia, J.I. Silverberg. New therapies for atopic dermatitis: additional treatment classes. J Am Acad Dermatol, 78 (3 Suppl 1) ( 2018), pp. S76-S83
|
[142] |
M. Jang, B.M. Kang, H. Yang, J. Ohn, O. Kwon, H. Jung. High-dose steroid dissolving microneedle for relieving atopic dermatitis. Adv Healthc Mater, 10 (7) ( 2021), p. e2001691
|
[143] |
T. Wan, Q. Pan, Y. Ping. Microneedle-assisted genome editing: a transdermal strategy of targeting NLRP 3 by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci Adv, 11 (7) ( 2021), Article eabe2888
|
[144] |
J.H. Kim, J.U. Shin, S.H. Kim, J.Y. Noh, H.R. Kim, J. Lee, et al.. Successful transdermal allergen delivery and allergen-specific immunotherapy using biodegradable microneedle patches. Biomaterials, 150 ( 2018), pp. 38-48
|
[145] |
M.C. Chen, C.S. Chen, Y.W. Wu, Y.Y. Yang. Poly-γ-glutamate microneedles as transdermal immunomodulators for ameliorating atopic dermatitis-like skin lesions in Nc/Nga mice. Acta Biomater, 114 ( 2020), pp. 183-192
|
[146] |
Y.H. Chiu, Y.W. Wu, J.I. Hung, M.C. Chen. Epigallocatechin gallate/L-ascorbic acid-loaded poly-γ-glutamate microneedles with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis. Acta Biomater, 130 ( 2021), pp. 223-233
|
[147] |
|
[148] |
A. Anzai, E.H.C. Wang, E.Y. Lee, V. Aoki, A.M. Christiano. Pathomechanisms of immune-mediated alopecia. Int Immunol, 31 (7) ( 2019), pp. 439-447 DOI: 10.1093/intimm/dxz039
|
[149] |
A.K. Gupta, E.M. Quinlan, M. Venkataraman, M.A. Bamimore. Microneedling for hair loss. J Cosmet Dermatol, 21 (1) ( 2021), pp. 108-117 DOI: 10.1200/go.20.00288
|
[150] |
Y.S. Liu, S.H. Jee, J.L. Chan. Hair transplantation for the treatment of lichen planopilaris and frontal fibrosing alopecia: a report of two cases. Australas J Dermatol, 59 (2) ( 2018), pp. e118-e122
|
[151] |
F. Lolli, F. Pallotti, A. Rossi, M.C. Fortuna, G. Caro, A. Lenzi, et al.. Androgenetic alopecia: a review. Endocrine, 57 (1) ( 2017), pp. 9-17 DOI: 10.1007/s12020-017-1280-y
|
[152] |
C. Iriarte, O. Awosika, M. Rengifo-Pardo, A. Ehrlich. Review of applications of microneedling in dermatology. Clin Cosmet Investig Dermatol, 10 ( 2017), pp. 289-298 DOI: 10.2147/CCID.S142450
|
[153] |
A. Yuan, F. Xia, Q. Bian, H. Wu, Y. Gu, T. Wang, et al.. Ceria nanozyme-integrated microneedles reshape the perifollicular microenvironment for androgenetic alopecia treatment. ACS Nano, 15 (8) ( 2021), pp. 13759-13769 DOI: 10.1021/acsnano.1c05272
|
[154] |
A. Flores, J. Schell, A.S. Krall, D. Jelinek, M. Miranda, M. Grigorian, et al.. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat Cell Biol, 19 (9) ( 2017), pp. 1017-1026 DOI: 10.1038/ncb3575
|
[155] |
Y. Shi, J. Zhao, H. Li, M. Yu, W. Zhang, D. Qin, et al.. A drug-free, hair follicle cycling regulatable, separable, antibacterial microneedle patch for hair regeneration therapy. Adv Healthc Mater, 11 (19) ( 2022), Article e2200908
|
[156] |
G. Yang, Q. Chen, D. Wen, Z. Chen, J. Wang, G. Chen, et al.. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano, 13 (4) ( 2019), pp. 4354-4360 DOI: 10.1021/acsnano.8b09573
|
[157] |
S. Kim, J. Eum, H. Yang, H. Jung. Transdermal finasteride delivery via powder-carrying microneedles with a diffusion enhancer to treat androgenetic alopecia. J Control Release, 316 ( 2019), pp. 1-11
|
[158] |
S. Cao, Y. Wang, M. Wang, X. Yang, Y. Tang, M. Pang, et al.. Microneedles mediated bioinspired lipid nanocarriers for targeted treatment of alopecia. J Control Release, 329 ( 2021), pp. 1-15 DOI: 10.37188/lam.2021.020
|
[159] |
L.C. Strazzulla, E.H.C. Wang, L. Avila, K. Lo Sicco, N. Brinster, A.M. Christiano, et al.. Alopecia areata: disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J Am Acad Dermatol, 78 (1) ( 2018), pp. 1-12
|
[160] |
C.M. Giorgio, G. Babino, S. Caccavale, T. Russo, A.B. De Rosa, R. Alfano, et al.. Combination of photodynamic therapy with 5-aminolaevulinic acid and microneedling in the treatment of alopecia areata resistant to conventional therapies: our experience with 41 patients. Clin Exp Dermatol, 45 (3) ( 2020), pp. 323-326 DOI: 10.1111/ced.14084
|
[161] |
A. Sterkens, J. Lambert, A. Bervoets. Alopecia areata: a review on diagnosis, immunological etiopathogenesis and treatment options. Clin Exp Med, 21 (2) ( 2021), pp. 215-230 DOI: 10.1007/s10238-020-00673-w
|
[162] |
C. Zhou, X. Li, C. Wang, J. Zhang. Alopecia areata: an update on etiopathogenesis, diagnosis, and management. Clin Rev Allergy Immunol, 61 (3) ( 2021), pp. 403-423 DOI: 10.1007/s12016-021-08883-0
|
[163] |
L.C. Strazzulla, E.H.C. Wang, L. Avila, K. Lo Sicco, N. Brinster, A.M. Christiano, et al.. Alopecia areata: an appraisal of new treatment approaches and overview of current therapies. J Am Acad Dermatol, 78 (1) ( 2018), pp. 15-24
|
[164] |
J. He, B. Fang, S. Shan, Y. Xie, C. Wang, Y. Zhang, et al.. Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1. Cell Death Dis, 12 (3) ( 2021), p. 226
|
[165] |
K. Kaplani, S. Koutsi, V. Armenis, F.G. Skondra, N. Karantzelis, S. Champeris Tsaniras, et al.. Wound healing related agents: ongoing research and perspectives. Adv Drug Deliv Rev, 129 ( 2018), pp. 242-253
|
[166] |
S.M. Karppinen, R. Heljasvaara, D. Gullberg, K. Tasanen, T. Pihlajaniemi. Toward understanding scarless skin wound healing and pathological scarring. F1000 Res, 8 ( 2019), p. 8
|
[167] |
J.W. Lawrence, S.T. Mason, K. Schomer, M.B. Klein. Epidemiology and impact of scarring after burn injury: a systematic review of the literature. J Burn Care Res, 33 (1) ( 2012), pp. 136-146
|
[168] |
K.E. Hietanen, T.A. Järvinen, H. Huhtala, T.T. Tolonen, H.O. Kuokkanen, I.S. Kaartinen. Treatment of keloid scars with intralesional triamcinolone and 5-fluorouracil injections—a randomized controlled trial. J Plast Reconstr Aesthet Surg, 72 (1) ( 2019), pp. 4-11
|
[169] |
D.C. Yeo, E.R. Balmayor, J.T. Schantz, C. Xu. Microneedle physical contact as a therapeutic for abnormal scars. Eur J Med Res, 22 (1) ( 2017), p. 28
|
[170] |
Y. Huang, T. Peng, W. Hu, X. Gao, Y. Chen, Q. Zhang, et al.. Fully armed photodynamic therapy with spear and shear for topical deep hypertrophic scar treatment. J Control Release, 343 ( 2022), pp. 408-419
|
[171] |
B. Yang, Y. Dong, Y. Shen, A. Hou, G. Quan, X. Pan, et al.. Bilayer dissolving microneedle array containing 5-fluorouracil and triamcinolone with biphasic release profile for hypertrophic scar therapy. Bioact Mater, 6 (8) ( 2021), pp. 2400-2411
|
[172] |
T. Wu, X. Hou, J. Li, H. Ruan, L. Pei, T. Guo, et al.. Microneedle-mediated biomimetic cyclodextrin metal organic frameworks for active targeting and treatment of hypertrophic scars. ACS Nano, 15 (12) ( 2021), pp. 20087-20104 DOI: 10.1021/acsnano.1c07829
|
[173] |
M. Wang, Y. Han, X. Yu, L. Liang, H. Chang, D.C. Yeo, et al.. Upconversion nanoparticle powered microneedle patches for transdermal delivery of siRNA. Adv Healthc Mater, 9 (2) ( 2020), Article e1900635
|
[174] |
C.W.X. Tan, W.D. Tan, R. Srivastava, A.P. Yow, D.W.K. Wong, H.L. Tey. Dissolving triamcinolone-embedded microneedles for the treatment of keloids: a single-blinded intra-individual controlled clinical trial. Dermatol Ther, 9 (3) ( 2019), pp. 601-611 DOI: 10.1007/s13555-019-00316-3
|
[175] |
J. Park, Y.C. Kim. Topical delivery of 5-fluorouracil-loaded carboxymethyl chitosan nanoparticles using microneedles for keloid treatment. Drug Deliv Transl Res, 11 (1) ( 2021), pp. 205-213
|
[176] |
I.B.S. Sitohang, S.A.P. Sirait, J. Suryanegara. Microneedling in the treatment of atrophic scars: a systematic review of randomised controlled trials. Int Wound J, 18 (5) ( 2021), pp. 577-585 DOI: 10.1111/iwj.13559
|
[177] |
A.M. Layton, C.A. Henderson, W.J. Cunliffe. A clinical evaluation of acne scarring and its incidence. Clin Exp Dermatol, 19 (4) ( 1994), pp. 303-308 DOI: 10.1111/j.1365-2230.1994.tb01200.x
|
[178] |
M. Gupta, K.D. Barman, R. Sarkar. A comparative study of microneedling alone versus along with platelet-rich plasma in acne scars. J Cutan Aesthet Surg, 14 (1) ( 2021), pp. 64-71 DOI: 10.4103/jcas.jcas_190_20
|
[179] |
D. Yan, H. Zhao, C. Li, A. Xia, J. Zhang, S. Zhang, et al.. A clinical study of carbon dioxide lattice laser-assisted or microneedle-assisted 5-aminolevulinic acid-based photodynamic therapy for the treatment of hypertrophic acne scars. Photodermatol Photoimmunol Photomed, 38 (1) ( 2022), pp. 53-59 DOI: 10.1111/phpp.12716
|
[180] |
J. Sharad. Combination of microneedling and glycolic acid peels for the treatment of acne scars in dark skin. J Cosmet Dermatol, 10 (4) ( 2011), pp. 317-323 DOI: 10.1111/j.1473-2165.2011.00583.x
|
[181] |
T. Wen, Z. Lin, Y. Zhao, Y. Zhou, B. Niu, C. Shi, et al.. Bioresponsive nanoarchitectonics-integrated microneedles for amplified chemo-photodynamic therapy against acne vulgaris. ACS Appl Mater Interfaces, 13 (41) ( 2021), pp. 48433-48448 DOI: 10.1021/acsami.1c15673
|
[182] |
Y. Xiang, J. Lu, C. Mao, Y. Zhu, C. Wang, J. Wu, et al.. Ultrasound-triggered interfacial engineering-based microneedle for bacterial infection acne treatment. Sci Adv, 9 (10) ( 2023), Article eadf0854
|
[183] |
T. Zhang, B. Sun, J. Guo, M. Wang, H. Cui, H. Mao, et al.. Active pharmaceutical ingredient poly(ionic liquid)-based microneedles for the treatment of skin acne infection. Acta Biomater, 115 ( 2020), pp. 136-147 DOI: 10.2112/jcr-si115-041.1
|
[184] |
R. Zeng, Y. Liu, W. Zhao, Y. Yang, Q. Wu, M. Li, et al.. A split-face comparison of a fractional microneedle radiofrequency device and fractional radiofrequency therapy for moderate-to-severe acne vulgaris. J Cosmet Dermatol, 19 (10) ( 2020), pp. 2566-2571 DOI: 10.1111/jocd.13299
|
[185] |
Z. Cao, S. Jin, P. Wang, Q. He, Y. Yang, Z. Gao, et al.. Microneedle based adipose derived stem cells-derived extracellular vesicles therapy ameliorates UV-induced photoaging in SKH-1 mice. J Biomed Mater Res A, 109 (10) ( 2021), pp. 1849-1857 DOI: 10.1002/jbm.a.37177
|
[186] |
X. Jin, X. Zhang, Y. Li, M. Xu, Y. Yao, Z. Wu, et al.. Long-acting microneedle patch loaded with adipose collagen fragment for preventing the skin photoaging in mice. Biomater Adv, 135 ( 2022), Article 212744
|
[187] |
Y. You, Y. Tian, Z. Yang, J. Shi, K.J. Kwak, Y. Tong, et al.. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat Biomed Eng ( 2023)
|
[188] |
T.A. Petukhova, L.A. Hassoun, N. Foolad, M. Barath, R.K. Sivamani. Effect of expedited microneedle-assisted photodynamic therapy for field treatment of actinic keratoses: a randomized clinical trial. JAMA Dermatol, 153 (7) ( 2017), pp. 637-643 DOI: 10.1001/jamadermatol.2017.0849
|
[189] |
S.H. Lim, H. Kathuria, M.H.B. Amir, X. Zhang, H.T.T. Duong, P.C. Ho, et al.. High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide. J Control Release, 329 ( 2021), pp. 907-918
|
[190] |
J.Y. Hong, E.J. Ko, S.Y. Choi, K. Li, A.R. Kim, J.O. Park, et al.. Efficacy and safety of a novel, soluble microneedle patch for the improvement of facial wrinkle. J Cosmet Dermatol, 17 (2) ( 2018), pp. 235-241 DOI: 10.1111/jocd.12426
|
[191] |
J.H. An, H.J. Lee, M.S. Yoon, D.H. Kim. Anti-wrinkle efficacy of cross-linked hyaluronic acid-based microneedle patch with acetyl hexapeptide-8 and epidermal growth factor on korean skin. Ann Dermatol, 31 (3) ( 2019), pp. 263-271 DOI: 10.5021/ad.2019.31.3.263
|
[192] |
M. Avcil, G. Akman, J. Klokkers, D. Jeong, A. Çelik. Clinical efficacy of dissolvable microneedles armed with anti-melanogenic compounds to counter hyperpigmentation. J Cosmet Dermatol, 20 (2) ( 2021), pp. 605-614 DOI: 10.1111/jocd.13571
|
[193] |
Y.S. Wang, W.H. Yang, W. Gao, L. Zhang, F. Wei, H. Liu, et al.. Combination and efficiency: preparation of dissolving microneedles array loaded with two active ingredients and its anti-pigmentation effects on guinea pigs. Eur J Pharm Sci, 160 ( 2021), Article 105749
|
[194] |
S. Kim, H. Yang, M. Kim, J.H. Baek, S.J. Kim, S.M. An, et al.. 4-n-butylresorcinol dissolving microneedle patch for skin depigmentation: a randomized, double-blind, placebo-controlled trial. J Cosmet Dermatol, 15 (1) ( 2016), pp. 16-23
|
[195] |
R.F. Donnelly, T.R. Singh, M.M. Tunney, D.I. Morrow, P.A. McCarron, C. O’Mahony, et al.. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res, 26 (11) ( 2009), pp. 2513-2522 DOI: 10.1007/s11095-009-9967-2
|
[196] |
J.H. Cary, B.S. Li, H.I. Maibach. Dermatotoxicology of microneedles (MNs) in man. Biomed Microdevices, 21 (3) ( 2019), p. 66
|
[197] |
S. Chu, D.P. Foulad, M.N. Atanaskova. Safety profile for microneedling: a systematic review. Dermatol Surg, 47 (9) ( 2021), pp. 1249-1254 DOI: 10.1097/01.dss.0000790428.70373.f6
|
[198] |
B. Creelman, C. Frivold, S. Jessup, G. Saxon, C. Jarrahian. Manufacturing readiness assessment for evaluation of the microneedle array patch industry: an exploration of barriers to full-scale manufacturing. Drug Deliv Transl Res, 12 (2) ( 2022), pp. 368-375 DOI: 10.1007/s13346-021-01076-4
|
[199] |
R.E. Lutton, J. Moore, E. Larrañeta, S. Ligett, A.D. Woolfson, R.F. Donnelly. Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Deliv Transl Res, 5 (4) ( 2015), pp. 313-331 DOI: 10.1007/s13346-015-0237-z
|
[200] |
J. Zhao, G. Xu, X. Yao, H. Zhou, B. Lyu, S. Pei, et al.. Microneedle-based insulin transdermal delivery system: current status and translation challenges. Drug Deliv Transl Res, 12 (10) ( 2022), pp. 2403-2427 DOI: 10.1007/s13346-021-01077-3
|
[201] |
F. Tehrani, H. Teymourian, B. Wuerstle, J. Kavner, R. Patel, A. Furmidge, et al.. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat Biomed Eng, 6 (11) ( 2022), pp. 1214-1224 DOI: 10.1038/s41551-022-00887-1
|
[202] |
M. Dervisevic, E. Dervisevic, L. Esser, C.D. Easton, V.J. Cadarso, N.H. Voelcker. Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Biosens Bioelectron, 222 ( 2023), Article 114955
|
[203] |
R. He, H. Liu, T. Fang, Y. Niu, H. Zhang, F. Han, et al.. A colorimetric dermal tattoo biosensor fabricated by microneedle patch for multiplexed detection of health-related biomarkers. Adv Sci, 8 (24) ( 2021), Article e2103030
|
[204] |
J. Shan, X. Zhang, B. Kong, Y. Zhu, Z. Gu, L. Ren, et al.. Coordination polymer nanozymes-integrated colorimetric microneedle patches for intelligent wound infection management. Chem Eng J, 444 ( 2022), Article 136640
|
[205] |
T. Sheng, R. Jin, C. Yang, K. Qiu, M. Wang, J. Shi, et al.. Unmanned aerial vehicle mediated drug delivery for first aid. Adv Mater, 35 (10) ( 2023), p. e2208648
|