具有理想保暖性和抗菌性的生物基水性聚(香草醛-丙烯酸丁酯)/MXene纳米复合皮革涂层

Jianzhong Ma, Li Ma, Lei Zhang, Wenbo Zhang, Qianqian Fan, Buxing Han

工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 250-263.

PDF(5589 KB)
PDF(5589 KB)
工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 250-263. DOI: 10.1016/j.eng.2023.06.005
研究论文
Article

具有理想保暖性和抗菌性的生物基水性聚(香草醛-丙烯酸丁酯)/MXene纳米复合皮革涂层

作者信息 +

Bio-Based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention and Antibacterial Properties

Author information +
History +

摘要

以香草醛为原料,采用无溶剂、简便的方法,合成出一种生物基绿色抗菌剂和芳香族单体甲基丙烯化香草醛(MV),其不仅可赋予皮革涂层抗菌性能,还可作为石油基致癌物苯乙烯(St)的绿色替代物。然后通过细乳液聚合法,将MV与丙烯酸丁酯(BA)共聚,制得生物基水性P(MV-BA)细乳液。进一步将具有优异光热转换性能和抗菌性能的MXene纳米片,通过超声分散的方式引入P(MV-BA)细乳液中,制得P(MV-BA)/MXene纳米复合细乳液。最后,将P(MV-BA)/MXene纳米复合细乳液喷涂在皮革表面,当其在皮革表面逐渐固化时,MXene在超声空化效应和其两亲性的共同作用下,逐渐向皮革涂层表面迁移,从而可与光和细菌充分接触,发挥最大光热转换性能和抗菌效果。当MXene用量为1.4% 时,P(MV-BA)/MXene 纳米复合细乳液涂饰革样在冬季太阳光的照射下,表面温度升高了约15 ℃;涂饰革样在模拟日光下处理 30 min后,对大肠杆菌和金黄色葡萄球菌的抗菌率接近 100%。此外,MXene 纳米片的引入还提高了皮革涂层的透气性、透水汽性和热稳定性。本研究为开发具有优异保暖性和抗菌性的新型、绿色、水性生物基纳米复合皮革涂层提供了新思路。该皮革涂层不仅能在冬季实现基于太阳光的零碳供暖,减少化石燃料的使用和温室气体的排放,还能提高皮革抵御有害细菌、病毒和其他微生物入侵的能力。

Abstract

This study presents a solvent-free, facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin (MV) using vanillin. The resulting MV not only imparted antibacterial properties to coatings layered on leather, but could also be employed as a green alternative to petroleum-based carcinogen styrene (St). Herein, MV was copolymerized with butyl acrylate (BA) to obtain waterborne bio-based P(MV-BA) miniemulsion via miniemulsion polymerization. Subsequently, MXene nanosheets with excellent photothermal conversion performance and antibacterial properties, were introduced into the P(MV-BA) miniemulsion by ultrasonic dispersion. During the gradual solidification of P(MV-BA)/MXene nanocomposite miniemulsion on the leather surface, MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene, which prompted its full exposure to light and bacteria, exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy. In particular, when the dosage of MXene nanosheets was 1.4 wt%, the surface temperature of P(MV-BA)/MXene nanocomposite miniemulsion-coated leather (PML) increased by about 15 °C in an outdoor environment during winter, and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100% under the simulated sunlight treatment for 30 min. Moreover, the introduction of MXene nanosheets increased the air permeability, water vapor permeability, and thermal stability of these coatings. This study provides a new insight into the preparation of novel, green, and waterborne bio-based nanocomposite coatings for leather, with desired warmth retention and antibacterial properties. It can not only realize zero-carbon heating based on sunlight in winter, reducing the use of fossil fuels and greenhouse gas emissions, but also improve ability to fight off invasion by harmful bacteria, viruses, and other microorganisms.

关键词

MXene纳米片 / 香草醛 / 苯乙烯替代物 / 皮革涂层 / 光热转换 / 保暖性能 / 抗菌性能

Keywords

MXene nanosheets / Vanillin / Styrene substitute / Leather coating / Photothermal conversion / Warmth retention / Antibacterial properties

引用本文

导出引用
Jianzhong Ma, Li Ma, Lei Zhang. 具有理想保暖性和抗菌性的生物基水性聚(香草醛-丙烯酸丁酯)/MXene纳米复合皮革涂层. Engineering. 2024, 36(5): 250-263 https://doi.org/10.1016/j.eng.2023.06.005

参考文献

[1]
S. Wioleta, M. Małgorzata, O. Zbigniew, J. Jolanta, W. Justyna. Proposal for the selection of materials for footwear to improve thermal insulation properties based on laboratory research. Fibres Text East Eur, 26 (131) ( 2018), pp. 75-80
[2]
L. Yuan, Q. Yao, Y. Liang, Y. Dan, Y. Wang, H. Wen, et al.. Chitosan based antibacterial nanocomposite materials for leather industry: a review. J Leather Sci Eng, 3 (1) ( 2021), p. 12
[3]
I. Carvalho, S. Ferdov, C. Mansilla, S.M. Marques, M.A. Cerqueira, L.M. Pastrana, et al.. Development of antimicrobial leather modified with Ag-TiO2 nanoparticles for footwear industry. Sci Technol Mater, 30 ( 2018), pp. 60-68
[4]
J.W. Choi, E.S. Ko. Relationship between thermal insulation and the combinations of Korean women’s clothing by season-using a thermal manikin. J Korean Soc Cloth Text, 31 (6) ( 2007), pp. 966-973
[5]
E. Bielak, E. Marcinkowska, J. Syguła-Cholewińska.Investigation of finishing of leather for inside parts of the shoes with a natural biocide. Sci Rep, 10 (1) ( 2020), p. 3467
[6]
A. Yorgancioglu. Emulsification and application of a thymol loaded antibacterial fatliquor for leather industry. J Ind Text, 51 (3) ( 2021), pp. 470-485
[7]
R. Renganath Rao, M. Sathish, R.J. Raghava. Research advances in the fabrication of biosafety and functional leather: a way-forward for effective management of COVID-19 outbreak. J Clean Prod, 310 ( 2021), Article 127464
[8]
C. Liu, Q. Yin, X. Li, L. Hao, W. Zhang, Y. Bao, et al.. A waterborne polyurethane-based leather finishing agent with excellent room temperature self-healing properties and wear-resistance. Adv Compos Hybrid Mater, 4 (1) ( 2021), pp. 138-149
[9]
Y. Han, J. Hu, Z. Xin. Facile preparation of high solid content waterborne polyurethane and its application in leather surface finishing. Prog Org Coat, 130 ( 2019), pp. 8-16
[10]
L. Zhang, J. Ma, B. Lyu, Y. Zhang, V.K. Thakur, C. Liu. A sustainable waterborne vanillin-eugenol-acrylate miniemulsion with suitable antibacterial properties as a substitute for the styrene-acrylate emulsion. Green Chem, 23 (19) ( 2021), pp. 7576-7588
[11]
O.A. Mohamed, A.B. Moustafa, M.A. Mehawed, N.H. El-Sayed. Styrene and butyl methacrylate copolymers and their application in leather finishing. J Appl Polym Sci, 111 (3) ( 2009), pp. 1488-1495
[12]
V.A. Moshiran, A. Karimi, F. Golbabaei, M.S. Yarandi, A.A. Sajedian, A.G. Koozekonan. Quantitative and semiquantitative health risk assessment of occupational exposure to styrene in a petrochemical industry. Saf Health Work, 12 (3) ( 2021), pp. 396-402
[13]
A.J. Li, V.K. Pal, K. Kannan. A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ Chem Ecotoxicol, 3 ( 2021), pp. 91-116
[14]
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, et al.. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 23 (37) ( 2011), pp. 4248-4253
[15]
H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett, 17 (1) ( 2017), pp. 384-391
[16]
D. Xu, Z. Li, L. Li, J. Wang. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv Funct Mater, 30 (47) ( 2020), Article 2000712
[17]
R. Li, L. Zhang, L. Shi, P. Wang. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano, 11 (4) ( 2017), pp. 3752-3759
[18]
X.J. Zha, X. Zhao, J.H. Pu, L.S. Tang, K. Ke, R.Y. Bao, et al.. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl Mater Interfaces, 11 (40) ( 2019), pp. 36589-36597
[19]
Y. Jin, K. Wang, S. Li, J. Liu. Encapsulation of MXene/polydopamine in nitrogen-doped 3D carbon networks with high photothermal conversion efficiency for seawater desalination. J Colloid Interface Sci, 614 ( 2022), pp. 345-354
[20]
K. Zhou, K. Gong, C. Wang, M. Zhou, J. Xiao. Construction of Ti3C2 MXene based fire resistance nanocoating on flexible polyurethane foam for highly efficient photothermal conversion and solar water desalination. J Colloid Interface Sci, 630 (Pt A) ( 2023), pp. 343-354
[21]
B. Yan, M. Zhou, X. Liao, P. Wang, Y. Yu, J. Yuan, et al.. Developing a multifunctional silk fabric with dual-driven heating and rapid photothermal antibacterial abilities using high-yield MXene dispersions. ACS Appl Mater Interfaces, 13 (36) ( 2021), pp. 43414-43425
[22]
M. Shi, M. Shen, X. Guo, X. Jin, Y. Cao, Y. Yang, et al.. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano, 15 (7) ( 2021), pp. 11396-11405
[23]
C. Wei, Q. Zhang, Z. Wang, W. Yang, H. Lu, Z. Huang, et al.. Recent advances in MXene-based aerogels: fabrication, performance and application. Adv Funct Mater, 33 (9) ( 2023), Article 2211889
[24]
B. Lu, S. Hu, D. Wu, C. Wu, Z. Zhu, L. Hu, et al.. Ionic liquid exfoliated Ti3C2Tx MXene nanosheets for photoacoustic imaging and synergistic photothermal/chemotherapy of cancer. J Mater Chem B Mater Biol Med, 10 (8) ( 2022), pp. 1226-1235
[25]
H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou, X. Zhang, et al.. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale, 12 (3) ( 2020), pp. 1325-1338
[26]
K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, K.A. Mahmoud. Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 10 (3) ( 2016), pp. 3674-3684
[27]
M. Mansoorianfar, K. Shahin, A. Hojjati-Najafabadi, R. Pei. MXene-laden bacteriophage: a new antibacterial candidate to control bacterial contamination in water. Chemosphere, 290 ( 2022), Article 133383
[28]
X. Xu, S. Wang, H. Wu, Y. Liu, F. Xu, J. Zhao. A multimodal antimicrobial platform based on MXene for treatment of wound infection. Colloids Surf B Biointerfaces, 207 ( 2021), Article 111979
[29]
M. Fache, B. Boutevin, S. Caillol. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng, 4 (1) ( 2016), pp. 35-46
[30]
L. Delgado, C.M. Heckmann, S. De Benedetti, M. Nardini, L.J. Gourlay, F. Paradisi. Producing natural vanilla extract from green vanilla beans using a β-glucosidase from Alicyclobacillus acidiphilus. J Biotechnol, 329 ( 2021), pp. 21-28
[31]
Y.K. Vaghasiya, R. Nair, M. Soni, S. Baluja, S. Shanda. Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine. J Serb Chem Soc, 69 (12) ( 2004), pp. 991-998
[32]
S.V. Mankar, M.N. Garcia Gonzalez, N. Warlin, N.G. Valsange, N. Rehnberg, S. Lundmark, et al.. Synthesis, life cycle assessment, and polymerization of a vanillin-based spirocyclic diol toward polyesters with increased glass-transition temperature. ACS Sustain Chem Eng, 7 (23) ( 2019), pp. 19090-19103
[33]
H. Geng, Y. Wang, Q. Yu, S. Gu, Y. Zhou, W. Xu, et al.. Vanillin-based polyschiff vitrimers: reprocessability and chemical recyclability. ACS Sustain Chem Eng, 6 (11) ( 2018), pp. 15463-15470
[34]
Q. Yu, X. Peng, Y. Wang, H. Geng, A. Xu, X. Zhang, et al.. Vanillin-based degradable epoxy vitrimers: reprocessability and mechanical properties study. Eur Polym J, 117 ( 2019), pp. 55-63
[35]
M. Fache, B. Boutevin, S. Caillol. Vanillin, a key-intermediate of biobased polymers. Eur Polym J, 68 ( 2015), pp. 488-502
[36]
M.A. Rashid, M. Hasan, M. Dayan, M.S. Ibna Jamal, M.K. Patoary. A critical review of sustainable vanillin-modified vitrimers: synthesis, challenge and prospects. Reactions, 4 (1) ( 2023), pp. 66-91
[37]
M. Yasar, B. Oktay, F. Dal Yontem, E. Haciosmanoglu Aldogan, A.N. Kayaman. Development of self-healing vanillin/PEI hydrogels for tissue engineering. Eur Polym J, 188 ( 2023), Article 111933
[38]
Y. Zhang, V.K. Thakur, Y. Li, T.F. Garrison, Z. Gao, J. Gu, et al.. Soybean-oil-based thermosetting resins with methacrylated vanillyl alcohol as bio-based, low-viscosity comonomer. Macromol Mater Eng, 303 (1) ( 2018), Article 1700278
[39]
A. Bohre, U. Novak, M. Grilc, B. Likozar. Synthesis of bio-based methacrylic acid from biomass-derived itaconic acid over barium hexa-aluminate catalyst by selective decarboxylation reaction. Mol Catal, 476 ( 2019), Article 110520
[40]
A.J.J. Straathof, S. Sie, T.T. Franco, L.A. van der Wielen. Feasibility of acrylic acid production by fermentation. Appl Microbiol Biotechnol, 67 (6) ( 2005), pp. 727-734
[41]
B. Ndaba, I. Chiyanzu, S. Marx. n-Butanol derived from biochemical and chemical routes: a review. Biotechnol Rep, 8 ( 2015), pp. 1-9
[42]
K. Wang, X. Li, H. Peng, Y. Dong, Y. Li, X. Liu, et al.. Tough and strong soy protein film by integrating CNFs and MXene with photothermal conversion and UV-blocking performance. Cellul, 29 (17) ( 2022), pp. 9235-9249
[43]
D.I. Petukhov, A.P. Chumakov, A.S. Kan, V.A. Lebedev, A.A. Eliseev, O.V. Konovalov, et al.. Spontaneous MXene monolayer assembly at the liquid-air interface. Nanoscale, 11 (20) ( 2019), pp. 9980-9986
[44]
J. Duan, L. Jiang, X. Guo, S. Chen, G. Wang, C. Zhao. MXene-directed dual amphiphilicity at liquid, solid, and gas interfaces. Chem Asian J, 13 (24) ( 2018), pp. 3850-3854
[45]
L.J. Cote, J. Kim, V.C. Tung, J. Luo, F. Kim, J. Huang. Graphene oxide as surfactant sheets. Pure Appl Chem, 83 (1) ( 2010), pp. 95-110
[46]
R. Cai, J. Zhao, N. Lv, A. Fu, C. Yin, C. Song, et al.. Curing and molecular dynamics simulation of MXene/phenolic epoxy composites with different amine curing agent systems. Nanomaterials, 12 (13) ( 2022), p. 2249
[47]
Y. Zhang, C. Liu, J. Ma, W. Zhang, Q. Fan, Z. Ma. Relationship between the structure of modified ricinoleic acids via the thiol-ene click reaction and the fogging value of fatliquored leather. ACS Sustain Chem Eng, 10 (40) ( 2022), pp. 13288-13300
[48]
L. Zhang, J. Ma, B. Lyu, Y. Zhang, D. Gao, C. Liu, et al.. Mitochondrial structure-inspired high specific surface area polymer microspheres by encapsulating modified graphene oxide nanosheets. Eur Polym J, 130 ( 2020), Article 109682
[49]
R. Chawla, S. Sharma. Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix. Compos Sci Technol, 144 ( 2017), pp. 169-177
[50]
T. Chakraborty, A. Hens, S. Kulashrestha, N. Chandra Murmu, P. Banerjee. Calculation of diffusion coefficient of long chain molecules using molecular dynamics. Physica E, 69 ( 2015), pp. 371-377
[51]
C. Wang, Y. Wang, X. Jiang, J. Xu, W. Huang, F. Zhang, et al.. MXene Ti3C2Tx : a promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv Opt Mater, 7 (12) ( 2019), p. 1900060
[52]
X. Liu, X. Jin, L. Li, J. Wang, Y. Yang, Y. Cao, et al.. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J Mater Chem A Mater Energy Sustain, 8 (25) ( 2020), pp. 12526-12537
[53]
X. Fan, Y. Yang, X. Shi, Y. Liu, H. Li, J. Liang, et al.. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Adv Funct Mater, 30 (52) ( 2020), Article 2007110
[54]
Y. Cheng, Y. Lu, M. Xia, L. Piao, Q. Liu, M. Li, et al.. Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion. Compos Sci Technol, 215 ( 2021), Article 109023
[55]
D.D. Li, X. Pu, P. Hu, M. Han, W. Xin, M.G. Ma. Multifunctional Ti3C2Tx MXene/montmorillonite/cellulose nanofibril films for electromagnetic interference shielding, photothermal conversion, and thermal insulation. Cellul, 30 (6) ( 2023), pp. 3793-3805
[56]
H. Liu, Z. Cui, L. Luo, Q. Liao, R. Xiong, C. Xu, et al.. Facile fabrication of flexible and ultrathin self-assembled Ti3C2Tx /bacterial cellulose composite films with multifunctional electromagnetic shielding and photothermal conversion performances. Chem Eng J, 454 ( 2023), Article 140288
[57]
W. Xin, M.G. Ma, F. Chen. Silicone-coated MXene/cellulose nanofiber aerogel films with photothermal and joule heating performances for electromagnetic interference shielding. ACS Appl Nano Mater, 4 (7) ( 2021), pp. 7234-7243
[58]
B. Zhou, M. Su, D. Yang, G. Han, Y. Feng, B. Wang, et al.. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl Mater Interfaces, 12 (36) ( 2020), pp. 40859-40869
[59]
Y. Zhang, W. Wang, J. Xie, K. Dai, F. Zhang, Q. Zheng. Smart and flexible CNTs@MXene heterostructure-decorated cellulose films with excellent electrothermal/photothermal conversion and EMI shielding performances. Carbon, 200 ( 2022), pp. 491-499
[60]
M. Xing, C. Jia, H. Chen, R. Wang, L. Wang. Enhanced solar photo-thermal conversion performance by Fe3O4 decorated MWCNTs ferrofluid. Sol Energy Mater Sol Cells, 242 ( 2022), Article 111787
[61]
O.S. Lee, M.E. Madjet, K.A. Mahmoud. Antibacterial mechanism of multifunctional MXene nanosheets: domain formation and phase transition in lipid bilayer. Nano Lett, 21 (19) ( 2021), pp. 8510-8517
[62]
S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang, G. Lu, et al.. Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett, 14 (1) ( 2022), p. 178
[63]
F. Wu, H. Zheng, W. Wang, Q. Wu, Q. Zhang, J. Guo, et al.. Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation. Sci China Mater, 64 (3) ( 2021), pp. 748-758
[64]
W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, Y.H. Park. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol, 74 (7) ( 2008), pp. 2171-2178
[65]
P. Eaton, J.C. Fernandes, E. Pereira, M.E. Pintado, M.F. Xavier. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy, 108 (10) ( 2008), pp. 1128-1134
PDF(5589 KB)

Accesses

Citation

Detail

段落导航
相关文章

/