[1] |
N. Tesla. The transmission of electrical energy without wires. Electr World Eng, 1 ( 1904), pp. 21-24
|
[2] |
W.C. Brown, E.E. Eves. Beamed microwave power transmission and its application to space. IEEE Trans Microw Theory Tech, 40 (6) ( 1992), pp. 1239-1250
|
[3] |
P. Jaffe, J. McSpadden. Energy conversion and transmission modules for space solar power. Proc IEEE, 101 (6) ( 2013), pp. 1424-1437
|
[4] |
T.W.R. East. A self-steering array for the sharp microwave-powered aircraft. IEEE Trans Antennas Propag, 40 (12) ( 1992), pp. 1565-1567
|
[5] |
U. Karthaus, M. Fischer. Fully integrated passive UHF RFID transponder IC with 16.7-μ W minimum RF input power. IEEE J Solid-State Circuits, 38 (10) ( 2003), pp. 1602-1608
|
[6] |
M. Piñuela, P.D. Mitcheson, S. Lucyszyn. Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans Microw Theory Tech, 61 (7) ( 2013), pp. 2715-2726
|
[7] |
T. Sakamoto, Y. Ushijima, E. Nishiyama, M. Aikawa, I. Toyoda. 5.8-GHz series/parallel connected rectenna array using expandable differential rectenna units. IEEE Trans Antennas Propag, 61 (9) ( 2013), pp. 4872-4875
|
[8] |
S. Shen, C.Y. Chiu, R.D. Murch. Multiport pixel rectenna for ambient RF energy harvesting. IEEE Trans Antennas Propag, 66 (2) ( 2018), pp. 644-656 DOI: 10.1109/tap.2017.2786320
|
[9] |
E. Vandelle, D.H.N. Bui, T.P. Vuong, G. Ardila, K. Wu, S. Hemour. Harvesting ambient RF energy efficiently with optimal angular coverage. IEEE Trans Antennas Propag, 67 (3) ( 2019), pp. 1862-1873 DOI: 10.1109/tap.2018.2888957
|
[10] |
C. Song, Y. Huang, P. Carter, J. Zhou, S. Yuan, Q. Xu, et al.. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Trans Antennas Propag, 64 (7) ( 2016), pp. 3160-3171
|
[11] |
C. Song, Y. Huang, J. Zhou, J. Zhang, S. Yuan, P. Carter. A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Trans Antennas Propag, 63 (8) ( 2015), pp. 3486-3495
|
[12] |
S. Hemour, K. Wu. Radio-frequency rectifier for electromagnetic energy harvesting: development path and future outlook. Proc IEEE, 102 (11) ( 2014), pp. 1667-1691
|
[13] |
S. Sayed, S. Salahuddin, E. Yablonovitch. Spin-orbit torque rectifier for weak RF energy harvesting. Appl Phys Lett, 118 (5) ( 2021), Article 052408
|
[14] |
C.H.P. Lorenz, S. Hemour, W. Li, Y. Xie, J. Gauthier, P. Fay, et al.. Breaking the efficiency barrier for ambient microwave power harvesting with heterojunction backward tunnel diodes. IEEE Trans Microw Theory Tech, 63 (12) ( 2015), pp. 4544-4555
|
[15] |
X. Gu, S. Hemour, K. Wu. Far-field wireless power harvesting: nonlinear modeling, rectenna design, and emerging applications. Proc IEEE, 110 (1) ( 2022), pp. 56-73 DOI: 10.1109/jproc.2021.3127930
|
[16] |
H. Matsumoto. Research on solar power satellites and microwave power transmission in Japan. IEEE Microw Mag, 3 (4) ( 2002), pp. 36-45
|
[17] |
C.T. Rodenbeck, P.I. Jaffe, B.H. Strassner II, P.E. Hausgen, J.O. McSpadden, H. Kazemi, et al.. Microwave and millimeter wave power beaming. IEEE J Microw, 1 (1) ( 2021), pp. 229-259 DOI: 10.1109/jmw.2020.3033992
|
[18] |
A. Massa, G. Oliveri, F. Viani, P. Rocca. Array designs for long-distance wireless power transmission: state-of-the-art and innovative solutions. Proc IEEE, 101 (6) ( 2013), pp. 1464-1481
|
[19] |
Parks AN, Smith JR. Sifting through the airwaves:efficient and scalable multiband RF harvesting. In:Proceedings of the 2014 IEEE International Conference on RFID; 2014 Oct 8-10; Orlando, FL, USA. New York City: IEEE; 2014. p. 74-81.
|
[20] |
D.J. Lee, S.J. Lee, I.J. Hwang, W.S. Lee, J.W. Yu. Hybrid power combining rectenna array for wide incident angle coverage in RF energy transfer. IEEE Trans Microw Theory Tech, 65 (9) ( 2017), pp. 3409-3418
|
[21] |
T.W. Yoo, K. Chang. Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans Microw Theory Tech, 40 (6) ( 1992), pp. 1259-1266
|
[22] |
Guo J, Zhu X. An improved analytical model for RF-DC conversion efficiency in microwave rectifiers. In: Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest; 2012 Jun 17-22; Montreal, QC, Canada. New York City: IEEE; 2012. p. 1-3.
|
[23] |
J.H. Ou, S.Y. Zheng, A.S. Andrenko, Y. Li, H.Z. Tan. Novel time-domain Schottky diode modeling for microwave rectifier designs. IEEE Trans Circuits Syst I, 65 (4) ( 2018), pp. 1234-1244 DOI: 10.1109/tcsi.2017.2739245
|
[24] |
J.O. McSpadden, L. Fan, K. Chang. Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna. IEEE Trans Microw Theory Tech, 46 (12) ( 1998), pp. 2053-2060
|
[25] |
J. Guo, H. Zhang, X. Zhu. Theoretical analysis of RF-DC conversion efficiency for Class-F rectifiers. IEEE Trans Microw Theory Tech, 62 (4) ( 2014), pp. 977-985
|
[26] |
C.R. Valenta, M.M. Morys, G.D. Durgin. Theoretical energy-conversion efficiency for energy-harvesting circuits under power-optimized waveform excitation. IEEE Trans Microw Theory Tech, 63 (5) ( 2015), pp. 1758-1767
|
[27] |
A.L. Cullen, T.Y. An. Microwave characteristics of the Schottky-barrier diode power sensor. IEE Proc H Microw Opt Antennas, 129 (4) ( 1982), pp. 191-198 DOI: 10.1049/ip-h-1.1982.0040
|
[28] |
T.Y. An, A.L. Cullen. Double Schottky-barrier diode power sensor. IEE Proc H Microw Opt Antennas, 130 (2) ( 1983), pp. 160-165 DOI: 10.1049/ip-h-1.1983.0026
|
[29] |
R.G. Harrison, X. Le Polozec. Nonsquarelaw behavior of diode detectors analyzed by the Ritz-Galérkin method. IEEE Trans Microw Theory Tech, 42 (5) ( 1994), pp. 840-846
|
[30] |
G. De Vita, G. Iannaccone. Design criteria for the RF section of UHF and microwave passive RFID transponders. IEEE Trans Microw Theory Tech, 53 (9) ( 2005), pp. 2978-2990
|
[31] |
S. Hemour, Y. Zhao, C.H.P. Lorenz, D. Houssameddine, Y. Gui, C.M. Hu, et al.. Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans Microw Theory Tech, 62 (4) ( 2014), pp. 965-976
|
[32] |
F. Bolos, J. Blanco, A. Collado, A. Georgiadis. RF energy harvesting from multi-tone and digitally modulated signals. IEEE Trans Microw Theory Tech, 64 (6) ( 2016), pp. 1918-1927
|
[33] |
S.P. Gao, H. Zhang, T. Ngo, Y. Guo. Lookup-table-based automated rectifier synthesis. IEEE Trans Microw Theory Tech, 68 (12) ( 2020), pp. 5200-5210
|
[34] |
C.R. Valenta, G.D. Durgin. Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw Mag, 15 (4) ( 2014), pp. 108-120
|
[35] |
Q.W. Lin, X.Y. Zhang. Differential rectifier using resistance compression network for improving efficiency over extended input power range. IEEE Trans Microw Theory Tech, 64 (9) ( 2016), pp. 2943-2954
|
[36] |
Gao SP, Zhang H. Topology comparison of single-diode rectifiers:shunt diode vs. series diode. In: Proceedings of the 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo); 2019 Oct 21-23; Hangzhou, China. New York City: IEEE; 2019. p. 177-9.
|
[37] |
J.D. Cockcroft, E.T.S. Walton. Experiments with high velocity positive ions.—(I) further developments in the method of obtaining high velocity positive ions. Proc Math Phys Eng Sci P Roy Soc A, 136 (830) ( 1932), pp. 619-630
|
[38] |
J.F. Dickson. On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE J Solid-State Circuits, 11 (3) ( 1976), pp. 374-378
|
[39] |
C. Song, Y. Huang, J. Zhou, P. Carter, S. Yuan, Q. Xu, et al.. Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting. IEEE Trans Ind Electron, 64 (5) ( 2017), pp. 3950-3961
|
[40] |
C. Liu, H. Lin, Z. He, Z. Chen. Compact patch rectennas without impedance matching network for wireless power transmission. IEEE Trans Microw Theory Tech, 70 (5) ( 2022), pp. 2882-2890 DOI: 10.1109/tmtt.2022.3156936
|
[41] |
M. Swaminathan, H.M. Torun, H. Yu, J.A. Hejase, W.D. Becker. Demystifying machine learning for signal and power integrity problems in Packag. IEEE Trans Compon Packag Manuf Technol, 10 (8) ( 2020), pp. 1276-1295 DOI: 10.1109/tcpmt.2020.3011910
|
[42] |
H. Sun, Y. Guo, M. He, Z. Zhong. Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wirel Propag Lett, 11 ( 2012), pp. 929-1922
|
[43] |
C. Song, Y. Huang, P. Carter, J. Zhou, S.D. Joseph, G. Li. Novel compact and broadband frequency-selectable rectennas for a wide input-power and load impedance range. IEEE Trans Antennas Propag, 66 (7) ( 2018), pp. 3306-3316 DOI: 10.1109/tap.2018.2826568
|
[44] |
J.A. Hagerty, F.B. Helmbrecht, W.H. McCalpin, R. Zane, Z.B. Popović. Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans Microw Theory Tech, 52 (3) ( 2004), pp. 1014-1024
|
[45] |
S.P. Gao, B. Wang, H. Zhao, W.J. Zhao, C.E. Png. Installed radiation pattern of patch antennas: prediction based on a novel equivalent model. IEEE Antennas Propag Mag, 57 (3) ( 2015), pp. 81-94
|
[46] |
R.W. Dearnley, A.R.F. Barel. A broad-band transmission line model for a rectangular microstrip antenna. IEEE Trans Antennas Propag, 37 (1) ( 1989), pp. 6-15
|
[47] |
R.S. Elliott, L.A. Kurtz. The design of small slot arrays. IEEE Trans Antennas Propag, 26 (2) ( 1978), pp. 214-219
|
[48] |
A.A. Pistolkors. The radiation resistance of beam antennas. Proc Inst Radio Eng, 17 (3) ( 1929), pp. 562-579
|
[49] |
Y. Huang, N. Shinohara, T. Mitani. A constant efficiency of rectifying circuit in an extremely wide load range. IEEE Trans Microw Theory Tech, 62 (4) ( 2014), pp. 986-993
|
[50] |
M. Fu, C. Ma, X. Zhu. A cascaded boost-buck converter for high-efficiency wireless power transfer systems. IEEE Trans Industr Inform, 10 (3) ( 2014), pp. 1972-1980
|
[51] |
X. Li, B. Duan, L. Song. Design of clustered planar arrays for microwave wireless power transmission. IEEE Trans Antennas Propag, 67 (1) ( 2019), pp. 606-611
|
[52] |
X. Li, K.M. Luk, B. Duan. Aperture illumination designs for microwave wireless power transmission with constraints on edge tapers using Bezier curves. IEEE Trans Antennas Propag, 67 (2) ( 2019), pp. 1380-1385 DOI: 10.1109/tap.2018.2884850
|
[53] |
X. Li, B. Duan, L. Song, Y. Zhang, W. Xu. Study of stepped amplitude distribution taper for microwave power transmission for SSPS. IEEE Trans Antennas Propag, 65 (10) ( 2017), pp. 5396-5405
|
[54] |
P.S. Carter. Circuit relations in radiating systems and applications to antenna problems. Proc Inst Radio Eng, 20 (6) ( 1932), pp. 1004-1041
|
[55] |
X. Li, Y.X. Guo. Multiobjective optimization design of aperture illuminations for microwave power transmission via multiobjective grey wolf optimizer. IEEE Trans Antennas Propag, 68 (8) ( 2020), pp. 6265-6276 DOI: 10.1109/tap.2020.2981736
|
[56] |
X. Li, K.M. Luk, B. Duan. Multiobjective optimal antenna synthesis for microwave wireless power transmission. IEEE Trans antennas Propag, 67 (4) ( 2019), pp. 2739-2744 DOI: 10.1109/tap.2019.2893312
|
[57] |
Yang J, Gao SP, Zhang H, Guo Y. Analysis of series and shunt DC combination under nonuniform RF inputs using an equivalent resistance method. In:Proceedings of the 2022 IEEE MTT-S International Wireless Symposium (IWS); 2022 Aug 12-15; Harbin, China. New York City: IEEE; 2022. p. 1-3.
|
[58] |
V. Palazzi, J. Hester, J. Bito, F. Alimenti, C. Kalialakis, A. Collado, et al.. A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands. IEEE Trans Microw Theory Tech, 66 (1) ( 2018), pp. 366-379
|
[59] |
J. Liu, X.Y. Zhang, C.L. Yang. Analysis and design of dual-band rectifier using novel matching network. IEEE Trans Circuits Syst II, 65 (4) ( 2018), pp. 431-435
|
[60] |
Y.L. Lin, X.Y. Zhang, Z.X. Du, Q.W. Lin. High-efficiency microwave rectifier with extended operating bandwidth. IEEE Trans Circuits Syst II, 65 (7) ( 2018), pp. 819-823 DOI: 10.1109/tcsii.2017.2716538
|
[61] |
J. Liu, M. Huang, Z. Du. Design of compact dual-band RF rectifiers for wireless power transfer and energy harvesting. IEEE Access, 8 ( 2020), pp. 184901-184908 DOI: 10.1109/access.2020.3029603
|
[62] |
Z. He, C. Liu. A compact high-efficiency broadband rectifier with a wide dynamic range of input power for energy harvesting. IEEE Microw Wirel Compon Lett, 30 (4) ( 2020), pp. 433-436 DOI: 10.1109/lmwc.2020.2979711
|
[63] |
W. Liu, K. Huang, T. Wang, J. Hou, Z. Zhang. Broadband high-efficiency RF rectifier with a cross-shaped match stub of two one-eighth-wavelength transmission lines. IEEE Microw Wirel Compon Lett, 31 (10) ( 2021), pp. 1170-1173 DOI: 10.1109/lmwc.2021.3082930
|
[64] |
J. Kimionis, A. Collado, M.M. Tentzeris, A. Georgiadis. Octave and decade printed UWB rectifiers based on nonuniform transmission lines for energy harvesting. IEEE Trans Microw Theory Tech, 65 (11) ( 2017), pp. 4326-4334
|
[65] |
P. Wu, S.Y. Huang, W. Zhou, W. Yu, Z. Liu, X. Chen, et al.. Compact high-efficiency broadband rectifier with multi-stage-transmission-line matching. IEEE Trans Circuits Syst II, 66 (8) ( 2019), pp. 1316-1320 DOI: 10.1109/tcsii.2018.2886432
|
[66] |
G. Le, N. Nguyen, N.D. Au, C. Seo. A broadband high-efficiency rectifier for mid-field wireless power transfer. IEEE Microw Wirel Compon Lett, 31 (7) ( 2021), pp. 913-916 DOI: 10.1109/lmwc.2021.3077566
|
[67] |
P. Wu, S.Y. Huang, W. Zhou, C. Liu. One octave bandwidth rectifier with a frequency selective diode array. IEEE Microw Wirel Compon Lett, 28 (11) ( 2018), pp. 1008-1010 DOI: 10.1109/lmwc.2018.2869281
|
[68] |
C. Song, P. Lu, S. Shen. Highly efficient omnidirectional integrated multiband wireless energy harvesters for compact sensor nodes of Internet-of-Things. IEEE Trans Ind Electron, 68 (9) ( 2021), pp. 8128-8140 DOI: 10.1109/tie.2020.3009586
|
[69] |
J. Kim, J. Oh. Compact rectifier array with wide input power and frequency ranges based on adaptive power distribution. IEEE Microw Wirel Compon Lett, 31 (5) ( 2021), pp. 513-516
|
[70] |
M. Huang, Y.L. Lin, J.H. Ou, X. Zhang, Q.W. Lin, W. Che, et al.. Single- and dual-band RF rectifiers with extended input power range using automatic impedance transforming. IEEE Trans Microw Theory Tech, 67 (5) ( 2019), pp. 1974-1984 DOI: 10.1109/tmtt.2019.2901443
|
[71] |
Z. He, J. Lan, C. Liu. Compact rectifiers with ultra-wide input power range based on nonlinear impedance characteristics of Schottky diodes. IEEE Trans Power Electron, 36 (7) ( 2021), pp. 7407-7411 DOI: 10.1109/tpel.2020.3046083
|
[72] |
T. Ngo, A.D. Huang, Y.X. Guo. Analysis and design of a reconfigurable rectifier circuit for wireless power transfer. IEEE Trans Ind Electron, 66 (9) ( 2019), pp. 7089-7098 DOI: 10.1109/tie.2018.2875638
|
[73] |
Z. Liu, Z. Zhong, Y.X. Guo. A reconfigurable diode topology for wireless power transfer with a wide power range. IEEE Microw Wirel Compon Lett, 26 (10) ( 2016), pp. 846-848
|
[74] |
Z. Liu, Z. Zhong, Y.X. Guo. Enhanced dual-band ambient RF energy harvesting with ultra-wide power range. IEEE Microw Wirel Compon Lett, 25 (9) ( 2015), pp. 630-632
|
[75] |
H. Sun, Z. Zhong, Y.X. Guo. An adaptive reconfigurable rectifier for wireless power transmission. IEEE Microw Wirel Compon Lett, 23 (9) ( 2013), pp. 492-494
|
[76] |
X.Y. Zhang, Z.X. Du, Q. Xue. High-efficiency broadband rectifier with wide ranges of input power and output load based on branch-line coupler. IEEE Trans Circuits Syst I, 64 (3) ( 2017), pp. 731-739
|
[77] |
S.F. Bo, J.H. Ou, J.W. Wang, J. Tang, X.Y. Zhang. Polarization-independent rectifier with wide frequency and input power ranges based on novel six-port network. IEEE Trans Microw Theory Tech, 69 (11) ( 2021), pp. 4822-4830 DOI: 10.1109/tmtt.2021.3091712
|
[78] |
T.W. Barton, J.M. Gordonson, D.J. Perreault. Transmission line resistance compression networks and applications to wireless power transfer. IEEE J Emerg Sel Top Power Electron, 3 (1) ( 2015), pp. 252-260
|
[79] |
Z.X. Du, X.Y. Zhang. High-efficiency single- and dual-band rectifiers using a complex impedance compression network for wireless power transfer. IEEE Trans Ind Electron, 65 (6) ( 2018), pp. 5012-5022 DOI: 10.1109/tie.2017.2772203
|
[80] |
Z.X. Du, S.F. Bo, Y.F. Cao, J.H. Ou, X.Y. Zhang. Broadband circularly polarized rectenna with wide dynamic-power-range for efficient wireless power transfer. IEEE Access, 8 ( 2020), pp. 80561-80571 DOI: 10.1109/access.2020.2985294
|
[81] |
S.F. Bo, J.H. Ou, X.Y. Zhang. Ultrawideband rectifier with extended dynamic-power-range based on wideband impedance compression network. IEEE Trans Microw Theory Tech, 70 (8) ( 2022), pp. 4026-4035 DOI: 10.1109/tmtt.2022.3179538
|
[82] |
H. Lin, X. Chen, Z. He, Y. Xiao, W. Che, C. Liu. Wide input power range X-band rectifier with dynamic capacitive self-compensation. IEEE Microw Wirel Compon Lett, 31 (5) ( 2021), pp. 525-528 DOI: 10.1109/lmwc.2021.3067068
|
[83] |
P. Wu, S.Y. Huang, W. Zhou, Z.H. Ren, Z. Liu, K. Huang, et al.. High-efficient rectifier with extended input power range based on self-tuning impedance matching. IEEE Microw Wirel Compon Lett, 28 (12) ( 2018), pp. 1116-1118 DOI: 10.1109/lmwc.2018.2876773
|
[84] |
M.A. Abouzied, E. Sanchez-Sinencio. Low-input power-level CMOS RF energy-harvesting front end. IEEE Trans Microw Theory Tech, 63 (11) ( 2015), pp. 3794-3805
|
[85] |
A. Abdelraheem, M. Sinanis, S. Hameedi, M. Abdelfattah, D. Peroulis. A flexible virtual battery: a wearable wireless energy harvester. IEEE Microw Mag, 20 (1) ( 2019), pp. 62-69 DOI: 10.1109/mmm.2018.2875629
|
[86] |
W. Lin, R.W. Ziolkowski. Electrically small, low-profile, Huygens circularly polarized antenna. IEEE Trans Antennas Propag, 66 (2) ( 2018), pp. 636-643 DOI: 10.1109/tap.2017.2784432
|
[87] |
H. Zhang, S.P. Gao, W. Wu, Y.X. Guo. Uneven-to-even power distribution for maintaining high efficiency of dual-linearly polarized rectenna. IEEE Microw Wirel Compon Lett, 28 (12) ( 2018), pp. 1119-1121 DOI: 10.1109/lmwc.2018.2877179
|
[88] |
S.F. Bo, J.H. Ou, Y. Dong, S.W. Dong, X.Y. Zhang. All-polarized wideband rectenna with enhanced efficiency within wide input power and load ranges. IEEE Trans Ind Electron, 69 (7) ( 2022), pp. 7470-7480 DOI: 10.1109/tie.2021.3095800
|
[89] |
Peng CJ, Yang SF, Huang AC, Huang TH, Chung PJ, Wu FM. Harmonic enhanced location detection technique for energy harvesting receiver with resonator coupling design. In: Proceedings of the 2017 IEEE Wireless Power Transfer Conference (WPTC 2017); 2017 May 10-12; Taipei, China. New York City: IEEE; 2017.
|
[90] |
H. Zhang, Y.X. Guo, S.P. Gao, W. Wu. Wireless power transfer antenna alignment using third harmonic. IEEE Microw Wirel Compon Lett, 28 (6) ( 2018), pp. 536-538 DOI: 10.1109/lmwc.2018.2832612
|
[91] |
Zhang H, Li Y, Gao SP, Guo YX.High-efficiency simultaneous wireless information and power transmission (SWIPT) by exploiting 2nd/3rd harmonics. In: Proceedings of the 2021 IEEE International Wireless Symposium (IWS 2021); 2021 May 23-26; Nanjing, China. New York City: IEEE; 2021.
|
[92] |
H. Zhang, Y.X. Guo, S.P. Gao, Z. Zhong, W. Wu. Exploiting third harmonic of differential charge pump for wireless power transfer antenna alignment. IEEE Microw Wirel Compon Lett, 29 (1) ( 2019), pp. 71-73 DOI: 10.1109/lmwc.2018.2882086
|
[93] |
Zhang H, Guo YX.Exploiting high-isolation 2nd-harmonic backscatters for distance-adaptive microwave power delivery. In: Proceedings of the 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium; 2021 Jul 28-31; Chengdu, China. New York City: IEEE; 2021.
|
[94] |
A. Boaventura, D. Belo, R. Fernandes, A. Collado, A. Georgiadis, N.B. Carvalho. Boosting the efficiency: unconventional waveform design for efficient wireless power transfer. IEEE Microw Mag, 16 (3) ( 2015), pp. 87-96
|
[95] |
M. Rajabi, N. Pan, S. Claessens, S. Pollin, D. Schreurs. Modulation techniques for simultaneous wireless information and power transfer with an integrated rectifier-receiver. IEEE Trans Microw Theory Tech, 66 (5) ( 2018), pp. 2373-2385 DOI: 10.1109/tmtt.2018.2811491
|
[96] |
S. Claessens, N. Pan, D. Schreurs, S. Pollin. Multitone FSK modulation for SWIPT. IEEE Trans Microw Theory Tech, 67 (5) ( 2019), pp. 1665-1674 DOI: 10.1109/tmtt.2019.2908645
|
[97] |
Claessens S, Chang YT, Schreurs D, Pollin S. Receiving ASK-OFDM in low power SWIPT nodes without local oscillators. In:Proceedings of the 2019 IEEE Wireless Power Transfer Conference (WPTC); 2019 Jun 18-21; London, UK. New York City: IEEE; 2020. p. 20-5.
|
[98] |
Claessens S, Schreurs D, Pollin S. SWIPT with biased ASK modulation and dual-purpose hardware. In: Proceedings of the 2017 IEEE Wireless Power Transfer Conference (WPTC 2017); 2017 May 10-12; Taipei, China. New York City: IEEE; 2017.
|
[99] |
Claessens S, Rajabi M, Pan N, Pollin S, Schreurs D. Measurement-based analysis of the throughput-power level trade-off with modulated multisine signals in a SWIPT system. In: Proceedings of the 89th ARFTG Microwave Measurement Conference (ARFTG 2017); 2017 Jun 9; Honolulu, HI, USA. New York City: IEEE; 2017.
|
[100] |
Qaragoez Y, Pollin S, Schreurs D. Enhanced two-way communication for battery-free wireless sensors:SWIPT with IM3 backscattering. In: Proceedings of the 2022 IEEE/MTT-S International Microwave Symposium; 2022 Jun 19-24. New York City: IEEE; 2022. p. 48-51.
|
[101] |
R. Zhang, C.K. Ho. MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans Wirel Commun, 12 (5) ( 2013), pp. 1989-2001
|
[102] |
M. Abedi, H. Masoumi, M.J. Emadi. Power splitting-based SWIPT systems with decoding cost. IEEE Wirel Commun Lett, 8 (2) ( 2019), pp. 432-435 DOI: 10.1109/lwc.2018.2874886
|
[103] |
I. Krikidis, S. Sasaki, S. Timotheou, Z. Ding. A low complexity antenna switching for joint wireless information and energy transfer in MIMO relay channels. IEEE Trans Commun, 62 (5) ( 2014), pp. 1577-1587
|
[104] |
G.L. Zhu, J.X. Du, X.X. Yang, Y.G. Zhou, S. Gao. Dual-polarized communication rectenna array for simultaneous wireless information and power transmission. IEEE Access, 7 ( 2019), pp. 141978-141986 DOI: 10.1109/access.2019.2943611
|
[105] |
M. Wagih, G.S. Hilton, A.S. Weddell, S. Beeby. Dual-band dual-mode textile antenna/rectenna for simultaneous wireless information and power transfer (SWIPT). IEEE Trans Antennas Propag, 69 (10) ( 2021), pp. 6322-6332 DOI: 10.1109/tap.2021.3070230
|