多功能热电织物用于可穿戴无线传感系统

Xinyang He, Jiaxin Cai, Mingyuan Liu, Xuepeng Ni, Wendi Liu, Hanyu Guo, Jianyong Yu, Liming Wang, Xiaohong Qin

工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 158-167.

PDF(3179 KB)
PDF(3179 KB)
工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 158-167. DOI: 10.1016/j.eng.2023.05.026
研究论文
Article

多功能热电织物用于可穿戴无线传感系统

作者信息 +

Multifunctional, Wearable, and Wireless Sensing System via Thermoelectric Fabrics

Author information +
History +

Abstract

Flexible thermoelectric materials play an important role in smart wearables, such as wearable power generation, self-powered sensing, and personal thermal management. However, with the rapid development of Internet of Things (IoT) and artificial intelligence (AI), higher standards for comfort, multifunctionality, and sustainable operation of wearable electronics have been proposed, and it remains challenging to meet all the requirements of currently reported thermoelectric devices. Herein, we present a multifunctional, wearable, and wireless sensing system based on a thermoelectric knitted fabric with over 600 mm·s−1 air permeability and a stretchability of 120%. The device coupled with a wireless transmission system realizes self-powered monitoring of human respiration through an mobile phone application (APP). Furthermore, an integrated thermoelectric system was designed to combine photothermal conversion and passive radiative cooling, enabling the characteristics of being powered by solar-driven in-plane temperature differences and monitoring outdoor sunlight intensity through the APP. Additionally, we decoupled the complex signals of resistance and thermal voltage during deformation under solar irradiation based on the anisotropy of the knitted fabrics to enable the device to monitor and optimize the outdoor physical activity of the athlete via the APP. This novel thermoelectric fabric-based wearable and wireless sensing platform has promising applications in next-generation smart textiles.

Keywords

Thermoelectric fabrics / Wearable device / Wireless / Multifunctional sensing system / Outdoor wearable signal monitoring

引用本文

导出引用
Xinyang He, Jiaxin Cai, Mingyuan Liu. . Engineering. 2024, 35(4): 158-167 https://doi.org/10.1016/j.eng.2023.05.026

参考文献

[1]
D.P. Dubal, N.R. Chodankar, D.H. Kim, P. Gomez-Romero. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev, 47 (6) (2018), pp. 2065-2129.
[2]
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K.V. Chen, A. Peck, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529 (7587) (2016), pp. 509-514.
[3]
J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo, C. Pang, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater, 27 (15) (2015), pp. 2433-2439.
[4]
J.Y. Oh, S. Rondeau-Gagné, Y.C. Chiu, A. Chortos, F. Lissel, G.N. Wang, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 539 (7629) (2016), pp. 411-415.
[5]
F. Güder, A. Ainla, J. Redston, B. Mosadegh, A. Glavan, T.J. Martin, et al. Paper-based electrical respiration sensor. Angew Chem Int Ed Engl, 55 (19) (2016), pp. 5727-5732.
[6]
Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun, 9 (1) (2018), p. 244.
[7]
Y. Cheng, R.R. Wang, J. Sun, L. Gao. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater, 27 (45) (2015), pp. 7365-7371.
[8]
W. Shao, L. Zhang, Z. Jiang, M. Xu, Y. Chen, S. Li, et al. Bioinspired conductive structural color hydrogels as a robotic knuckle rehabilitation electrical skin. Nanoscale Horiz, 7 (11) (2022), pp. 1411-1417.
[9]
S.N. Yun, Y. Qin, A.R. Uhl, N. Vlachopoulos, M. Yin, D.D. Li, et al. New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energ Environ Sci, 11 (3) (2018), pp. 476-526.
[10]
C. Chen, M. Jiang, X. Luo, H. Tai, Y. Jiang, M. Yang, et al. Ni-Co-P hollow nanobricks enabled humidity sensor for respiratory analysis and human-machine interfacing. Sens Actuators B Chem, 370 (2022), 132441.
[11]
H. Guan, R. Yang, W. Li, Y. Tao, C. Chen, H. Tai, et al. Self-powered multifunctional flexible sensor for wearable biomonitoring. Sens Actuators B Chem, 377 (2023), 132996.
[12]
H. Pan, G. Chen, Y. Chen, A. Di Carlo, M.A. Mayer, S. Shen, et al. Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring. Biosens Bioelectron, 222 (2023), 114999.
[13]
Y. Su, S. Chen, B. Liu, H. Lu, X. Luo, C. Chen, et al. Maxwell displacement current induced wireless self-powered gas sensor array. Mater Today Phys, 30 (2023), 100951.
[14]
Y. Su, W. Li, X. Cheng, Y. Zhou, S. Yang, X. Zhang, et al. High-performance piezoelectric composites via β phase programming. Nat Commun, 13 (1) (2022), p. 4867.
[15]
Y. Su, Y. Liu, W. Li, X. Xiao, C. Chen, H. Lu, et al. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater Horiz, 10 (3) (2023), pp. 842-851.
[16]
H. Xue, Q. Yang, D.Y. Wang, W.J. Luo, W.Q. Wang, M.S. Lin, et al. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy, 38 (2017), pp. 147-154.
[17]
M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small, 14 (29) (2018), p. 1800987.
[18]
N.L. Panwar, S.C. Kaushik, S. Kothari. Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev, 15 (3) (2011), pp. 1513-1524.
[19]
X.L. Shi, J. Zou, Z.G. Chen. Advanced thermoelectric design: from materials and structures to devices. Chem Rev, 120 (15) (2020), pp. 7399-7515.
[20]
L. Wang, Z. Zhang, Y. Liu, B. Wang, L. Fang, J. Qiu, et al. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase. Nat Commun, 9 (1) (2018), p. 3817.
[21]
Z.H. Zheng, X.L. Shi, D.W. Ao, W.D. Liu, M. Li, L.Z. Kou, et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat Sustain, 6 (2) (2023), pp. 180-191.
[22]
L.D. Zhao, V.P. Dravid, M.G. Kanatzidis. The panoscopic approach to high performance thermoelectrics. Energ Environ Sci, 7 (1) (2014), pp. 251-268.
[23]
L.M. Wang, Z.M. Zhang, L.X. Geng, T.Y. Yuan, Y.C. Liu, J.C. Guo, et al. Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energ Environ Sci, 11 (5) (2018), pp. 1307-1317.
[24]
L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 351 (6269) (2016), pp. 141-144.
[25]
X. He, J. Gu, Y. Hao, M. Zheng, L. Wang, J. Yu, et al. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem Eng J, 450 (2022), 137937.
[26]
F. Suarez, A. Nozariasbmarz, D. Vashaee, M.C. Ozturk. Designing thermoelectric generators for self-powered wearable electronics. Energy Environ Sci, 9 (6) (2016), pp. 2099-2113.
[27]
F.J. Zhang, Y.P. Zang, D.Z. Huang, C.A. Di, D.B. Zhu. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun, 6 (2015), p. 8356.
[28]
X.Y. He, J. Shi, Y.N. Hao, M.T. He, J.X. Cai, X.H. Qin, et al. Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing. Carbon Energy, 4 (4) (2022), pp. 621-632.
[29]
K. Wan, Y. Liu, G. Santagiuliana, G. Barandun, P. Taroni Junior, F. Güder, et al. Self-powered ultrasensitive and highly stretchable temperature-strain sensing composite yarns. Mater Horiz, 8 (9) (2021), pp. 2513-2519.
[30]
C.S. Kim, H.M. Yang, J. Lee, G.S. Lee, H. Choi, Y.J. Kim, et al. Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett, 3 (3) (2018), pp. 501-507.
[31]
S.J. Kim, J.H. We, B.J. Cho. A wearable thermoelectric generator fabricated on a glass fabric. Energ Environ Sci, 7 (6) (2014), pp. 1959-1965.
[32]
Z.K. Liu, Z.H. Li, Y.P.Q. Yi, L.D.N. Li, H. Zhai, Z.H. Lu, et al. Flexible strain sensing percolation networks towards complicated wearable microclimate and multi-direction mechanical inputs. Nano Energy, 99 (2022), 107444.
[33]
W.A.D.M. Jayathilaka, K. Qi, Y. Qin, A. Chinnappan, W. Serrano-García, C. Baskar, et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv Mater, 31 (7) (2019), p. e1805921.
[34]
F. Hyder, K. Sudhakar, R. Mamat. Solar PV tree design: a review. Renew Sustain Energy Rev, 82 (2018), pp. 1079-1096.
[35]
J. Lama, A. Yau, G.R. Chen, A. Sivakumar, X. Zhao, J. Chen. Textile triboelectric nanogenerators for self-powered biomonitoring. J Mate Chem A, 9 (35) (2021), pp. 19149-19178.
[36]
J. Kim, S. Byun, S. Lee, J. Ryu, S. Cho, C. Oh, et al. Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester. Nano Energy, 75 (2020), 104992.
[37]
Y.L. Zhao, H.L. Cheng, Y.X. Li, J.C. Rao, S.Z. Yue, Q.J. Le, et al. Quasi-solid conductive gels with high thermoelectric properties and high mechanical stretchability consisting of a low cost and green deep eutectic solvent. J Mate Chem A, 10 (8) (2022), pp. 4222-4229.
[38]
Y.L. Fang, H.L. Cheng, H. He, S. Wang, J.M. Li, S.Z. Yue, et al. Stretchable and transparent ionogels with high thermoelectric properties. Adv Funct Mater, 30 (51) (2020), p. 2004699.
[39]
X. He, Y. Hao, M. He, X. Qin, L. Wang, J. Yu. Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Appl Mater Interfaces, 13 (50) (2021), pp. 60498-60507.
[40]
D. Zhang, K.W. Zhang, Y.M. Wang, Y.H. Wang, Y. Yang. Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system. Nano Energy, 56 (2019), pp. 25-32.
[41]
P.J. Taroni, G. Santagiuliana, K. Wan, P. Calado, M. Qiu, H. Zhang, et al. Toward stretchable self-powered sensors based on the thermoelectric response of PEDOT:PSS/polyurethane blends. Adv Funct Mater, 28 (15) (2018), p. 1704285.
[42]
H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong, W.H. Yeo. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater, 32 (15) (2020), p. e1901924.
[43]
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf, L. Tian, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev, 119 (8) (2019), pp. 5461-5533.
[44]
Y. Liu, M. Pharr, G.A. Salvatore. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano, 11 (10) (2017), pp. 9614-9635.
[45]
C.H. Yu, A. Murali, K.W. Choi, Y. Ryu. Air-stable fabric thermoelectric modules made of n- and p-type carbon nanotubes. Energ Environ Sci, 5 (11) (2012), pp. 9481-9486.
[46]
Y. Nonoguchi, M. Nakano, T. Murayama, H. Hagino, S. Hama, K. Miyazaki, et al. Simple salt-coordinated n-type nanocarbon materials stable in air. Adv Funct Mater, 26 (18) (2016), pp. 3021-3028.
[47]
P.G. Collins, K. Bradley, M. Ishigami, A. Zettl. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 287 (5459) (2000), pp. 1801-1804.
[48]
G. Wu, Z.G. Zhang, Y. Li, C. Gao, X. Wang, G. Chen. Exploring high-performance n-type thermoelectric composites using amino-substituted rylene dimides and carbon nanotubes. ACS Nano, 11 (6) (2017), pp. 5746-5752.
[49]
T. Sun, B. Zhou, Q. Zheng, L. Wang, W. Jiang, G.J. Snyder. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat Commun, 11 (1) (2020), p. 572.
[50]
J.Y. Kim, W. Lee, Y.H. Kang, S.Y. Cho, K.S. Jang. Wet-spinning and post-treatment of CNT/PEDOT:PSS composites for use in organic fiber-based thermoelectric generators. Carbon, 133 (2018), pp. 293-299.
[51]
D. Kim, Y. Kim, K. Choi, J.C. Grunlan, C. Yu. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano, 4 (1) (2010), pp. 513-523.
[52]
E. Onofrei, A.M. Rocha, A. Catarino. The influence of knitted fabrics’ structure on the thermal and moisture management properties. J Eng Fibers Fabrics, 6 (4) (2011), pp. 10-22.
[53]
J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv, 1 (9) (2015), p. e1500661.
[54]
Y.H. Lee, J.S. Kim, J. Noh, I. Lee, H.J. Kim, S. Choi, et al. Wearable textile battery rechargeable by solar energy. Nano Lett, 13 (11) (2013), pp. 5753-5761.
[55]
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 347 (6217) (2015), p. 1246501.
[56]
J. Song, F. Wang, X. Yang, B. Ning, M.G. Harp, S.H. Culp, et al. Gold nanoparticle coated carbon nanotube ring with enhanced raman scattering and photothermal conversion property for theranostic applications. J Am Chem Soc, 138 (22) (2016), pp. 7005-7015.
[57]
D. Li, X. Liu, W. Li, Z.H. Lin, B. Zhu, Z.Z. Li, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nature Nanotech, 16 (2) (2021), pp. 153-158.
[58]
Y. He, X. Lin, Y. Feng, B. Luo, M. Liu. Carbon nanotube ink dispersed by chitin nanocrystals for thermoelectric converter for self-powering multifunctional wearable electronics. Adv Sci, 9 (33) (2022), 2204675.
PDF(3179 KB)

Accesses

Citation

Detail

段落导航
相关文章

/