[1] |
S. Wioleta, M. Małgorzata, O. Zbigniew, J. Jolanta, W. Justyna. Proposal for the selection of materials for footwear to improve thermal insulation properties based on laboratory research. Fibres Text East Eur, 26 (131) ( 2018), pp. 75-80
|
[2] |
L. Yuan, Q. Yao, Y. Liang, Y. Dan, Y. Wang, H. Wen, et al.. Chitosan based antibacterial nanocomposite materials for leather industry: a review. J Leather Sci Eng, 3 (1) ( 2021), p. 12
|
[3] |
I. Carvalho, S. Ferdov, C. Mansilla, S.M. Marques, M.A. Cerqueira, L.M. Pastrana, et al.. Development of antimicrobial leather modified with Ag-TiO2 nanoparticles for footwear industry. Sci Technol Mater, 30 ( 2018), pp. 60-68
|
[4] |
J.W. Choi, E.S. Ko. Relationship between thermal insulation and the combinations of Korean women’s clothing by season-using a thermal manikin. J Korean Soc Cloth Text, 31 (6) ( 2007), pp. 966-973
|
[5] |
E. Bielak, E. Marcinkowska, J. Syguła-Cholewińska.Investigation of finishing of leather for inside parts of the shoes with a natural biocide. Sci Rep, 10 (1) ( 2020), p. 3467
|
[6] |
A. Yorgancioglu. Emulsification and application of a thymol loaded antibacterial fatliquor for leather industry. J Ind Text, 51 (3) ( 2021), pp. 470-485
|
[7] |
R. Renganath Rao, M. Sathish, R.J. Raghava. Research advances in the fabrication of biosafety and functional leather: a way-forward for effective management of COVID-19 outbreak. J Clean Prod, 310 ( 2021), Article 127464
|
[8] |
C. Liu, Q. Yin, X. Li, L. Hao, W. Zhang, Y. Bao, et al.. A waterborne polyurethane-based leather finishing agent with excellent room temperature self-healing properties and wear-resistance. Adv Compos Hybrid Mater, 4 (1) ( 2021), pp. 138-149
|
[9] |
Y. Han, J. Hu, Z. Xin. Facile preparation of high solid content waterborne polyurethane and its application in leather surface finishing. Prog Org Coat, 130 ( 2019), pp. 8-16
|
[10] |
L. Zhang, J. Ma, B. Lyu, Y. Zhang, V.K. Thakur, C. Liu. A sustainable waterborne vanillin-eugenol-acrylate miniemulsion with suitable antibacterial properties as a substitute for the styrene-acrylate emulsion. Green Chem, 23 (19) ( 2021), pp. 7576-7588
|
[11] |
O.A. Mohamed, A.B. Moustafa, M.A. Mehawed, N.H. El-Sayed. Styrene and butyl methacrylate copolymers and their application in leather finishing. J Appl Polym Sci, 111 (3) ( 2009), pp. 1488-1495
|
[12] |
V.A. Moshiran, A. Karimi, F. Golbabaei, M.S. Yarandi, A.A. Sajedian, A.G. Koozekonan. Quantitative and semiquantitative health risk assessment of occupational exposure to styrene in a petrochemical industry. Saf Health Work, 12 (3) ( 2021), pp. 396-402
|
[13] |
A.J. Li, V.K. Pal, K. Kannan. A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ Chem Ecotoxicol, 3 ( 2021), pp. 91-116
|
[14] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, et al.. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 23 (37) ( 2011), pp. 4248-4253
|
[15] |
H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett, 17 (1) ( 2017), pp. 384-391
|
[16] |
D. Xu, Z. Li, L. Li, J. Wang. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv Funct Mater, 30 (47) ( 2020), Article 2000712
|
[17] |
R. Li, L. Zhang, L. Shi, P. Wang. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano, 11 (4) ( 2017), pp. 3752-3759
|
[18] |
X.J. Zha, X. Zhao, J.H. Pu, L.S. Tang, K. Ke, R.Y. Bao, et al.. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl Mater Interfaces, 11 (40) ( 2019), pp. 36589-36597
|
[19] |
Y. Jin, K. Wang, S. Li, J. Liu. Encapsulation of MXene/polydopamine in nitrogen-doped 3D carbon networks with high photothermal conversion efficiency for seawater desalination. J Colloid Interface Sci, 614 ( 2022), pp. 345-354
|
[20] |
K. Zhou, K. Gong, C. Wang, M. Zhou, J. Xiao. Construction of Ti3C2 MXene based fire resistance nanocoating on flexible polyurethane foam for highly efficient photothermal conversion and solar water desalination. J Colloid Interface Sci, 630 (Pt A) ( 2023), pp. 343-354
|
[21] |
B. Yan, M. Zhou, X. Liao, P. Wang, Y. Yu, J. Yuan, et al.. Developing a multifunctional silk fabric with dual-driven heating and rapid photothermal antibacterial abilities using high-yield MXene dispersions. ACS Appl Mater Interfaces, 13 (36) ( 2021), pp. 43414-43425
|
[22] |
M. Shi, M. Shen, X. Guo, X. Jin, Y. Cao, Y. Yang, et al.. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano, 15 (7) ( 2021), pp. 11396-11405
|
[23] |
C. Wei, Q. Zhang, Z. Wang, W. Yang, H. Lu, Z. Huang, et al.. Recent advances in MXene-based aerogels: fabrication, performance and application. Adv Funct Mater, 33 (9) ( 2023), Article 2211889
|
[24] |
B. Lu, S. Hu, D. Wu, C. Wu, Z. Zhu, L. Hu, et al.. Ionic liquid exfoliated Ti3C2Tx MXene nanosheets for photoacoustic imaging and synergistic photothermal/chemotherapy of cancer. J Mater Chem B Mater Biol Med, 10 (8) ( 2022), pp. 1226-1235
|
[25] |
H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou, X. Zhang, et al.. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale, 12 (3) ( 2020), pp. 1325-1338
|
[26] |
K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, K.A. Mahmoud. Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 10 (3) ( 2016), pp. 3674-3684
|
[27] |
M. Mansoorianfar, K. Shahin, A. Hojjati-Najafabadi, R. Pei. MXene-laden bacteriophage: a new antibacterial candidate to control bacterial contamination in water. Chemosphere, 290 ( 2022), Article 133383
|
[28] |
X. Xu, S. Wang, H. Wu, Y. Liu, F. Xu, J. Zhao. A multimodal antimicrobial platform based on MXene for treatment of wound infection. Colloids Surf B Biointerfaces, 207 ( 2021), Article 111979
|
[29] |
M. Fache, B. Boutevin, S. Caillol. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng, 4 (1) ( 2016), pp. 35-46
|
[30] |
L. Delgado, C.M. Heckmann, S. De Benedetti, M. Nardini, L.J. Gourlay, F. Paradisi. Producing natural vanilla extract from green vanilla beans using a β-glucosidase from Alicyclobacillus acidiphilus. J Biotechnol, 329 ( 2021), pp. 21-28
|
[31] |
Y.K. Vaghasiya, R. Nair, M. Soni, S. Baluja, S. Shanda. Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine. J Serb Chem Soc, 69 (12) ( 2004), pp. 991-998
|
[32] |
S.V. Mankar, M.N. Garcia Gonzalez, N. Warlin, N.G. Valsange, N. Rehnberg, S. Lundmark, et al.. Synthesis, life cycle assessment, and polymerization of a vanillin-based spirocyclic diol toward polyesters with increased glass-transition temperature. ACS Sustain Chem Eng, 7 (23) ( 2019), pp. 19090-19103
|
[33] |
H. Geng, Y. Wang, Q. Yu, S. Gu, Y. Zhou, W. Xu, et al.. Vanillin-based polyschiff vitrimers: reprocessability and chemical recyclability. ACS Sustain Chem Eng, 6 (11) ( 2018), pp. 15463-15470
|
[34] |
Q. Yu, X. Peng, Y. Wang, H. Geng, A. Xu, X. Zhang, et al.. Vanillin-based degradable epoxy vitrimers: reprocessability and mechanical properties study. Eur Polym J, 117 ( 2019), pp. 55-63
|
[35] |
M. Fache, B. Boutevin, S. Caillol. Vanillin, a key-intermediate of biobased polymers. Eur Polym J, 68 ( 2015), pp. 488-502
|
[36] |
M.A. Rashid, M. Hasan, M. Dayan, M.S. Ibna Jamal, M.K. Patoary. A critical review of sustainable vanillin-modified vitrimers: synthesis, challenge and prospects. Reactions, 4 (1) ( 2023), pp. 66-91
|
[37] |
M. Yasar, B. Oktay, F. Dal Yontem, E. Haciosmanoglu Aldogan, A.N. Kayaman. Development of self-healing vanillin/PEI hydrogels for tissue engineering. Eur Polym J, 188 ( 2023), Article 111933
|
[38] |
Y. Zhang, V.K. Thakur, Y. Li, T.F. Garrison, Z. Gao, J. Gu, et al.. Soybean-oil-based thermosetting resins with methacrylated vanillyl alcohol as bio-based, low-viscosity comonomer. Macromol Mater Eng, 303 (1) ( 2018), Article 1700278
|
[39] |
A. Bohre, U. Novak, M. Grilc, B. Likozar. Synthesis of bio-based methacrylic acid from biomass-derived itaconic acid over barium hexa-aluminate catalyst by selective decarboxylation reaction. Mol Catal, 476 ( 2019), Article 110520
|
[40] |
A.J.J. Straathof, S. Sie, T.T. Franco, L.A. van der Wielen. Feasibility of acrylic acid production by fermentation. Appl Microbiol Biotechnol, 67 (6) ( 2005), pp. 727-734
|
[41] |
B. Ndaba, I. Chiyanzu, S. Marx. n-Butanol derived from biochemical and chemical routes: a review. Biotechnol Rep, 8 ( 2015), pp. 1-9
|
[42] |
K. Wang, X. Li, H. Peng, Y. Dong, Y. Li, X. Liu, et al.. Tough and strong soy protein film by integrating CNFs and MXene with photothermal conversion and UV-blocking performance. Cellul, 29 (17) ( 2022), pp. 9235-9249
|
[43] |
D.I. Petukhov, A.P. Chumakov, A.S. Kan, V.A. Lebedev, A.A. Eliseev, O.V. Konovalov, et al.. Spontaneous MXene monolayer assembly at the liquid-air interface. Nanoscale, 11 (20) ( 2019), pp. 9980-9986
|
[44] |
J. Duan, L. Jiang, X. Guo, S. Chen, G. Wang, C. Zhao. MXene-directed dual amphiphilicity at liquid, solid, and gas interfaces. Chem Asian J, 13 (24) ( 2018), pp. 3850-3854
|
[45] |
L.J. Cote, J. Kim, V.C. Tung, J. Luo, F. Kim, J. Huang. Graphene oxide as surfactant sheets. Pure Appl Chem, 83 (1) ( 2010), pp. 95-110
|
[46] |
R. Cai, J. Zhao, N. Lv, A. Fu, C. Yin, C. Song, et al.. Curing and molecular dynamics simulation of MXene/phenolic epoxy composites with different amine curing agent systems. Nanomaterials, 12 (13) ( 2022), p. 2249
|
[47] |
Y. Zhang, C. Liu, J. Ma, W. Zhang, Q. Fan, Z. Ma. Relationship between the structure of modified ricinoleic acids via the thiol-ene click reaction and the fogging value of fatliquored leather. ACS Sustain Chem Eng, 10 (40) ( 2022), pp. 13288-13300
|
[48] |
L. Zhang, J. Ma, B. Lyu, Y. Zhang, D. Gao, C. Liu, et al.. Mitochondrial structure-inspired high specific surface area polymer microspheres by encapsulating modified graphene oxide nanosheets. Eur Polym J, 130 ( 2020), Article 109682
|
[49] |
R. Chawla, S. Sharma. Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix. Compos Sci Technol, 144 ( 2017), pp. 169-177
|
[50] |
T. Chakraborty, A. Hens, S. Kulashrestha, N. Chandra Murmu, P. Banerjee. Calculation of diffusion coefficient of long chain molecules using molecular dynamics. Physica E, 69 ( 2015), pp. 371-377
|
[51] |
C. Wang, Y. Wang, X. Jiang, J. Xu, W. Huang, F. Zhang, et al.. MXene Ti3C2Tx : a promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv Opt Mater, 7 (12) ( 2019), p. 1900060
|
[52] |
X. Liu, X. Jin, L. Li, J. Wang, Y. Yang, Y. Cao, et al.. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J Mater Chem A Mater Energy Sustain, 8 (25) ( 2020), pp. 12526-12537
|
[53] |
X. Fan, Y. Yang, X. Shi, Y. Liu, H. Li, J. Liang, et al.. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Adv Funct Mater, 30 (52) ( 2020), Article 2007110
|
[54] |
Y. Cheng, Y. Lu, M. Xia, L. Piao, Q. Liu, M. Li, et al.. Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion. Compos Sci Technol, 215 ( 2021), Article 109023
|
[55] |
D.D. Li, X. Pu, P. Hu, M. Han, W. Xin, M.G. Ma. Multifunctional Ti3C2Tx MXene/montmorillonite/cellulose nanofibril films for electromagnetic interference shielding, photothermal conversion, and thermal insulation. Cellul, 30 (6) ( 2023), pp. 3793-3805
|
[56] |
H. Liu, Z. Cui, L. Luo, Q. Liao, R. Xiong, C. Xu, et al.. Facile fabrication of flexible and ultrathin self-assembled Ti3C2Tx /bacterial cellulose composite films with multifunctional electromagnetic shielding and photothermal conversion performances. Chem Eng J, 454 ( 2023), Article 140288
|
[57] |
W. Xin, M.G. Ma, F. Chen. Silicone-coated MXene/cellulose nanofiber aerogel films with photothermal and joule heating performances for electromagnetic interference shielding. ACS Appl Nano Mater, 4 (7) ( 2021), pp. 7234-7243
|
[58] |
B. Zhou, M. Su, D. Yang, G. Han, Y. Feng, B. Wang, et al.. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl Mater Interfaces, 12 (36) ( 2020), pp. 40859-40869
|
[59] |
Y. Zhang, W. Wang, J. Xie, K. Dai, F. Zhang, Q. Zheng. Smart and flexible CNTs@MXene heterostructure-decorated cellulose films with excellent electrothermal/photothermal conversion and EMI shielding performances. Carbon, 200 ( 2022), pp. 491-499
|
[60] |
M. Xing, C. Jia, H. Chen, R. Wang, L. Wang. Enhanced solar photo-thermal conversion performance by Fe3O4 decorated MWCNTs ferrofluid. Sol Energy Mater Sol Cells, 242 ( 2022), Article 111787
|
[61] |
O.S. Lee, M.E. Madjet, K.A. Mahmoud. Antibacterial mechanism of multifunctional MXene nanosheets: domain formation and phase transition in lipid bilayer. Nano Lett, 21 (19) ( 2021), pp. 8510-8517
|
[62] |
S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang, G. Lu, et al.. Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett, 14 (1) ( 2022), p. 178
|
[63] |
F. Wu, H. Zheng, W. Wang, Q. Wu, Q. Zhang, J. Guo, et al.. Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation. Sci China Mater, 64 (3) ( 2021), pp. 748-758
|
[64] |
W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, Y.H. Park. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol, 74 (7) ( 2008), pp. 2171-2178
|
[65] |
P. Eaton, J.C. Fernandes, E. Pereira, M.E. Pintado, M.F. Xavier. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy, 108 (10) ( 2008), pp. 1128-1134
|