微波无线能量收集技术——统一模型、自动化整流天线设计及前沿技术

Si-Ping Gao, Jun-Hui Ou, Xiuyin Zhang, Yongxin Guo

工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 32-48.

PDF(5116 KB)
PDF(5116 KB)
工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 32-48. DOI: 10.1016/j.eng.2023.05.019
Review

微波无线能量收集技术——统一模型、自动化整流天线设计及前沿技术

作者信息 +

Scavenging Microwave Wireless Power: A Unified Model, Rectenna Design Automation, and Cutting-Edge Techniques

Author information +
History +

Abstract

While sufficient review articles exist on inductive short-range wireless power transfer (WPT), long-haul microwave WPT (MWPT) for solar power satellites, and ambient microwave wireless energy harvesting (MWEH) in urban areas, few studies focus on the fundamental modeling and related design automation of receiver systems. This article reviews the development of MWPT and MWEH receivers, with a focus on rectenna design automation. A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented. The model reveals the theoretical boundary of radio frequency-to-direct current (dc) power conversion efficiency and, most importantly, enables an automated system design. The automated rectenna design flow is sequential, with the minimal engagement of iterative optimization. It covers the design automation of every module (i.e., rectifiers, matching circuits, Antennasae, and dc-dc converters). Scaling-up of the technique to large rectenna arrays is also possible, where the challenges in array partitioning and power combining are briefly discussed. In addition, several cutting-edge rectenna techniques for MWPT and MWEH are reviewed, including the dynamic range extension technique, the harmonics-based retro-directive technique, and the simultaneous wireless information and power transfer technique, which can be good complements to the presented automated design methodology.

关键词

微波无线能量传输 / 微波无线能量收集 / 统一整流器模型 / 自动化整流天线设计 / 新兴整流天线技术

Keywords

Microwave wireless power transfer / Microwave wireless energy harvesting / Unified Rectifier model / Automated rectenna design / Emerging rectenna techniques

引用本文

导出引用
Si-Ping Gao, Jun-Hui Ou, Xiuyin Zhang. 微波无线能量收集技术——统一模型、自动化整流天线设计及前沿技术. Engineering. 2023, 30(11): 32-48 https://doi.org/10.1016/j.eng.2023.05.019

参考文献

[1]
N. Tesla. The transmission of electrical energy without wires. Electr World Eng, 1 ( 1904), pp. 21-24
[2]
W.C. Brown, E.E. Eves. Beamed microwave power transmission and its application to space. IEEE Trans Microw Theory Tech, 40 (6) ( 1992), pp. 1239-1250
[3]
P. Jaffe, J. McSpadden. Energy conversion and transmission modules for space solar power. Proc IEEE, 101 (6) ( 2013), pp. 1424-1437
[4]
T.W.R. East. A self-steering array for the sharp microwave-powered aircraft. IEEE Trans Antennas Propag, 40 (12) ( 1992), pp. 1565-1567
[5]
U. Karthaus, M. Fischer. Fully integrated passive UHF RFID transponder IC with 16.7-μ W minimum RF input power. IEEE J Solid-State Circuits, 38 (10) ( 2003), pp. 1602-1608
[6]
M. Piñuela, P.D. Mitcheson, S. Lucyszyn. Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans Microw Theory Tech, 61 (7) ( 2013), pp. 2715-2726
[7]
T. Sakamoto, Y. Ushijima, E. Nishiyama, M. Aikawa, I. Toyoda. 5.8-GHz series/parallel connected rectenna array using expandable differential rectenna units. IEEE Trans Antennas Propag, 61 (9) ( 2013), pp. 4872-4875
[8]
S. Shen, C.Y. Chiu, R.D. Murch. Multiport pixel rectenna for ambient RF energy harvesting. IEEE Trans Antennas Propag, 66 (2) ( 2018), pp. 644-656 DOI: 10.1109/tap.2017.2786320
[9]
E. Vandelle, D.H.N. Bui, T.P. Vuong, G. Ardila, K. Wu, S. Hemour. Harvesting ambient RF energy efficiently with optimal angular coverage. IEEE Trans Antennas Propag, 67 (3) ( 2019), pp. 1862-1873 DOI: 10.1109/tap.2018.2888957
[10]
C. Song, Y. Huang, P. Carter, J. Zhou, S. Yuan, Q. Xu, et al.. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Trans Antennas Propag, 64 (7) ( 2016), pp. 3160-3171
[11]
C. Song, Y. Huang, J. Zhou, J. Zhang, S. Yuan, P. Carter. A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Trans Antennas Propag, 63 (8) ( 2015), pp. 3486-3495
[12]
S. Hemour, K. Wu. Radio-frequency rectifier for electromagnetic energy harvesting: development path and future outlook. Proc IEEE, 102 (11) ( 2014), pp. 1667-1691
[13]
S. Sayed, S. Salahuddin, E. Yablonovitch. Spin-orbit torque rectifier for weak RF energy harvesting. Appl Phys Lett, 118 (5) ( 2021), Article 052408
[14]
C.H.P. Lorenz, S. Hemour, W. Li, Y. Xie, J. Gauthier, P. Fay, et al.. Breaking the efficiency barrier for ambient microwave power harvesting with heterojunction backward tunnel diodes. IEEE Trans Microw Theory Tech, 63 (12) ( 2015), pp. 4544-4555
[15]
X. Gu, S. Hemour, K. Wu. Far-field wireless power harvesting: nonlinear modeling, rectenna design, and emerging applications. Proc IEEE, 110 (1) ( 2022), pp. 56-73 DOI: 10.1109/jproc.2021.3127930
[16]
H. Matsumoto. Research on solar power satellites and microwave power transmission in Japan. IEEE Microw Mag, 3 (4) ( 2002), pp. 36-45
[17]
C.T. Rodenbeck, P.I. Jaffe, B.H. Strassner II, P.E. Hausgen, J.O. McSpadden, H. Kazemi, et al.. Microwave and millimeter wave power beaming. IEEE J Microw, 1 (1) ( 2021), pp. 229-259 DOI: 10.1109/jmw.2020.3033992
[18]
A. Massa, G. Oliveri, F. Viani, P. Rocca. Array designs for long-distance wireless power transmission: state-of-the-art and innovative solutions. Proc IEEE, 101 (6) ( 2013), pp. 1464-1481
[19]
Parks AN, Smith JR. Sifting through the airwaves:efficient and scalable multiband RF harvesting. In:Proceedings of the 2014 IEEE International Conference on RFID; 2014 Oct 8-10; Orlando, FL, USA. New York City: IEEE; 2014. p. 74-81.
[20]
D.J. Lee, S.J. Lee, I.J. Hwang, W.S. Lee, J.W. Yu. Hybrid power combining rectenna array for wide incident angle coverage in RF energy transfer. IEEE Trans Microw Theory Tech, 65 (9) ( 2017), pp. 3409-3418
[21]
T.W. Yoo, K. Chang. Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans Microw Theory Tech, 40 (6) ( 1992), pp. 1259-1266
[22]
Guo J, Zhu X. An improved analytical model for RF-DC conversion efficiency in microwave rectifiers. In: Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest; 2012 Jun 17-22; Montreal, QC, Canada. New York City: IEEE; 2012. p. 1-3.
[23]
J.H. Ou, S.Y. Zheng, A.S. Andrenko, Y. Li, H.Z. Tan. Novel time-domain Schottky diode modeling for microwave rectifier designs. IEEE Trans Circuits Syst I, 65 (4) ( 2018), pp. 1234-1244 DOI: 10.1109/tcsi.2017.2739245
[24]
J.O. McSpadden, L. Fan, K. Chang. Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna. IEEE Trans Microw Theory Tech, 46 (12) ( 1998), pp. 2053-2060
[25]
J. Guo, H. Zhang, X. Zhu. Theoretical analysis of RF-DC conversion efficiency for Class-F rectifiers. IEEE Trans Microw Theory Tech, 62 (4) ( 2014), pp. 977-985
[26]
C.R. Valenta, M.M. Morys, G.D. Durgin. Theoretical energy-conversion efficiency for energy-harvesting circuits under power-optimized waveform excitation. IEEE Trans Microw Theory Tech, 63 (5) ( 2015), pp. 1758-1767
[27]
A.L. Cullen, T.Y. An. Microwave characteristics of the Schottky-barrier diode power sensor. IEE Proc H Microw Opt Antennas, 129 (4) ( 1982), pp. 191-198 DOI: 10.1049/ip-h-1.1982.0040
[28]
T.Y. An, A.L. Cullen. Double Schottky-barrier diode power sensor. IEE Proc H Microw Opt Antennas, 130 (2) ( 1983), pp. 160-165 DOI: 10.1049/ip-h-1.1983.0026
[29]
R.G. Harrison, X. Le Polozec. Nonsquarelaw behavior of diode detectors analyzed by the Ritz-Galérkin method. IEEE Trans Microw Theory Tech, 42 (5) ( 1994), pp. 840-846
[30]
G. De Vita, G. Iannaccone. Design criteria for the RF section of UHF and microwave passive RFID transponders. IEEE Trans Microw Theory Tech, 53 (9) ( 2005), pp. 2978-2990
[31]
S. Hemour, Y. Zhao, C.H.P. Lorenz, D. Houssameddine, Y. Gui, C.M. Hu, et al.. Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans Microw Theory Tech, 62 (4) ( 2014), pp. 965-976
[32]
F. Bolos, J. Blanco, A. Collado, A. Georgiadis. RF energy harvesting from multi-tone and digitally modulated signals. IEEE Trans Microw Theory Tech, 64 (6) ( 2016), pp. 1918-1927
[33]
S.P. Gao, H. Zhang, T. Ngo, Y. Guo. Lookup-table-based automated rectifier synthesis. IEEE Trans Microw Theory Tech, 68 (12) ( 2020), pp. 5200-5210
[34]
C.R. Valenta, G.D. Durgin. Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw Mag, 15 (4) ( 2014), pp. 108-120
[35]
Q.W. Lin, X.Y. Zhang. Differential rectifier using resistance compression network for improving efficiency over extended input power range. IEEE Trans Microw Theory Tech, 64 (9) ( 2016), pp. 2943-2954
[36]
Gao SP, Zhang H. Topology comparison of single-diode rectifiers:shunt diode vs. series diode. In: Proceedings of the 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo); 2019 Oct 21-23; Hangzhou, China. New York City: IEEE; 2019. p. 177-9.
[37]
J.D. Cockcroft, E.T.S. Walton. Experiments with high velocity positive ions.—(I) further developments in the method of obtaining high velocity positive ions. Proc Math Phys Eng Sci P Roy Soc A, 136 (830) ( 1932), pp. 619-630
[38]
J.F. Dickson. On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE J Solid-State Circuits, 11 (3) ( 1976), pp. 374-378
[39]
C. Song, Y. Huang, J. Zhou, P. Carter, S. Yuan, Q. Xu, et al.. Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting. IEEE Trans Ind Electron, 64 (5) ( 2017), pp. 3950-3961
[40]
C. Liu, H. Lin, Z. He, Z. Chen. Compact patch rectennas without impedance matching network for wireless power transmission. IEEE Trans Microw Theory Tech, 70 (5) ( 2022), pp. 2882-2890 DOI: 10.1109/tmtt.2022.3156936
[41]
M. Swaminathan, H.M. Torun, H. Yu, J.A. Hejase, W.D. Becker. Demystifying machine learning for signal and power integrity problems in Packag. IEEE Trans Compon Packag Manuf Technol, 10 (8) ( 2020), pp. 1276-1295 DOI: 10.1109/tcpmt.2020.3011910
[42]
H. Sun, Y. Guo, M. He, Z. Zhong. Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wirel Propag Lett, 11 ( 2012), pp. 929-1922
[43]
C. Song, Y. Huang, P. Carter, J. Zhou, S.D. Joseph, G. Li. Novel compact and broadband frequency-selectable rectennas for a wide input-power and load impedance range. IEEE Trans Antennas Propag, 66 (7) ( 2018), pp. 3306-3316 DOI: 10.1109/tap.2018.2826568
[44]
J.A. Hagerty, F.B. Helmbrecht, W.H. McCalpin, R. Zane, Z.B. Popović. Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans Microw Theory Tech, 52 (3) ( 2004), pp. 1014-1024
[45]
S.P. Gao, B. Wang, H. Zhao, W.J. Zhao, C.E. Png. Installed radiation pattern of patch antennas: prediction based on a novel equivalent model. IEEE Antennas Propag Mag, 57 (3) ( 2015), pp. 81-94
[46]
R.W. Dearnley, A.R.F. Barel. A broad-band transmission line model for a rectangular microstrip antenna. IEEE Trans Antennas Propag, 37 (1) ( 1989), pp. 6-15
[47]
R.S. Elliott, L.A. Kurtz. The design of small slot arrays. IEEE Trans Antennas Propag, 26 (2) ( 1978), pp. 214-219
[48]
A.A. Pistolkors. The radiation resistance of beam antennas. Proc Inst Radio Eng, 17 (3) ( 1929), pp. 562-579
[49]
Y. Huang, N. Shinohara, T. Mitani. A constant efficiency of rectifying circuit in an extremely wide load range. IEEE Trans Microw Theory Tech, 62 (4) ( 2014), pp. 986-993
[50]
M. Fu, C. Ma, X. Zhu. A cascaded boost-buck converter for high-efficiency wireless power transfer systems. IEEE Trans Industr Inform, 10 (3) ( 2014), pp. 1972-1980
[51]
X. Li, B. Duan, L. Song. Design of clustered planar arrays for microwave wireless power transmission. IEEE Trans Antennas Propag, 67 (1) ( 2019), pp. 606-611
[52]
X. Li, K.M. Luk, B. Duan. Aperture illumination designs for microwave wireless power transmission with constraints on edge tapers using Bezier curves. IEEE Trans Antennas Propag, 67 (2) ( 2019), pp. 1380-1385 DOI: 10.1109/tap.2018.2884850
[53]
X. Li, B. Duan, L. Song, Y. Zhang, W. Xu. Study of stepped amplitude distribution taper for microwave power transmission for SSPS. IEEE Trans Antennas Propag, 65 (10) ( 2017), pp. 5396-5405
[54]
P.S. Carter. Circuit relations in radiating systems and applications to antenna problems. Proc Inst Radio Eng, 20 (6) ( 1932), pp. 1004-1041
[55]
X. Li, Y.X. Guo. Multiobjective optimization design of aperture illuminations for microwave power transmission via multiobjective grey wolf optimizer. IEEE Trans Antennas Propag, 68 (8) ( 2020), pp. 6265-6276 DOI: 10.1109/tap.2020.2981736
[56]
X. Li, K.M. Luk, B. Duan. Multiobjective optimal antenna synthesis for microwave wireless power transmission. IEEE Trans antennas Propag, 67 (4) ( 2019), pp. 2739-2744 DOI: 10.1109/tap.2019.2893312
[57]
Yang J, Gao SP, Zhang H, Guo Y. Analysis of series and shunt DC combination under nonuniform RF inputs using an equivalent resistance method. In:Proceedings of the 2022 IEEE MTT-S International Wireless Symposium (IWS); 2022 Aug 12-15; Harbin, China. New York City: IEEE; 2022. p. 1-3.
[58]
V. Palazzi, J. Hester, J. Bito, F. Alimenti, C. Kalialakis, A. Collado, et al.. A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands. IEEE Trans Microw Theory Tech, 66 (1) ( 2018), pp. 366-379
[59]
J. Liu, X.Y. Zhang, C.L. Yang. Analysis and design of dual-band rectifier using novel matching network. IEEE Trans Circuits Syst II, 65 (4) ( 2018), pp. 431-435
[60]
Y.L. Lin, X.Y. Zhang, Z.X. Du, Q.W. Lin. High-efficiency microwave rectifier with extended operating bandwidth. IEEE Trans Circuits Syst II, 65 (7) ( 2018), pp. 819-823 DOI: 10.1109/tcsii.2017.2716538
[61]
J. Liu, M. Huang, Z. Du. Design of compact dual-band RF rectifiers for wireless power transfer and energy harvesting. IEEE Access, 8 ( 2020), pp. 184901-184908 DOI: 10.1109/access.2020.3029603
[62]
Z. He, C. Liu. A compact high-efficiency broadband rectifier with a wide dynamic range of input power for energy harvesting. IEEE Microw Wirel Compon Lett, 30 (4) ( 2020), pp. 433-436 DOI: 10.1109/lmwc.2020.2979711
[63]
W. Liu, K. Huang, T. Wang, J. Hou, Z. Zhang. Broadband high-efficiency RF rectifier with a cross-shaped match stub of two one-eighth-wavelength transmission lines. IEEE Microw Wirel Compon Lett, 31 (10) ( 2021), pp. 1170-1173 DOI: 10.1109/lmwc.2021.3082930
[64]
J. Kimionis, A. Collado, M.M. Tentzeris, A. Georgiadis. Octave and decade printed UWB rectifiers based on nonuniform transmission lines for energy harvesting. IEEE Trans Microw Theory Tech, 65 (11) ( 2017), pp. 4326-4334
[65]
P. Wu, S.Y. Huang, W. Zhou, W. Yu, Z. Liu, X. Chen, et al.. Compact high-efficiency broadband rectifier with multi-stage-transmission-line matching. IEEE Trans Circuits Syst II, 66 (8) ( 2019), pp. 1316-1320 DOI: 10.1109/tcsii.2018.2886432
[66]
G. Le, N. Nguyen, N.D. Au, C. Seo. A broadband high-efficiency rectifier for mid-field wireless power transfer. IEEE Microw Wirel Compon Lett, 31 (7) ( 2021), pp. 913-916 DOI: 10.1109/lmwc.2021.3077566
[67]
P. Wu, S.Y. Huang, W. Zhou, C. Liu. One octave bandwidth rectifier with a frequency selective diode array. IEEE Microw Wirel Compon Lett, 28 (11) ( 2018), pp. 1008-1010 DOI: 10.1109/lmwc.2018.2869281
[68]
C. Song, P. Lu, S. Shen. Highly efficient omnidirectional integrated multiband wireless energy harvesters for compact sensor nodes of Internet-of-Things. IEEE Trans Ind Electron, 68 (9) ( 2021), pp. 8128-8140 DOI: 10.1109/tie.2020.3009586
[69]
J. Kim, J. Oh. Compact rectifier array with wide input power and frequency ranges based on adaptive power distribution. IEEE Microw Wirel Compon Lett, 31 (5) ( 2021), pp. 513-516
[70]
M. Huang, Y.L. Lin, J.H. Ou, X. Zhang, Q.W. Lin, W. Che, et al.. Single- and dual-band RF rectifiers with extended input power range using automatic impedance transforming. IEEE Trans Microw Theory Tech, 67 (5) ( 2019), pp. 1974-1984 DOI: 10.1109/tmtt.2019.2901443
[71]
Z. He, J. Lan, C. Liu. Compact rectifiers with ultra-wide input power range based on nonlinear impedance characteristics of Schottky diodes. IEEE Trans Power Electron, 36 (7) ( 2021), pp. 7407-7411 DOI: 10.1109/tpel.2020.3046083
[72]
T. Ngo, A.D. Huang, Y.X. Guo. Analysis and design of a reconfigurable rectifier circuit for wireless power transfer. IEEE Trans Ind Electron, 66 (9) ( 2019), pp. 7089-7098 DOI: 10.1109/tie.2018.2875638
[73]
Z. Liu, Z. Zhong, Y.X. Guo. A reconfigurable diode topology for wireless power transfer with a wide power range. IEEE Microw Wirel Compon Lett, 26 (10) ( 2016), pp. 846-848
[74]
Z. Liu, Z. Zhong, Y.X. Guo. Enhanced dual-band ambient RF energy harvesting with ultra-wide power range. IEEE Microw Wirel Compon Lett, 25 (9) ( 2015), pp. 630-632
[75]
H. Sun, Z. Zhong, Y.X. Guo. An adaptive reconfigurable rectifier for wireless power transmission. IEEE Microw Wirel Compon Lett, 23 (9) ( 2013), pp. 492-494
[76]
X.Y. Zhang, Z.X. Du, Q. Xue. High-efficiency broadband rectifier with wide ranges of input power and output load based on branch-line coupler. IEEE Trans Circuits Syst I, 64 (3) ( 2017), pp. 731-739
[77]
S.F. Bo, J.H. Ou, J.W. Wang, J. Tang, X.Y. Zhang. Polarization-independent rectifier with wide frequency and input power ranges based on novel six-port network. IEEE Trans Microw Theory Tech, 69 (11) ( 2021), pp. 4822-4830 DOI: 10.1109/tmtt.2021.3091712
[78]
T.W. Barton, J.M. Gordonson, D.J. Perreault. Transmission line resistance compression networks and applications to wireless power transfer. IEEE J Emerg Sel Top Power Electron, 3 (1) ( 2015), pp. 252-260
[79]
Z.X. Du, X.Y. Zhang. High-efficiency single- and dual-band rectifiers using a complex impedance compression network for wireless power transfer. IEEE Trans Ind Electron, 65 (6) ( 2018), pp. 5012-5022 DOI: 10.1109/tie.2017.2772203
[80]
Z.X. Du, S.F. Bo, Y.F. Cao, J.H. Ou, X.Y. Zhang. Broadband circularly polarized rectenna with wide dynamic-power-range for efficient wireless power transfer. IEEE Access, 8 ( 2020), pp. 80561-80571 DOI: 10.1109/access.2020.2985294
[81]
S.F. Bo, J.H. Ou, X.Y. Zhang. Ultrawideband rectifier with extended dynamic-power-range based on wideband impedance compression network. IEEE Trans Microw Theory Tech, 70 (8) ( 2022), pp. 4026-4035 DOI: 10.1109/tmtt.2022.3179538
[82]
H. Lin, X. Chen, Z. He, Y. Xiao, W. Che, C. Liu. Wide input power range X-band rectifier with dynamic capacitive self-compensation. IEEE Microw Wirel Compon Lett, 31 (5) ( 2021), pp. 525-528 DOI: 10.1109/lmwc.2021.3067068
[83]
P. Wu, S.Y. Huang, W. Zhou, Z.H. Ren, Z. Liu, K. Huang, et al.. High-efficient rectifier with extended input power range based on self-tuning impedance matching. IEEE Microw Wirel Compon Lett, 28 (12) ( 2018), pp. 1116-1118 DOI: 10.1109/lmwc.2018.2876773
[84]
M.A. Abouzied, E. Sanchez-Sinencio. Low-input power-level CMOS RF energy-harvesting front end. IEEE Trans Microw Theory Tech, 63 (11) ( 2015), pp. 3794-3805
[85]
A. Abdelraheem, M. Sinanis, S. Hameedi, M. Abdelfattah, D. Peroulis. A flexible virtual battery: a wearable wireless energy harvester. IEEE Microw Mag, 20 (1) ( 2019), pp. 62-69 DOI: 10.1109/mmm.2018.2875629
[86]
W. Lin, R.W. Ziolkowski. Electrically small, low-profile, Huygens circularly polarized antenna. IEEE Trans Antennas Propag, 66 (2) ( 2018), pp. 636-643 DOI: 10.1109/tap.2017.2784432
[87]
H. Zhang, S.P. Gao, W. Wu, Y.X. Guo. Uneven-to-even power distribution for maintaining high efficiency of dual-linearly polarized rectenna. IEEE Microw Wirel Compon Lett, 28 (12) ( 2018), pp. 1119-1121 DOI: 10.1109/lmwc.2018.2877179
[88]
S.F. Bo, J.H. Ou, Y. Dong, S.W. Dong, X.Y. Zhang. All-polarized wideband rectenna with enhanced efficiency within wide input power and load ranges. IEEE Trans Ind Electron, 69 (7) ( 2022), pp. 7470-7480 DOI: 10.1109/tie.2021.3095800
[89]
Peng CJ, Yang SF, Huang AC, Huang TH, Chung PJ, Wu FM. Harmonic enhanced location detection technique for energy harvesting receiver with resonator coupling design. In: Proceedings of the 2017 IEEE Wireless Power Transfer Conference (WPTC 2017); 2017 May 10-12; Taipei, China. New York City: IEEE; 2017.
[90]
H. Zhang, Y.X. Guo, S.P. Gao, W. Wu. Wireless power transfer antenna alignment using third harmonic. IEEE Microw Wirel Compon Lett, 28 (6) ( 2018), pp. 536-538 DOI: 10.1109/lmwc.2018.2832612
[91]
Zhang H, Li Y, Gao SP, Guo YX.High-efficiency simultaneous wireless information and power transmission (SWIPT) by exploiting 2nd/3rd harmonics. In: Proceedings of the 2021 IEEE International Wireless Symposium (IWS 2021); 2021 May 23-26; Nanjing, China. New York City: IEEE; 2021.
[92]
H. Zhang, Y.X. Guo, S.P. Gao, Z. Zhong, W. Wu. Exploiting third harmonic of differential charge pump for wireless power transfer antenna alignment. IEEE Microw Wirel Compon Lett, 29 (1) ( 2019), pp. 71-73 DOI: 10.1109/lmwc.2018.2882086
[93]
Zhang H, Guo YX.Exploiting high-isolation 2nd-harmonic backscatters for distance-adaptive microwave power delivery. In: Proceedings of the 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium; 2021 Jul 28-31; Chengdu, China. New York City: IEEE; 2021.
[94]
A. Boaventura, D. Belo, R. Fernandes, A. Collado, A. Georgiadis, N.B. Carvalho. Boosting the efficiency: unconventional waveform design for efficient wireless power transfer. IEEE Microw Mag, 16 (3) ( 2015), pp. 87-96
[95]
M. Rajabi, N. Pan, S. Claessens, S. Pollin, D. Schreurs. Modulation techniques for simultaneous wireless information and power transfer with an integrated rectifier-receiver. IEEE Trans Microw Theory Tech, 66 (5) ( 2018), pp. 2373-2385 DOI: 10.1109/tmtt.2018.2811491
[96]
S. Claessens, N. Pan, D. Schreurs, S. Pollin. Multitone FSK modulation for SWIPT. IEEE Trans Microw Theory Tech, 67 (5) ( 2019), pp. 1665-1674 DOI: 10.1109/tmtt.2019.2908645
[97]
Claessens S, Chang YT, Schreurs D, Pollin S. Receiving ASK-OFDM in low power SWIPT nodes without local oscillators. In:Proceedings of the 2019 IEEE Wireless Power Transfer Conference (WPTC); 2019 Jun 18-21; London, UK. New York City: IEEE; 2020. p. 20-5.
[98]
Claessens S, Schreurs D, Pollin S. SWIPT with biased ASK modulation and dual-purpose hardware. In: Proceedings of the 2017 IEEE Wireless Power Transfer Conference (WPTC 2017); 2017 May 10-12; Taipei, China. New York City: IEEE; 2017.
[99]
Claessens S, Rajabi M, Pan N, Pollin S, Schreurs D. Measurement-based analysis of the throughput-power level trade-off with modulated multisine signals in a SWIPT system. In: Proceedings of the 89th ARFTG Microwave Measurement Conference (ARFTG 2017); 2017 Jun 9; Honolulu, HI, USA. New York City: IEEE; 2017.
[100]
Qaragoez Y, Pollin S, Schreurs D. Enhanced two-way communication for battery-free wireless sensors:SWIPT with IM3 backscattering. In: Proceedings of the 2022 IEEE/MTT-S International Microwave Symposium; 2022 Jun 19-24. New York City: IEEE; 2022. p. 48-51.
[101]
R. Zhang, C.K. Ho. MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans Wirel Commun, 12 (5) ( 2013), pp. 1989-2001
[102]
M. Abedi, H. Masoumi, M.J. Emadi. Power splitting-based SWIPT systems with decoding cost. IEEE Wirel Commun Lett, 8 (2) ( 2019), pp. 432-435 DOI: 10.1109/lwc.2018.2874886
[103]
I. Krikidis, S. Sasaki, S. Timotheou, Z. Ding. A low complexity antenna switching for joint wireless information and energy transfer in MIMO relay channels. IEEE Trans Commun, 62 (5) ( 2014), pp. 1577-1587
[104]
G.L. Zhu, J.X. Du, X.X. Yang, Y.G. Zhou, S. Gao. Dual-polarized communication rectenna array for simultaneous wireless information and power transmission. IEEE Access, 7 ( 2019), pp. 141978-141986 DOI: 10.1109/access.2019.2943611
[105]
M. Wagih, G.S. Hilton, A.S. Weddell, S. Beeby. Dual-band dual-mode textile antenna/rectenna for simultaneous wireless information and power transfer (SWIPT). IEEE Trans Antennas Propag, 69 (10) ( 2021), pp. 6322-6332 DOI: 10.1109/tap.2021.3070230
PDF(5116 KB)

Accesses

Citation

Detail

段落导航
相关文章

/