[1] |
D.P. Dubal, N.R. Chodankar, D.H. Kim, P. Gomez-Romero. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev, 47 (6) (2018), pp. 2065-2129.
|
[2] |
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K.V. Chen, A. Peck, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529 (7587) (2016), pp. 509-514.
|
[3] |
J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo, C. Pang, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater, 27 (15) (2015), pp. 2433-2439.
|
[4] |
J.Y. Oh, S. Rondeau-Gagné, Y.C. Chiu, A. Chortos, F. Lissel, G.N. Wang, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 539 (7629) (2016), pp. 411-415.
|
[5] |
F. Güder, A. Ainla, J. Redston, B. Mosadegh, A. Glavan, T.J. Martin, et al. Paper-based electrical respiration sensor. Angew Chem Int Ed Engl, 55 (19) (2016), pp. 5727-5732.
|
[6] |
Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun, 9 (1) (2018), p. 244.
|
[7] |
Y. Cheng, R.R. Wang, J. Sun, L. Gao. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater, 27 (45) (2015), pp. 7365-7371.
|
[8] |
W. Shao, L. Zhang, Z. Jiang, M. Xu, Y. Chen, S. Li, et al. Bioinspired conductive structural color hydrogels as a robotic knuckle rehabilitation electrical skin. Nanoscale Horiz, 7 (11) (2022), pp. 1411-1417.
|
[9] |
S.N. Yun, Y. Qin, A.R. Uhl, N. Vlachopoulos, M. Yin, D.D. Li, et al. New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energ Environ Sci, 11 (3) (2018), pp. 476-526.
|
[10] |
C. Chen, M. Jiang, X. Luo, H. Tai, Y. Jiang, M. Yang, et al. Ni-Co-P hollow nanobricks enabled humidity sensor for respiratory analysis and human-machine interfacing. Sens Actuators B Chem, 370 (2022), 132441.
|
[11] |
H. Guan, R. Yang, W. Li, Y. Tao, C. Chen, H. Tai, et al. Self-powered multifunctional flexible sensor for wearable biomonitoring. Sens Actuators B Chem, 377 (2023), 132996.
|
[12] |
H. Pan, G. Chen, Y. Chen, A. Di Carlo, M.A. Mayer, S. Shen, et al. Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring. Biosens Bioelectron, 222 (2023), 114999.
|
[13] |
Y. Su, S. Chen, B. Liu, H. Lu, X. Luo, C. Chen, et al. Maxwell displacement current induced wireless self-powered gas sensor array. Mater Today Phys, 30 (2023), 100951.
|
[14] |
Y. Su, W. Li, X. Cheng, Y. Zhou, S. Yang, X. Zhang, et al. High-performance piezoelectric composites via β phase programming. Nat Commun, 13 (1) (2022), p. 4867.
|
[15] |
Y. Su, Y. Liu, W. Li, X. Xiao, C. Chen, H. Lu, et al. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater Horiz, 10 (3) (2023), pp. 842-851.
|
[16] |
H. Xue, Q. Yang, D.Y. Wang, W.J. Luo, W.Q. Wang, M.S. Lin, et al. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy, 38 (2017), pp. 147-154.
|
[17] |
M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small, 14 (29) (2018), p. 1800987.
|
[18] |
N.L. Panwar, S.C. Kaushik, S. Kothari. Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev, 15 (3) (2011), pp. 1513-1524.
|
[19] |
X.L. Shi, J. Zou, Z.G. Chen. Advanced thermoelectric design: from materials and structures to devices. Chem Rev, 120 (15) (2020), pp. 7399-7515.
|
[20] |
L. Wang, Z. Zhang, Y. Liu, B. Wang, L. Fang, J. Qiu, et al. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase. Nat Commun, 9 (1) (2018), p. 3817.
|
[21] |
Z.H. Zheng, X.L. Shi, D.W. Ao, W.D. Liu, M. Li, L.Z. Kou, et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat Sustain, 6 (2) (2023), pp. 180-191.
|
[22] |
L.D. Zhao, V.P. Dravid, M.G. Kanatzidis. The panoscopic approach to high performance thermoelectrics. Energ Environ Sci, 7 (1) (2014), pp. 251-268.
|
[23] |
L.M. Wang, Z.M. Zhang, L.X. Geng, T.Y. Yuan, Y.C. Liu, J.C. Guo, et al. Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energ Environ Sci, 11 (5) (2018), pp. 1307-1317.
|
[24] |
L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 351 (6269) (2016), pp. 141-144.
|
[25] |
X. He, J. Gu, Y. Hao, M. Zheng, L. Wang, J. Yu, et al. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem Eng J, 450 (2022), 137937.
|
[26] |
F. Suarez, A. Nozariasbmarz, D. Vashaee, M.C. Ozturk. Designing thermoelectric generators for self-powered wearable electronics. Energy Environ Sci, 9 (6) (2016), pp. 2099-2113.
|
[27] |
F.J. Zhang, Y.P. Zang, D.Z. Huang, C.A. Di, D.B. Zhu. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun, 6 (2015), p. 8356.
|
[28] |
X.Y. He, J. Shi, Y.N. Hao, M.T. He, J.X. Cai, X.H. Qin, et al. Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing. Carbon Energy, 4 (4) (2022), pp. 621-632.
|
[29] |
K. Wan, Y. Liu, G. Santagiuliana, G. Barandun, P. Taroni Junior, F. Güder, et al. Self-powered ultrasensitive and highly stretchable temperature-strain sensing composite yarns. Mater Horiz, 8 (9) (2021), pp. 2513-2519.
|
[30] |
C.S. Kim, H.M. Yang, J. Lee, G.S. Lee, H. Choi, Y.J. Kim, et al. Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett, 3 (3) (2018), pp. 501-507.
|
[31] |
S.J. Kim, J.H. We, B.J. Cho. A wearable thermoelectric generator fabricated on a glass fabric. Energ Environ Sci, 7 (6) (2014), pp. 1959-1965.
|
[32] |
Z.K. Liu, Z.H. Li, Y.P.Q. Yi, L.D.N. Li, H. Zhai, Z.H. Lu, et al. Flexible strain sensing percolation networks towards complicated wearable microclimate and multi-direction mechanical inputs. Nano Energy, 99 (2022), 107444.
|
[33] |
W.A.D.M. Jayathilaka, K. Qi, Y. Qin, A. Chinnappan, W. Serrano-García, C. Baskar, et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv Mater, 31 (7) (2019), p. e1805921.
|
[34] |
F. Hyder, K. Sudhakar, R. Mamat. Solar PV tree design: a review. Renew Sustain Energy Rev, 82 (2018), pp. 1079-1096.
|
[35] |
J. Lama, A. Yau, G.R. Chen, A. Sivakumar, X. Zhao, J. Chen. Textile triboelectric nanogenerators for self-powered biomonitoring. J Mate Chem A, 9 (35) (2021), pp. 19149-19178.
|
[36] |
J. Kim, S. Byun, S. Lee, J. Ryu, S. Cho, C. Oh, et al. Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester. Nano Energy, 75 (2020), 104992.
|
[37] |
Y.L. Zhao, H.L. Cheng, Y.X. Li, J.C. Rao, S.Z. Yue, Q.J. Le, et al. Quasi-solid conductive gels with high thermoelectric properties and high mechanical stretchability consisting of a low cost and green deep eutectic solvent. J Mate Chem A, 10 (8) (2022), pp. 4222-4229.
|
[38] |
Y.L. Fang, H.L. Cheng, H. He, S. Wang, J.M. Li, S.Z. Yue, et al. Stretchable and transparent ionogels with high thermoelectric properties. Adv Funct Mater, 30 (51) (2020), p. 2004699.
|
[39] |
X. He, Y. Hao, M. He, X. Qin, L. Wang, J. Yu. Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Appl Mater Interfaces, 13 (50) (2021), pp. 60498-60507.
|
[40] |
D. Zhang, K.W. Zhang, Y.M. Wang, Y.H. Wang, Y. Yang. Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system. Nano Energy, 56 (2019), pp. 25-32.
|
[41] |
P.J. Taroni, G. Santagiuliana, K. Wan, P. Calado, M. Qiu, H. Zhang, et al. Toward stretchable self-powered sensors based on the thermoelectric response of PEDOT:PSS/polyurethane blends. Adv Funct Mater, 28 (15) (2018), p. 1704285.
|
[42] |
H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong, W.H. Yeo. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater, 32 (15) (2020), p. e1901924.
|
[43] |
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf, L. Tian, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev, 119 (8) (2019), pp. 5461-5533.
|
[44] |
Y. Liu, M. Pharr, G.A. Salvatore. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano, 11 (10) (2017), pp. 9614-9635.
|
[45] |
C.H. Yu, A. Murali, K.W. Choi, Y. Ryu. Air-stable fabric thermoelectric modules made of n- and p-type carbon nanotubes. Energ Environ Sci, 5 (11) (2012), pp. 9481-9486.
|
[46] |
Y. Nonoguchi, M. Nakano, T. Murayama, H. Hagino, S. Hama, K. Miyazaki, et al. Simple salt-coordinated n-type nanocarbon materials stable in air. Adv Funct Mater, 26 (18) (2016), pp. 3021-3028.
|
[47] |
P.G. Collins, K. Bradley, M. Ishigami, A. Zettl. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 287 (5459) (2000), pp. 1801-1804.
|
[48] |
G. Wu, Z.G. Zhang, Y. Li, C. Gao, X. Wang, G. Chen. Exploring high-performance n-type thermoelectric composites using amino-substituted rylene dimides and carbon nanotubes. ACS Nano, 11 (6) (2017), pp. 5746-5752.
|
[49] |
T. Sun, B. Zhou, Q. Zheng, L. Wang, W. Jiang, G.J. Snyder. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat Commun, 11 (1) (2020), p. 572.
|
[50] |
J.Y. Kim, W. Lee, Y.H. Kang, S.Y. Cho, K.S. Jang. Wet-spinning and post-treatment of CNT/PEDOT:PSS composites for use in organic fiber-based thermoelectric generators. Carbon, 133 (2018), pp. 293-299.
|
[51] |
D. Kim, Y. Kim, K. Choi, J.C. Grunlan, C. Yu. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano, 4 (1) (2010), pp. 513-523.
|
[52] |
E. Onofrei, A.M. Rocha, A. Catarino. The influence of knitted fabrics’ structure on the thermal and moisture management properties. J Eng Fibers Fabrics, 6 (4) (2011), pp. 10-22.
|
[53] |
J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv, 1 (9) (2015), p. e1500661.
|
[54] |
Y.H. Lee, J.S. Kim, J. Noh, I. Lee, H.J. Kim, S. Choi, et al. Wearable textile battery rechargeable by solar energy. Nano Lett, 13 (11) (2013), pp. 5753-5761.
|
[55] |
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 347 (6217) (2015), p. 1246501.
|
[56] |
J. Song, F. Wang, X. Yang, B. Ning, M.G. Harp, S.H. Culp, et al. Gold nanoparticle coated carbon nanotube ring with enhanced raman scattering and photothermal conversion property for theranostic applications. J Am Chem Soc, 138 (22) (2016), pp. 7005-7015.
|
[57] |
D. Li, X. Liu, W. Li, Z.H. Lin, B. Zhu, Z.Z. Li, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nature Nanotech, 16 (2) (2021), pp. 153-158.
|
[58] |
Y. He, X. Lin, Y. Feng, B. Luo, M. Liu. Carbon nanotube ink dispersed by chitin nanocrystals for thermoelectric converter for self-powering multifunctional wearable electronics. Adv Sci, 9 (33) (2022), 2204675.
|