[1] |
R. Luttge. Microfabrication for industrial application. William Andrew, Oxford (2011).
|
[2] |
S.A. Maier. Plasmonics: fundamentals and applications. Springer, New York City (2007).
|
[3] |
W.L. Barnes, A. Dereux, T.W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424 (6950) (2003), pp. 824-830.
|
[4] |
J. Homola, M. Piliarik. Surface plasmon resonance (SPR) sensors. Springer, New York City (2006).
|
[5] |
X. Jiang, A.J. Qavi, S.H. Huang, L. Yang. Whispering-gallery sensors. Matter, 3 (2) (2020), pp. 371-392.
|
[6] |
K.D. Heylman, N. Thakkar, E.H. Horak, S.C. Quillin, C. Cherqui, K.A. Knapper, et al. Optical microresonators as single-particle absorption spectrometers. Nat Photonics, 10 (12) (2016), pp. 788-795.
|
[7] |
J. Su, A.F.G. Goldberg, B.M. Stoltz. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci Appl, 5 (2016), e16001.
|
[8] |
Y. Zhi, X.C. Yu, Q. Gong, L. Yang, Y.F. Xiao. Single nanoparticle detection using optical microcavities. Adv Mater, 29 (12) (2017), 1604920.
|
[9] |
S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang, J. Wang, et al. A wireless body area sensor network based on stretchable passive tags. Nat Electron, 2 (8) (2019), pp. 361-368.
|
[10] |
M. Dautta, M. Alshetaiwi, A. Escobar, F. Torres, N. Bernardo, P. Tseng. Multi-functional hydrogel-interlayer RF/NFC resonators as a versatile platform for passive and wireless biosensing. Adv Electron Mater, 6 (4) (2020), 1901311.
|
[11] |
X. Zhang, W.Y. Cui, Y. Lei, X. Zheng, J. Zhang, T.J. Cui. Spoof localized surface plasmons for sensing applications. Adv Mater Technol, 6 (4) (2021), 2000863.
|
[12] |
L.Y. Chen, B.C.K. Tee, A.L. Chortos, G. Schwartz, V. Tse, D.J. Lipomi, et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat Commun, 5 (2014), 5028.
|
[13] |
R.A. Potyrailo, S. Go, D. Sexton, X. Li, N. Alkadi, A. Kolmakov, et al. Extraordinary performance of semiconducting metal oxide gas sensors using dielectric excitation. Nat Electron, 3 (5) (2020), pp. 280-289.
|
[14] |
G. Allison, A.K. Sana, Y. Ogawa, H. Kato, K. Ueno, H. Misawa, et al. A Fabry-Pérot cavity coupled surface plasmon photodiode for electrical biomolecular sensing. Nat Commun, 12 (2021), 6483.
|
[15] |
A. Minopoli, B. Della Ventura, B. Lenyk, F. Gentile, J.A. Tanner, A. Offenhäusser, et al. Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nat Commun, 11 (2020), 6134.
|
[16] |
M.A. Najeeb, Z. Ahmad, R.A. Shakoor. Organic thin-film capacitive and resistive humidity sensors: a focus review. Adv Mater Interfaces, 5 (21) (2018), 1800969.
|
[17] |
J. Liao, L. Yang. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light Sci Appl, 10 (2021), 32.
|
[18] |
A. Čolaković, M. Hadžialić. Internet of Things (IoT): a review of enabling technologies, challenges, and open research issues. Comput Netw, 144 (2018), pp. 17-39.
|
[19] |
J.B. Pendry, L. Martín-Moreno, F.J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305 (5685) (2004), pp. 847-848.
|
[20] |
A.P. Hibbins, B.R. Evans, J.R. Sambles. Experimental verification of designer surface plasmons. Science, 308 (5722) (2005), pp. 670-672.
|
[21] |
X. Shen, T.J. Cui, D. Martin-Cano, F.J. Garcia-Vidal. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA, 110 (1) (2013), pp. 40-45.
|
[22] |
A. Pors, E. Moreno, L. Martin-Moreno, J.B. Pendry, F.J. Garcia-Vidal. Localized spoof plasmons arise while texturing closed surfaces. Phys Rev Lett, 108 (22) (2012), 223905.
|
[23] |
P.A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F.J. Garcia-Vidal, et al. Magnetic localized surface plasmons. Phys Rev X, 4 (2) (2014), 021003.
|
[24] |
X. Shen, T.J. Cui. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser Photonics Rev, 8 (1) (2014), pp. 137-145.
|
[25] |
C.R. Williams, S.R. Andrews, S.A. Maier, A.I. Fernández-Domínguez, L. Martín-Moreno, F.J. García-Vidal. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photonics, 2 (3) (2008), pp. 175-179.
|
[26] |
X. Zhang, T.J. Cui. Deep-subwavelength and high-Q trapped mode induced by symmetry-broken in toroidal plasmonic resonator. IEEE Trans Antennas Propag, 69 (4) (2021), pp. 2122-2129.
|
[27] |
X. Tian, P.M. Lee, Y.J. Tan, T.L.Y. Wu, H. Yao, M. Zhang, et al. Wireless body sensor networks based on metamaterial textiles. Nat Electron, 2 (6) (2019), pp. 243-251.
|
[28] |
Z. Li, X. Tian, C. Qiu, J.S. Ho. Metasurfaces for bioelectronics and healthcare. Nat Electron, 4 (6) (2021), pp. 382-391.
|
[29] |
Y. Liu, K.D. Xu, J. Li, Y.J. Guo, A. Zhang, Q. Chen. Millimeter-wave E-plane waveguide bandpass filters based on spoof surface plasmon polaritons. IEEE Trans Microw Theory Tech, 70 (10) (2022), pp. 4399-4409.
|
[30] |
X. Zhang, W.X. Tang, H.C. Zhang, J. Xu, G.D. Bai, J.F. Liu, et al. A spoof surface plasmon transmission line loaded with varactors and short-circuit stubs and its application in Wilkinson power dividers. Adv Mater Technol, 3 (6) (2018), 1800046.
|
[31] |
Y.J. Guo, K.D. Xu, X. Deng, X. Cheng, Q. Chen. Millimeter-wave on-chip bandpass filter based on spoof surface plasmon polaritons. IEEE Electron Device Lett, 41 (8) (2020), pp. 1165-1168.
|
[32] |
Y. Liang, H. Yu, G. Feng, A.A.A. Apriyana, X. Fu, T.J. Cui. An energy-efficient and low-crosstalk sub-THz I/O by surface plasmonic polariton interconnect in CMOS. IEEE Trans Microw Theory Tech, 65 (8) (2017), pp. 2762-2774.
|
[33] |
Y.J. Zhou, Q.Y. Li, H.Z. Zhao, T.J. Cui. Gain-assisted active spoof plasmonic Fano resonance for high-resolution sensing of glucose aqueous solutions. Adv Mater Technol, 5 (1) (2020), 1900767.
|
[34] |
V.G.M. Annamdas, C.K. Soh. Contactless load monitoring in near-field with surface localized spoof plasmons—a new breed of metamaterials for health of engineering structures. Sens Actuator A, 244 (2016), pp. 156-165.
|
[35] |
Y.J. Guo, K.D. Xu, X. Deng. Tunable enhanced sensing of ferrite film using meander-shaped spoof surface plasmon polariton waveguide. Appl Phys Express, 12 (11) (2019), 115502.
|
[36] |
X. Li, L. Liu, Z. Zhou, J. Shen, Y. Zhang, G. Han, et al. Highly sensitive and topologically robust multimode sensing on spoof plasmonic skyrmions. Adv Opt Mater, 10 (15) (2022), 2200331.
|
[37] |
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529 (7587) (2016), pp. 509-514.
|
[38] |
K. Kwon, J.U. Kim, Y. Deng, S.R. Krishnan, J. Choi, H. Jang, et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat Electron, 4 (4) (2021), pp. 302-312.
|
[39] |
E. Fratticcioli, M. Dionigi, R. Sorrentino. A simple and low-cost measurement system for the complex permittivity characterization of materials. IEEE Trans Instrum Meas, 53 (4) (2004), pp. 1071-1077.
|
[40] |
O. Elhadidy, S. Shakib, K. Krenek, S. Palermo, K. Entesari. A wide-band fully-integrated CMOS ring-oscillator PLL-based complex dielectric spectroscopy system. IEEE Trans Circuits Syst I, 62 (8) (2015), pp. 1940-1949.
|
[41] |
O. Elhadidy, M. Elkholy, A.A. Helmy, S. Palermo, K. Entesari. A CMOS fractional-N PLL-based microwave chemical sensor with 1.5% permittivity accuracy. IEEE Trans Microw Theory Tech, 61 (9) (2013), pp. 3402-3416.
|
[42] |
A.A. Helmy, H.J. Jeon, Y.C. Lo, A.J. Larsson, R. Kulkarni, J. Kim, et al. A self-sustained CMOS microwave chemical sensor using a frequency synthesizer. IEEE J Solid-State Circuits, 47 (10) (2012), pp. 2467-2483.
|
[43] |
R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, et al. Gas sensing using polymer-functionalized deformable Fabry-Pérot interferometers. Sens Actuator B, 182 (2013), pp. 45-52.
|
[44] |
S. Mohammadi, M.H. Zarifi. Differential microwave resonator sensor for real-time monitoring of volatile organic compounds. IEEE Sens J, 21 (5) (2020), pp. 6105-6114.
|
[45] |
M.H. Zarifi, A. Sohrabi, P.M. Shaibani, M. Daneshmand, T. Thundat. Detection of volatile organic compounds using microwave sensors. IEEE Sens J, 15 (1) (2015), pp. 248-254.
|
[46] |
C.V. Rumens, M.A. Ziai, K.E. Belsey, J.C. Batchelor, S.J. Holder. Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors. J Mater Chem C, 3 (39) (2015), pp. 10091-10098.
|
[47] |
A. Rydosz, E. Maciak, K. Wincza, S. Gruszczynski. Microwave-based sensors with phthalocyanine films for acetone, ethanol and methanol detection. Sens Actuator B, 237 (2016), pp. 876-886.
|
[48] |
W. Ge, S. Jiao, Z. Chang, X. He, Y. Li. Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets. ACS Appl Mater Interfaces, 12 (11) (2020), pp. 13200-13207.
|
[49] |
S. Sun, L. Zhu. Wideband microstrip ring resonator bandpass filters under multiple resonances. IEEE Trans Microw Theory Tech, 55 (10) (2007), pp. 2176-2182.
|
[50] |
R.A. Waldron. Perturbation theory of resonant cavities. Proc IEE Part C, 107 (12) (1960), pp. 272-274.
|
[51] |
R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, et al. Laser phase and frequency stabilization using an optical resonator. Appl Phys B, 31 (1983), pp. 97-105.
|
[52] |
E.D. Black. An introduction to Pound-Drever-Hall laser frequency stabilization. Am J Phys, 69 (1) (2001), pp. 79-87.
|
[53] |
B.P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, et al. LIGO: the laser interferometer gravitational-wave observatory. Rep Prog Phys, 72 (7) (2009), 076901.
|
[54] |
H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A.S. Zibrov, et al. High-fidelity control and entanglement of Rydberg-atom qubits. Phys Rev Lett, 121 (12) (2018), 123603.
|
[55] |
Q.X. Li, X. Zhang, L.X. Zhu, S.H. Yan, A.A. Jia, Y.K. Luo, et al. Intelligent and automatic laser frequency locking system using pattern recognition technology. Opt Lasers Eng, 126 (2020), 105881.
|
[56] |
X. Guo, L. Zhang, J. Liu, L. Chen, L. Fan, G. Xu, et al. An automatic frequency stabilized laser with hertz-level linewidth. Opt Laser Technol, 145 (2022), 107498.
|
[57] |
J.G. Ziegler, N.B. Nichols. Optimum settings for automatic controllers. Trans ASME, 64 (8) (1942), pp. 759-765.
|
[58] |
J. Mocak, A.M. Bond, S. Mitchell, G. Scollary. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report). Pure Appl Chem, 69 (2) (1997), pp. 297-328.
|
[59] |
D. Quesada-González, C. Stefani, I. González, A. de la Escosura-Muñiz, N. Domingo, P. Mutjé, et al. Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosens Bioelectron, 141 (2019), 111407.
|
[60] |
G. Bailly, A. Harrabi, J. Rossignol, D. Stuerga, P. Pribetich. Microwave gas sensing with a microstrip interDigital capacitor: detection of NH3 with TiO2 nanoparticles. Sens Actuator B, 236 (2016), pp. 554-564.
|
[61] |
P. Lienerth, S. Fall, P. Lévêque, U. Soysal, T. Heiser. Improving the selectivity to polar vapors of OFET-based sensors by using the transfer characteristics hysteresis response. Sens Actuator B, 225 (2016), pp. 90-95.
|