[1] |
B. Pan, C.R. Clarkson, A. Younis, C. Song, C. Debuhr, A. Ghanizadeh, et al.. New methods to evaluate impacts of osmotic pressure and surfactant on fracturing fluid loss and effect of contact angle on spontaneous imbibition data scaling in unconventional reservoirs. Fuel, 328 ( 2022), Article 125328
|
[2] |
B. Pan, C.R. Clarkson, C. Debuhr, A. Younis, C. Song, A. Ghanizadeh, et al.. Low-permeability reservoir sample wettability characterization at multiple scales: pore-, micro- and macro-contact angles. J Nat Gas Sci Eng, 95 ( 2021), Article 104229
|
[3] |
Y. Gao, K. Wu, Z. Chen, T. Zhou, J. Li, D. Feng, et al.. Effect of wetting hysteresis on fluid flow in shale oil reservoirs. Energy Fuels, 35 (15) ( 2021), pp. 12075-12082
|
[4] |
R. Li, Z. Chen, K. Wu, X. Hao, J. Xu. An analytical model for water-oil two-phase flow in inorganic nanopores in shale oil reservoirs. Petrol Sci, 18 (6) ( 2021), pp. 1776-1787
|
[5] |
Y. Yang, K. Wang, L. Zhang, H. Sun, K. Zhang, J. Ma. Pore-scale simulation of shale oil flow based on pore network model. Fuel, 251 ( 2019), pp. 683-692
|
[6] |
Y. Yang, J. Liu, J. Yao, J. Kou, Z. Li, T. Wu, et al.. Adsorption behaviors of shale oil in kerogen slit by molecular simulation. Chem Eng J, 387 ( 2020), Article 124054
|
[7] |
J.O. Alvarez, D.S. Schechter. Wettability alteration and spontaneous imbibition in unconventional liquid reservoirs by surfactant additives. SPE Reserv Eval Eng, 20 (01) ( 2017), pp. 107-117
|
[8] |
W. Zhu, Z. Chen, Z. Song, J. Wu, W. Li, M. Yue. Research progress in theories and technologies of shale gas development in China. J Univ Sci Technol Beijing, 43 ( 2021), pp. 1397-1412
|
[9] |
H. Chu, X. Liao, Z. Chen, W.J.J. Lee. Rate-transient analysis of a constant-bottomhole-pressure multihorizontal well pad with a semianalytical single-phase method. SPE J, 25 (06) ( 2020), pp. 3280-3299
|
[10] |
H. Chu, X. Liao, Z. Chen, X. Zhao, W. Liu, P. Dong. Transient pressure analysis of a horizontal well with multiple, arbitrarily shaped horizontal fractures. J Petrol Sci Eng, 180 ( 2019), pp. 631-642
|
[11] |
J. Virkutyt, M. Sillanpää, P. Latostenmaa. Electrokinetic soil remediation-critical overview. Sci Total Environ, 289 (1-3) ( 2002), pp. 97-121
|
[12] |
R. Aranda, H. Davarzani, S. Colombano, F. Laurent, H. Bertin. Experimental study of foam flow in highly permeable porous media for soil remediation. Transp Porous Media, 134 (1) ( 2020), pp. 231-247
|
[13] |
X. Wang, L. Ren, T. Long, C. Geng, X. Tian. Migration and remediation of organic liquid pollutants in porous soils and sedimentary rocks: a review. Environ Chem Lett, 21 (1) ( 2023), pp. 479-496
|
[14] |
B. Pan, Y. Li, H. Wang, F. Jones, S. Iglauer. CO2 and CH4 wettabilities of organic-rich shale. Energy Fuels, 32 (2) ( 2018), pp. 1914-1922
|
[15] |
B. Pan, F. Jones, Z. Huang, Y. Yang, Y. Li, S.H. Hejazi, et al.. Methane (CH4) wettability of clay-coated quartz at reservoir conditions. Energy Fuels, 33 (2) ( 2019), pp. 788-795
|
[16] |
B. Pan, X. Yin, Y. Ju, S. Iglauer. Underground hydrogen storage: influencing parameters and future outlook. Adv Colloid Interface Sci, 294 ( 2021), Article 102473
|
[17] |
B. Pan, X. Yin, W. Zhu, Y. Yang, Y. Ju, Y. Yuan, et al.. Theoretical study of brine secondary imbibition in sandstone reservoirs: implications for H2, CH4, and CO2 geo-storage. Int J Hydrogen Energy, 47 (41) ( 2022), pp. 18058-18066
|
[18] |
B. Pan, K. Liu, B. Ren, M. Zhang, Y. Ju, J. Gu, et al.. Impacts of relative permeability hysteresis, wettability, and injection/withdrawal schemes on underground hydrogen storage in saline aquifers. Fuel, 333 ( 2023), Article 126516
|
[19] |
S. Iglauer, A. Paluszny, C.H. Pentland, M.J. Blunt. Residual CO2 imaged with X-ray micro-tomography. Geophys Res Lett, 38 (21) ( 2011), Article L21403
|
[20] |
A. Rezaei, A. Hassanpouryouzband, I. Molnar, Z. Derikvand, R.S. Haszeldine, K. Edlmann. Relative permeability of hydrogen and aqueous brines in sandstones and carbonates at reservoir conditions. Geophys Res Lett, 49 (12) ( 2022), Article e2022GL099433
|
[21] |
N. Heinemann, J. Alcalde, J.M. Miocic, S.J.T. Hangx, J. Kallmeyer, C. Ostertag-Henning, et al.. Enabling large-scale hydrogen storage in porous media—the scientific challenges. Energy Environ Sci, 14 (2) ( 2021), pp. 853-864
|
[22] |
X. Jin, C. Chao, K. Edlmann, X. Fan. Understanding the interplay of capillary and viscous forces in CO2 core flooding experiments. J Hydrol, 606 ( 2022), Article 127411
|
[23] |
R. Anderson, L. Zhang, Y. Ding, M. Blanco, X. Bi, D.P. Wilkinson. A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells. J Power Sources, 195 (15) ( 2010), pp. 4531-4553
|
[24] |
D.H. Jeon. Wettability in electrodes and its impact on the performance of lithium-ion batteries. Energy Storage Mater, 18 ( 2019), pp. 139-147
|
[25] |
C. Lian, H. Su, C. Li, H. Liu, J. Wu. Non-negligible roles of pore size distribution on electroosmotic flow in nanoporous materials. ACS Nano, 13 (7) ( 2019), pp. 8185-8192
|
[26] |
M. Cooley, A. Sarode, M. Hoore, D.A. Fedosov, S. Mitragotri, G.A. Sen. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale, 10 (32) ( 2018), pp. 15350-15364
|
[27] |
K. Müller, D.A. Fedosov, G. Gompper.Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep, 4 ( 2014), p. 4871
|
[28] |
M.A. Alkhadra, X. Su, M.E. Suss, H. Tian, E.N. Guyes, A.N. Shocron, et al.. Electrochemical methods for water purification, ion separations, and energy conversion. Chem Rev, 122 (16) ( 2022), pp. 13547-13635
|
[29] |
A. Sood, A.D. Poletayev, D.A. Cogswell, P.M. Csernica, J.T. Mefford, D. Fraggedakis, et al.. Electrochemical ion insertion from the atomic to the device scale. Nat Rev Mater, 6 (9) ( 2021), pp. 847-867
|
[30] |
M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser. Water desalination via capacitive deionization: what is it and what can we expect from it?. Energy Environ Sci, 8 (8) ( 2015), pp. 2296-2319
|
[31] |
P.J.A. Kenis, R.F. Ismagilov, S. Takayama, G.M. Whitesides, S. Li, H.S. White. Fabrication inside microchannels using fluid flow. Acc Chem Res, 33 (12) ( 2000), pp. 841-847
|
[32] |
S. Battat, D.A. Weitz, G.M. Whitesides. Nonlinear phenomena in microfluidics. Chem Rev, 122 (7) ( 2022), pp. 6921-6937
|
[33] |
S. Iijima. Helical microtubules of graphitic carbon. Nature, 354 (6348) ( 1991), pp. 56-58
|
[34] |
M. Majumder, N. Chopra, R. Andrews, B.J. Hinds. Enhanced flow in carbon nanotubes. Nature, 438 (7064) ( 2005), p. 44
|
[35] |
A.I. Skoulidas, D.M. Ackerman, J.K. Johnson, D.S. Sholl. Rapid transport of gases in carbon nanotubes. Phys Rev Lett, 89 (18) ( 2002), Article 185901
|
[36] |
J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, et al.. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312 (5776) ( 2006), pp. 1034-1037
|
[37] |
A. Noy, H.G. Park, F. Fornasiero, J.K. Holt, C.P. Grigoropoulos, O. Bakajin. Nanofluidics in carbon nanotubes. Nano Today, 2 (6) ( 2007), pp. 22-29
|
[38] |
M.A. Tofighy, T. Mohammadi. Nickel ions removal from water by two different morphologies of induced CNTs in mullite pore channels as adsorptive membrane. Ceram Int, 41 (4) ( 2015), pp. 5464-5472
|
[39] |
Y. Wang, J. Zhu, H. Huang, H.H. Cho. Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: capabilities and potential mechanisms. J Membr Sci, 479 ( 2015), pp. 165-174
|
[40] |
J. Zhong, Y. Zhao, C. Lu, Y. Xu, Z. Jin, F. Mostowfi, et al.. Nanoscale phase measurement for the shale challenge: multicomponent fluids in multiscale volumes. Langmuir, 34 (34) ( 2018), pp. 9927-9935
|
[41] |
J. Zhong, S.H. Zandavi, H. Li, B. Bao, A.H. Persad, F. Mostowfi, et al.. Condensation in one-dimensional dead-end nanochannels. ACS Nano, 11 (1) ( 2017), pp. 304-313
|
[42] |
D. Sinton. Energy: the microfluidic frontier. Lab Chip, 14 (17) ( 2014), pp. 3127-3134
|
[43] |
T. Kong, H.C. Shum, D.A. Weitz. The fourth decade of microfluidics. Small, 16 (9) ( 2020), p. 2000070
|
[44] |
G.M. Whitesides. The origins and the future of microfluidics. Nature, 442 (7101) ( 2006), pp. 368-373
|
[45] |
H. Cui, Z.S. Li, S. Zhu. Flow characteristics of liquids in microtubes driven by a high pressure. Phys Fluids, 16 (5) ( 2004), pp. 1803-1810
|
[46] |
C.H. Choi, K.J.A. Westin, K.S. Breuer. Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys Fluids, 15 (10) ( 2003), pp. 2897-2902
|
[47] |
D. Lumma, A. Best, A. Gansen, F. Feuillebois, J.O. Rädler, O.I. Vinogradova. Flow profile near a wall measured by double-focus fluorescence cross-correlation. Phys Rev E, 67 (5) ( 2003), Article 056313
|
[48] |
S. Jin, P. Huang, J. Park, J.Y. Yoo, K.S. Breuer. Near-surface velocimetry using evanescent wave illumination. Exp Fluids, 37 (6) ( 2004), pp. 825-833
|
[49] |
R.G. Horn, O.I. Vinogradova, M.E. Mackay, N. Phan-Thien. Hydrodynamic slippage inferred from thin film drainage measurements in a solution of nonadsorbing polymer. J Chem Phys, 112 (14) ( 2000), pp. 6424-6433
|
[50] |
W. Shen, F. Song, X. Hu, G. Zhu, W. Zhu.Experimental study on flow characteristics of gas transport in micro- and nanoscale pores. Sci Rep, 9 (1) ( 2019), p. 10196
|
[51] |
M.E. Nordberg. Properties of some Vycor-brand glasses. J Am Ceram Soc, 27 (10) ( 1944), pp. 299-305
|
[52] |
P. Debye, R.L. Cleland. Flow of liquid hydrocarbons in porous vycor. J Appl Phys, 30 (6) ( 1959), pp. 843-849
|
[53] |
S. Gruener, D. Wallacher, S. Greulich, M. Busch, P. Huber. Hydraulic transport across hydrophilic and hydrophobic nanopores: flow experiments with water and n-hexane. Phys Rev E, 93 (1) ( 2016), Article 013102
|
[54] |
X.Y. You, J.R. Zheng, Q. Jing. Effects of boundary slip and apparent viscosity on the stability of microchannel flow. Forsch Im Ingenieurwes, 71 ( 2007), pp. 99-106
|
[55] |
X.F. Wang, W.Y. Zhu, Q.J. Deng, X.L. Zhang, L. Lou, Y. Gao. Micro circular tube flow mathematical model with the effect of van der Waals force. Appl Mech Mat, 448-453 ( 2014), pp. 975-981
|
[56] |
J.A. Thomas, A.J.H. McGaughey. Reassessing fast water transport through carbon nanotubes. Nano Lett, 8 (9) ( 2008), pp. 2788-2793
|
[57] |
K. Wu, Z. Chen, J. Li, X. Li, J. Xu, X. Dong. Wettability effect on nanoconfined water flow. Proc Natl Acad Sci USA, 114 (13) ( 2017), pp. 3358-3363
|
[58] |
L. Zhang, K. Wu, Z. Chen, J. Li, X. Yu, S. Yang, et al.. Quasi-continuum water flow under nanoconfined conditions: coupling the effective viscosity and the slip length. Ind Eng Chem Res, 59 (46) ( 2020), pp. 20504-20514
|
[59] |
X. Zhang, W. Zhu, Q. Cai, Q. Liu, X. Wang, Y. Lou. Analysis of weakly compressible fluid flow in nano/micro-size circular tubes considering solid wall force. J Univ Sci Technol Beijing, 36 ( 2014), pp. 569-575
|
[60] |
X. Zhang, W. Zhu, Q. Cai, Y. Shi, X. Wu, T. Jin, et al.. Compressible liquid flow in nano- or micro-sized circular tubes considering wall-liquid Lifshitz-van der Waals interaction. Phys Fluids, 30 (6) (2018), Article 062002
|
[61] |
U. Heinbuch, J. Fischer. Liquid flow in pores: slip, no-slip, or multilayer sticking. Phys Rev A Gen Phys, 40 (2) ( 1989), pp. 1144-1146
|
[62] |
P.A. Thompson, S.M. Troian. A general boundary condition for liquid flow at solid surfaces. Nature, 389 (6649) ( 1997), pp. 360-362
|
[63] |
C. Davidson, X. Xuan. Electrokinetic energy conversion in slip nanochannels. J Power Sources, 179 (1) ( 2008), pp. 297-300
|
[64] |
M. Jeong, Y. Kim, W. Zhou, W.Q. Tao, M.Y. Ha. Effects of surface wettability, roughness and moving wall velocity on the Couette flow in nano-channel using multi-scale hybrid method. Comput Fluids, 147 ( 2017), pp. 1-11
|
[65] |
D.M. Huang, C. Sendner, D. Horinek, R.R. Netz, L. Bocquet. Water slippage versus contact angle: a quasiuniversal relationship. Phys Rev Lett, 101 (22) ( 2008), Article 226101
|
[66] |
I. Hanasaki, A. Nakatani. Flow structure of water in carbon nanotubes: poiseuille type or plug-like?. J Chem Phys, 124 (14) ( 2006), Article 144708
|
[67] |
S. Joseph, N.R. Aluru. Why are carbon nanotubes fast transporters of water?. Nano Lett, 8 (2) ( 2008), pp. 452-458
|
[68] |
S. Wang, F. Javadpour, Q. Feng. Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel, 171 ( 2016), pp. 74-86
|
[69] |
S. Wang, Q. Feng, F. Javadpour, Y.B. Yang. Breakdown of fast mass transport of methane through calcite nanopores. J Phys Chem C, 120 (26) ( 2016), pp. 14260-14269
|
[70] |
K. Wu, Z. Chen, J. Li, J. Xu, K. Wang, S. Wang, et al.. Manipulating the flow of nanoconfined water by temperature stimulation. Angew Chem, 57 (28) ( 2018), pp. 8432-8437
|
[71] |
S. Movahed, D. Li. Electrokinetic transport through nanochannels. Electrophoresis, 32 (11) ( 2011), pp. 1259-1267
|
[72] |
W. Han, X. Chen. Nano-electrokinetic ion enrichment of highly viscous fluids in micro-nanochannel. Chem Eng Process, 143 ( 2019), Article 107626
|
[73] |
W.L. Hsu, D.J.E. Harvie, M.R. Davidson, D.E. Dunstan, J. Hwang, H. Daiguji. Viscoelectric effects in nanochannel electrokinetics. J Phys Chem C, 121 (37) ( 2017), pp. 20517-20523
|
[74] |
X. Mo, X. Hu. Electroviscous effect on pressure driven flow and related heat transfer in microchannels with surface chemical reaction. Int J Heat Mass Transf, 130 ( 2019), pp. 813-820
|
[75] |
C. Li, Z. Liu, N. Qiao, Z. Feng, Z.Q. Tian. The electroviscous effect in nanochannels with overlapping electric double layers considering the height size effect on surface charge. Electrochim Acta, 419 ( 2022), Article 140421
|
[76] |
M. Zhang, S. Zhan, Z. Jin. Recovery mechanisms of hydrocarbon mixtures in organic and inorganic nanopores during pressure drawdown and CO2 injection from molecular perspectives. Chem Eng J, 382 ( 2020), Article 122808
|
[77] |
J. Li, C. Sun. Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies. Energy, 261 ( 2022), Article 125176
|
[78] |
X. Hong, H. Yu, H. Xu, X. Wang, X. Jin, H. Wu, et al.. Competitive adsorption of asphaltene and n-heptane on quartz surfaces and its effect on crude oil transport through nanopores. J Mol Liq, 359 ( 2022), Article 119312
|
[79] |
S. Brunauer, L.S. Deming, W.E. Deming, E. Teller. On a theory of the van der Waals adsorption of gases. J Am Chem Soc, 62 (7) ( 1940), pp. 1723-1732
|
[80] |
S. Gregg, K. Sing.Adsorption, surface area and porosity. ( 2nd ed.), Academic Press, London ( 1982)
|
[81] |
S. Rani, E. Padmanabhan, B.K. Prusty. Review of gas adsorption in shales for enhanced methane recovery and CO2 storage. J Petrol Sci Eng, 175 ( 2019), pp. 634-643
|
[82] |
T. Wu, D. Zhang.Impact of adsorption on gas transport in nanopores. Sci Rep, 6 ( 2016), p. 23629
|
[83] |
A. Ali, T.T.B. Le, A. Striolo, D.R. Cole. Salt effects on the structure and dynamics of interfacial water on calcite probed by equilibrium molecular dynamics simulations. J Phys Chem C, 124 (45) ( 2020), pp. 24822-24836
|
[84] |
M. Zhang, W. Li, Z. Jin. Structural properties of deprotonated naphthenic acids immersed in water in pristine and hydroxylated carbon nanopores from molecular perspectives. J Hazard Mater, 415 ( 2021), Article 125660
|
[85] |
A. Han, G. Mondin, N.G. Hegelbach, N.F. de Rooij, U. Staufer. Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force. J Colloid Interface Sci, 293 (1) ( 2006), pp. 151-157
|
[86] |
B. Li, W. Zhu, Q. Ma, H. Li, D. Kong, Z. Song. Pore-scale visual investigation on the spontaneous imbibition of surfactant solution in oil-wet capillary tubes. Energy Sources Part A, 44 (2) ( 2022), pp. 3395-3405
|
[87] |
P. Huber, S. Grüner, C. Schäfer, K. Knorr, A.V. Kityk. Rheology of liquids in nanopores: a study on the capillary rise of water, n-hexadecane and n-tetracosane in mesoporous silica. Eur Phys J Spec Top, 141 (1) ( 2007), pp. 101-105
|
[88] |
S. Gruener, P. Huber. Spontaneous imbibition dynamics of an n-alkane in nanopores: evidence of meniscus freezing and monolayer sticking. Phys Rev Lett, 103 (17) ( 2009), Article 174501
|
[89] |
S. Gruener, H.E. Hermes, B. Schillinger, S.U. Egelhaaf, P. Huber. Capillary rise dynamics of liquid hydrocarbons in mesoporous silica as explored by gravimetry, optical and neutron imaging: nano-rheology and determination of pore size distributions from the shape of imbibition fronts. Colloids Surf A, 496 ( 2016), pp. 13-27
|
[90] |
B. Pan, C.R. Clarkson, M. Atwa, C. Debuhr, A. Ghanizadeh, V.I. Birss. Wetting dynamics of nanoliter water droplets in nanoporous media. J Colloid Interface Sci, 589 ( 2021), pp. 411-423
|
[91] |
B. Pan, C.R. Clarkson, M. Atwa, X. Tong, C. Debuhr, A. Ghanizadeh, et al.. Spontaneous imbibition dynamics of liquids in partially-wet nanoporous media: experiment and theory. Transp Porous Media, 137 (3) ( 2021), pp. 555-574
|
[92] |
Y. Gogotsi, J.A. Libera, A. Güvenç-Yazicioglu, C.M. Megaridis. In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl Phys Lett, 79 (7) ( 2001), pp. 1021-1023
|
[93] |
M.P. Rossi, H. Ye, Y. Gogotsi, S. Babu, P. Ndungu, J.C. Bradley. Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett, 4 ( 2004), pp. 989-993
|
[94] |
U. Anand, T. Ghosh, Z. Aabdin, S. Koneti, X. Xu, F. Holsteyns, et al.. Dynamics of thin precursor film in wetting of nanopatterned surfaces. Proc Natl Acad Sci USA, 118 (38) ( 2021), Article e2108074118
|
[95] |
L. Fu, J. Zhai. Biomimetic stimuli-responsive nanochannels and their applications. Electrophoresis, 40 (16-17) ( 2019), pp. 2058-2074
|
[96] |
S. Ferrati, D. Fine, J. You, E. De Rosa, L. Hudson, E. Zabre, et al.. Leveraging nanochannels for universal, zero-order drug delivery in vivo. J Control Release, 172 (3) ( 2013), pp. 1011-1019
|
[97] |
S. Romano-Feinholz, A. Salazar-Ramiro, E. Muñoz-Sandoval, R. Magaña-Maldonado, N. Hernández Pedro, E. Rangel López, et al.. Cytotoxicity induced by carbon nanotubes in experimental malignant glioma. Int J Nanomed, 12 ( 2017), pp. 6005-6026
|
[98] |
K.L. Ly, P. Hu, L.H.P. Pham, X. Luo. Flow-assembled chitosan membranes in microfluidics: recent advances and applications. J Mater Chem B, 9 (15) ( 2021), pp. 3258-3283
|
[99] |
A. Shakeri, N. Sun, M. Badv, T.F. Didar. Generating 2-dimensional concentration gradients of biomolecules using a simple microfluidic design. Biomicrofluidics, 11 (4) ( 2017), Article 044111
|
[100] |
Y. Gu, V. Hegde, K.J.M. Bishop. Measurement and mitigation of free convection in microfluidic gradient generators. Lab Chip, 18 (22) ( 2018), pp. 3371-3378
|
[101] |
L. Wang, E. Parsa, Y. Gao, J.T. Ok, K. Neeves, X. Yin, et al.. Experimental study and modeling of the effect of nanoconfinement on hydrocarbon phase behavior in unconventional reservoirs. In: Proceedingsof the SPE Western North American and Rocky Mountain Joint Meeting; 2014 Apr 17-18 ; Denver, CO, USA, OnePetro, Richardson ( 2014)
|
[102] |
M. Akbarabadi, S. Saraji, M. Piri, D. Georgi, M. Delshad. Nano-scale experimental investigation of in-situ wettability and spontaneous imbibition in ultra-tight reservoir rocks. Adv Water Resour, 107 ( 2017), pp. 160-179
|
[103] |
K. Xu, T. Liang, P. Zhu, P. Qi, J. Lu, C. Huh, et al.. A 2.5-D glass micromodel for investigation of multi-phase flow in porous media. Lab Chip, 17 (4) ( 2017), pp. 640-646
|
[104] |
H.J. Deglint, C.R. Clarkson, A. Ghanizadeh, C. DeBuhr, J.M. Wood. Comparison of micro- and macro-wettability measurements and evaluation of micro-scale imbibition rates for unconventional reservoirs: implications for modeling multi-phase flow at the micro-scale. J Nat Gas Sci Eng, 62 ( 2019), pp. 38-67
|
[105] |
J. Qiao, J. Zeng, S. Jiang, G. Yang, Y. Zhang, X. Feng, et al.. Investigation on the unsteady-state two-phase fluid transport in the nano-pore system of natural tight porous media. J Hydrol, 607 ( 2022), Article 127516
|
[106] |
J.J. Sheng. Critical review of field EOR projects in shale and tight reservoirs. J Petrol Sci Eng, 159 ( 2017), pp. 654-665
|
[107] |
Z. Zhou, X. Li, T.W. Teklu. A critical review of osmosis-associated imbibition in unconventional formations. Energies, 14 (4) ( 2021), p. 835
|
[108] |
B. Pan, C.R. Clarkson, A. Younis, C. Song, C. Debuhr, A. Ghanizadeh, et al.. Fracturing fluid loss in unconventional reservoirs:evaluating the impact of osmotic pressure and surfactant and methods to upscale results. In:Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference (URTeC); 2021 Jul 26- 28 ; Houston, TX, USA, Houston: Society of Exploration Geophysicists ( 2021), p. 3773
|
[109] |
W. Zhu, Y. Liu, Y. Shi, G. Zou, Q. Zhang, D. Kong. Effect of dynamic threshold pressure gradient on production performance in water-bearing tight gas reservoir. Adv GeoEnergy Res, 6 (4) ( 2022), pp. 286-295
|
[110] |
W. Zhu, G. Zou, Y. Liu, W. Liu, B. Pan. The influence of movable water on the gas-phase threshold pressure gradient in tight gas reservoirs. Energies, 15 ( 2022), p. 5309
|
[111] |
B. Jacob.Dynamics of fluids in porous media. ( 5th ed.), Dover Publications, New York City ( 2013)
|
[112] |
W. Zhu. Study on the theory of multiphase mixed seepage in porous media. J Univ Sci Technol Beijing, 45 (5) ( 2023), pp. 833-839
|
[113] |
X. Zhang. Percolatiton theory research of weekly compressible fluid flow considering wall-liquid interaction [dissertation]. University of Science and Technology Beijing, Beijing ( 2014) Chinese
|
[114] |
X. Wang. Study on micro flow dynamics mechanisms and numerical simulation in porous media [dissertation]. University of Science and Technology Beijing, Beijing ( 2009) Chinese
|
[115] |
L. Zhang, X. Yu, Z. Chen, J. Li, G. Hui, M. Yang, et al.. Capillary dynamics of confined water in nanopores: the impact of precursor films. Chem Eng J, 409 ( 2021), Article 128113
|
[116] |
W. Tian, K. Wu, Z. Chen, L. Lai, Y. Gao, J. Li. Effect of dynamic contact angle on spontaneous capillary-liquid-liquid imbibition by molecular kinetic theory. SPE J, 26 (04) ( 2021), pp. 2324-2339
|
[117] |
B. Liu, C. Qi, X. Zhao, G. Teng, L. Zhao, H. Zheng, et al.. Nanoscale two-phase flow of methane and water in shale inorganic matrix. J Phys Chem C, 122 (46) ( 2018), pp. 26671-26679
|
[118] |
H. Xu, H. Yu, J. Fan, Y. Zhu, F. Wang, H. Wu. Two-phase transport characteristic of shale gas and water through hydrophilic and hydrophobic nanopores. Energy Fuels, 34 (4) ( 2020), pp. 4407-4420
|
[119] |
L. Zhang, Q. Li, C. Liu, Y. Liu, S. Cai, S. Wang, et al.. Molecular insight of flow property for gas-water mixture (CO2/CH4-H2O) in shale organic matrix. Fuel, 288 ( 2021), Article 119720
|
[120] |
L. Gong, J.H. Shi, B. Ding, Z.Q. Huang, S.Y. Sun, J. Yao. Molecular insight on competitive adsorption and diffusion characteristics of shale gas in water-bearing channels. Fuel, 278 ( 2020), Article 118406
|
[121] |
S. Zhan, Y. Su, Z. Jin, M. Zhang, W. Wang, Y. Hao, et al.. Study of liquid-liquid two-phase flow in hydrophilic nanochannels by molecular simulations and theoretical modeling. Chem Eng J, 395 ( 2020), Article 125053
|
[122] |
W. Zhang, Q. Feng, Z. Jin, X. Xing, S. Wang. Molecular simulation study of oil-water two-phase fluid transport in shale inorganic nanopores. Chem Eng Sci, 245 ( 2021), Article 116948
|
[123] |
G. Galliero. Lennard-Jones fluid-fluid interfaces under shear. Phys Rev E, 81 (5) ( 2010), Article 056306
|
[124] |
J. Koplik, J.R. Banavar. Slip, immiscibility, and boundary conditions at the liquid-liquid interface. Phys Rev Lett, 96 (4) ( 2006), Article 044505
|
[125] |
T.A. Ho, Y. Wang. Enhancement of oil flow in shale nanopores by manipulating friction and viscosity. Phys Chem Chem Phys, 21 (24) ( 2019), pp. 12777-12786
|
[126] |
J. Xu, S. Zhan, W. Wang, Y. Su, H. Wang. Molecular dynamics simulations of two-phase flow of n-alkanes with water in quartz nanopores. Chem Eng J, 430 ( 2022), Article 132800
|
[127] |
E. Ghazimirsaeed, M. Madadelahi, M. Dizani, A. Shamloo. Secondary flows, mixing, and chemical reaction analysis of droplet-based flow inside serpentine microchannels with different cross sections. Langmuir, 37 (17) ( 2021), pp. 5118-5130
|
[128] |
C. Jia, Z. Huang, K. Sepehrnoori, J. Yao. Modification of two-scale continuum model and numerical studies for carbonate matrix acidizing. J Petrol Sci Eng, 197 ( 2021), Article 107972
|
[129] |
C. Jia, K. Sepehrnoori, Z. Huang, H. Zhang, J. Yao. Numerical studies and analysis on reactive flow in carbonate matrix acidizing. J Petrol Sci Eng, 201 ( 2021), Article 108487
|
[130] |
C. Jia, K. Sepehrnoori, Z. Huang, J. Yao. Modeling and analysis of carbonate matrix acidizing using a new two-scale continuum model. SPE J, 26 (05) ( 2021), pp. 2570-2599
|