[1] |
A. Rasouli, I. Kotseruba, J.K. Tsotsos. Pedestrian action anticipation using contextual feature fusion in stacked RNNs. Proceedings of the 30th British Machine Vision Conference (BMVC 2019) 2019 Sep 9-12, BMVA Press, Cardiff, UK. London (2019).
|
[2] |
Y. Luo, P. Cai, A. Bera, D. Hsu, W.S. Lee, D. Manocha. PORCA: modeling and planning for autonomous driving among many pedestrians. IEEE Robot Autom Lett, 3 (4) (2018), pp. 3418-3425.
|
[3] |
P. Trautman, J. Ma, R.M. Murray, A. Krause. Robot navigation in dense human crowds: the case for cooperation. Proceedings of the IEEE International Conference on Robotics and Automation; 2013 May 6-10; Karlsruhe, Germany, IEEE, New York City (2013), pp. 2153-2160.
|
[4] |
Yao X, Zhang J, Oh J. Following social groups: socially compliant autonomous navigation in dense crowds. 2019. arXiv:1911.12063.
|
[5] |
J. Zhou, Z.K. Shi. A new lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of pedestrian’s anticipation effect. Nonlinear Dyn, 81 (3) (2015), pp. 1247-1262.
|
[6] |
S. Hoogendoorn, P.H.L. Bovy. Simulation of pedestrian flows by optimal control and differential games. Optim Control Appl Methods, 24 (2003), pp. 153-172.
|
[7] |
X. Zheng, Y. Cheng. Conflict game in evacuation process: a study combining Cellular Automata model. Physica A Stat Mech Appl, 390 (2011), pp. 1042-1050.
|
[8] |
S. Bouzat, M.N. Kuperman. Game theory in models of pedestrian room evacuation. Phys Rev E Stat Nonlinear Soft Matter Phys, 89 (2014), 032806.
|
[9] |
Q. Xu, M. Chraibi, A. Seyfried. Anticipation in a velocity-based model for pedestrian dynamics. Transp Res Part C Emerg Technol, 133 (2021), 103464.
|
[10] |
Y. Suma, D. Yanagisawa, K. Nishinari. Anticipation effect in pedestrian dynamics: modeling and experiments. Physica A Stat Mech Appl, 391 (2012), pp. 248-263.
|
[11] |
S. Nowak, A. Schadschneider. Quantitative analysis of pedestrian counterflow in a cellular automaton model. Phys Rev E Stat Nonlin Soft Matter Phys, 85 (6) (2012), 066128.
|
[12] |
R. Bailo, J.A. Carrillo, P. Degond. Pedestrian models based on rational behaviour. L. Gibelli, N. Bellomo (Eds.), Crowd dynamics. Volume 1—modeling and simulation in science, engineering and technology, Springer, Berlin (2018).
|
[13] |
H. Murakami, C. Feliciani, Y. Nishiyama, K. Nishinari. Mutual anticipation can contribute to self-organization in human crowds. Sci Adv, 7 (12) (2021), eabe7758.
|
[14] |
H. Murakami, C. Feliciani, K. Nishinari. Lévy walk process in self-organization of pedestrian crowds. J R Soc Interface, 16 (153) (2019), 20180939.
|
[15] |
R.M. Roe, J.R. Busemeyer, J.T. Townsend. Multialternative decision field theory: a dynamic connectionist model of decision making. Psychol Rev, 108 (2) (2001), pp. 370-392.
|
[16] |
I. Karamouzas, B. Skinner, S.J. Guy. Universal power law governing pedestrian interactions. Phys Rev Lett, 113 (23) (2014), p. 238701.
|
[17] |
F. Zanlungo, T. Ikeda, T. Kanda. Social force model with explicit collision prediction. EPL, 93 (6) (2011), p. 68005.
|
[18] |
V. Kosaraju, A. Sadeghian, R. Martín-Martín, I. Reid, H. Rezatofighi, S. Savarese. Social-BiGAT: multimodal trajectory forecasting using bicycle-GAN and graph attention networks. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); 2019 Dec 8-14; Vancouver, BC, Canada (2019).
|
[19] |
A. Mohamed, K. Qian, M. Elhoseiny, C. Claudel. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020 Jun 14-19; online, IEEE, New York City (2020), pp. 14424-14432.
|
[20] |
A. Rudenko, L. Palmieri, A.J. Lilienthal, K.O. Arras. Human motion prediction under social grouping constraints. Proceedings of the IEEE International Workshop on Intelligent Robots and Systems (IROS 2018) 2018 Oct 1-5;Madrid, Spain, IEEE, New York City (2018), pp. 3358-3364.
|
[21] |
A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, S.H. Rezatofighi, S. Savarese. SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019 Jun 16-20; Long Beach, CA, USA, IEEE, New York City (2019), pp. 1349-1358.
|
[22] |
J. Sun, Q. Jiang, C. Lu. Recursive social behavior graph for trajectory prediction. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019 Jun 16-20;Long Beach, CA, USA, IEEE, New York City (2019), pp. 660-669.
|
[23] |
K. Mangalam, H. Girase, S. Agarwal, K.H. Lee, E. Adeli, J. Malik, et al. It is not the journey but the destination: endpoint conditioned trajectory prediction. Proceedings of the 2020 European Conference on Computer Vision; 2020 Aug 23-28; Glasgow, UK, Springer, Berlin (2020), pp. 759-776.
|
[24] |
T. Salzmann, B. Ivanovic, P. Chakravarty, M. Pavone. Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. Proceedings of the 2020 European Conference on Computer Vision; 2020 Aug 23-28; Glasgow, UK, Springer, Berlin (2020), pp. 683-700.
|
[25] |
C. Zhou, M. Han, Q. Liang, Y.F. Hu, S.G. Kuai. A social interaction field model accurately identifies static and dynamic social groupings. Nat Hum Behav, 3 (8) (2019), pp. 847-855.
|
[26] |
M. Moussaïd, N. Perozo, S. Garnier, D. Helbing, G. Theraulaz. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS One, 5 (4) (2010), e10047.
|
[27] |
Y. Liu, Q. Yan, A. Alahi. Social NCE: contrastive learning of socially-aware motion representations. Proceedings of the 2020 IEEE/CVF International Conference on Computer Vision; 2020 Jun 13-19; Seattle, WA, USA, IEEE, New York City (2020), pp. 15118-15129.
|
[28] |
H. De Jaegher, E. Di Paolo, S. Gallagher. Can social interaction constitute social cognition?. Trends Cogn Sci, 14 (10) (2010), pp. 441-447.
|
[29] |
L. Cheng, R. Yarlagadda, C.B. Fookes, P.K. Yarlagadda. A review of pedestrian group dynamics and methodologies in modelling pedestrian group behaviours. World J Mech Eng, 1 (2014), pp. 1-13.
|
[30] |
Z. Yücel, F. Zanlungo, M. Shiomi. Modeling the impact of interaction on pedestrian group motion. Adv Robot, 32 (3) (2018), pp. 137-147.
|
[31] |
R. Zhou, H. Zhou, H. Gao, M. Tomizuka, J. Li, Z. Xu. Grouptron: dynamic multi-scale graph convolutional networks for group-aware dense crowd trajectory forecasting. Proceedings of the 2022 International Conference on Robotics and Automation (ICRA 2022); 2022 May 23-27; Philadelphia, PA, USA, IEEE, New York City (2020), pp. 805-811.
|
[32] |
S. Casas, C. Gulino, R. Liao, R. Urtasun. SpAGNN: spatially-aware graph neural networks for relational behavior forecasting from sensor data. Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA 2020); 2020 May 31-Aug 31; online, IEEE, New York City (2020), pp. 9491-9497.
|
[33] |
H. Girase, H. Gang, S. Malla, J. Li, A. Kanehara, K. Mangalam, et al. LOKI: long term and key intentions for trajectory prediction. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision; 2021 Oct 11-17; Montreal, BC, Canada, IEEE, New York City (2021), pp. 9803-9812.
|
[34] |
Y. Huang, H. Bi, Z. Li, T. Mao, Z. Wang. STGAT: modeling spatial-temporal interactions for human trajectory prediction. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision; 2019 Oct 27-Nov 2; Seoul, Republic of Korea, IEEE, New York City (2019), pp. 6272-6281.
|
[35] |
A. Gupta, J. Johnson, F.F. Li, S. Savarese, A. Alahi. Social GAN: socially acceptable trajectories with generative adversarial networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2018 Jun 18-23; Salt Lake City, UT, USA, IEEE, New York City (2018), pp. 2255-2264.
|
[36] |
B. Zhang, W. Chen, X. Ma, P. Qiu, F. Liu. Experimental study on pedestrian behavior in a mixed crowd of individuals and groups. Physica A Stat Mech Appl, 556 (2020), 124814.
|
[37] |
A.C. Gallup, J.J. Hale, D.J. Sumpter, S. Garnier, A. Kacelnik, J.R. Krebs, et al. Visual attention and the acquisition of information in human crowds. Proc Natl Acad Sci USA, 109 (19) (2012), pp. 7245-7250.
|
[38] |
X. Wang, X. Zhang, Y. Zhu, Y. Guo, X. Yuan, L. Xiang, et al. PANDA: a gigapixel-level human-centric video dataset. Proceedings of the 2020 IEEE/CVF conference on computer vision and pattern recognition; 2020 Jun 14-19 ; online, IEEE, New York City (2020), pp. 3268-3278.
|
[39] |
P. Raksincharoensak, T. Hasegawa, M. Nagai. Motion planning and control of autonomous driving intelligence system based on risk potential optimization framework. Int J Automot Eng, 7 (AVEC14) (2016), pp. 53-60.
|
[40] |
A. Alahi, V. Ramanathan, F.F. Li. Socially-aware large-scale crowd forecasting. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition 2014 Jun 23-28;Columbus, OH, USA, IEEE, New York City (2014), pp. 2211-2218.
|
[41] |
L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, et al. SGCN: sparse graph convolution network for pedestrian trajectory prediction. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021 Jun 19-25; online, IEEE, New York City (2021), pp. 8994-9003.
|
[42] |
A.A.A. Osman, T. Bolkart, M.J. Black. STAR: sparse trained articulated human body regressor. Proceedings of the Computer Vision-ECCV 2020: 16th European Conference; 2020 Aug 23-28; Glasgow, UK, Springer International Publishing, Berlin (2020), pp. 598-613.
|
[43] |
Y. Yuan, X. Weng, Y. Ou, K. Kitani. AgentFormer: agent-aware transformers for socio-temporal multi-agent forecasting. Proceedings of the IEEE/CVF International Conference on Computer Vision; 2021 Oct 10-17; Montreal, QC, Canada, IEEE, New York City (2021), pp. 9813-9823.
|
[44] |
A. Mohamed, D. Zhu, W. Vu, M. Elhoseiny, C. Claudel. Social-Implicit: rethinking trajectory prediction evaluation and the effectiveness of implicit maximum likelihood estimation. Proceedings of the Computer Vision-ECCV 2022: 17th European Conference; 2022 Oct 23-27; Tel Aviv, Israel, Springer, Berlin (2022), pp. 463-479.
|
[45] |
I. Bae, J.H. Park, H.G. Jeon. Learning pedestrian group representations for multi-modal trajectory prediction. Proceedings of the Computer Vision-ECCV 2022: 17th European Conference; 2022 Oct 23-27; Tel Aviv, Israel, Springer, Berlin (2022).
|
[46] |
P. Xu, J.B. Hayet, I. Karamouzas. SocialVAE: human trajectory prediction using timewise latents. Proceedings of the Computer Vision-ECCV 2022: 17th European Conference; 2022 Oct 23-27; Tel Aviv, Israel, Springer, Berlin (2022), pp. 511-528.
|
[47] |
T. Gu, G.Y. Chen, J. Li, C. Lin, Y. Rao, J. Zhou, et al. Stochastic trajectory prediction via motion indeterminacy diffusion. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2022 Jun 21-24;New Orleans, LU, USA, IEEE, New York City (2022).
|
[48] |
I. Bae, J.H. Park, H.G. Jeon. Non-probability sampling network for stochastic human trajectory prediction. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition 2022 Jun 21-24;New Orleans, LU, USA, IEEE, New York City (2022).
|
[49] |
Y. Chen, B. Ivanovic, M. Pavone. ScePT: scene-consistent, policy-based trajectory predictions for planning. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2022 Jun 21-24;New Orleans, LU, USA, IEEE, New York City (2022).
|
[50] |
P. Kothari, S. Kreiss, A. Alahi. Human trajectory forecasting in crowds: a deep learning perspective. IEEE Trans Intell Transp Syst, 23 (7) (2021), pp. 7386-7400.
|
[51] |
C. Yu, X. Ma, J. Ren, H. Zhao, S. Yi. Spatio-temporal graph transformer networks for pedestrian trajectory prediction. Proceedings of the 2020 European Conference on Computer Vision 2020 Aug 23-28; online, Springer, Berlin (2020), pp. 507-523.
|
[52] |
J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, J. Tang. DeepInf: social influence prediction with deep learning. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2018 Aug 19-23; London, UK, Association for Computing Machinery (ACM), New York City (2018), pp. 2110-2119.
|
[53] |
C. Liu, Y. Chen, M. Liu, B.E. Shi. AVGCN: trajectory prediction using graph convolutional networks guided by human attention. Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA); 2021 May 30-Jun 5; Xi’an, China, IEEE, New York City (2021), pp. 14234-14240.
|
[54] |
I. Hasan, F. Setti, T. Tsesmelis, A. Del Bue, M. Cristani, F. Galasso. “Seeing is believing”: pedestrian trajectory forecasting using visual frustum of attention. Proceedings of the 2018 IEEE Workshop on Applications of Computer Vision (WACV 2018); 2018 Mar 12-15;Lake Tahoe, NV, USA, IEEE, New York City (2018), pp. 1178-1185.
|
[55] |
R. Bastien, P. Romanczuk. A model of collective behavior based purely on vision. Sci Adv, 6 (6) (2020), eaay0792.
|
[56] |
F.A. Lavergne, H. Wendehenne, T. Bäuerle, C. Bechinger. Group formation and cohesion of active particles with visual perception-dependent motility. Science, 364 (80) (2019), pp. 70-74.
|
[57] |
J. Li, R. Han, H. Yan, Z. Qian, W. Feng, S. Wang. Self-supervised social relation representation for human group detection. Proceedings of the Computer Vision-ECCV 2022: 17th European Conference; 2022 Oct 23-27; Tel Aviv, Israel, Springer, Berlin (2022).
|
[58] |
F. Solera, S. Calderara, R. Cucchiara. Socially constrained structural learning for groups detection in crowd. IEEE Trans Pattern Anal Mach Intell, 38 (5) (2016), pp. 995-1008.
|
[59] |
T. Kruse, A.K. Pandey, R. Alami, A. Kirsch. Human-aware robot navigation: a survey. Robot Auton Syst, 61 (12) (2013), pp. 1726-1743.
|
[60] |
F. Gul, W. Rahiman, S.S. Nazli Alhady, K. Chen. A comprehensive study for robot navigation techniques. Cogent Eng, 6 (1) (2019), 1632046.
|