[1] |
S. Alatab, S.G. Sepanlou, K. Ikuta, H. Vahedi, C. Bisignano, S. Safiri, et al. GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol, 5 (1) (2020), pp. 17-30.
|
[2] |
D. Alshehri, O. Saadah, M. Mosli, S. Edris, R. Alhindi, A. Bahieldin. Dysbiosis of gut microbiota in inflammatory bowel disease: current therapies and potential for microbiota-modulating therapeutic approaches. Bosn J Basic Med Sci, 21 (3) (2021), pp. 270-283.
|
[3] |
E.M. Schatoff, B.I. Leach, L.E. Dow. Wnt signaling and colorectal cancer. Curr Colorectal Cancer Rep, 13 (2) (2017), pp. 101-110.
|
[4] |
L. Moparthi, S. Koch. Wnt signaling in intestinal inflammation. Differentiation, 108 (2019), pp. 24-32.
|
[5] |
T.S. Gujral, E.S. Karp, M. Chan, B.H. Chang, G. MacBeath. Family-wide investigation of PDZ domain-mediated protein-protein interactions implicates β-catenin in maintaining the integrity of tight junctions. Chem Biol, 20 (6) (2013), pp. 816-827.
|
[6] |
A. Serafino, N. Moroni, M. Zonfrillo, F. Andreola, L. Mercuri, G. Nicotera, et al. WNT-pathway components as predictive markers useful for diagnosis, prevention and therapy in inflammatory bowel disease and sporadic colorectal cancer. Oncotarget, 5 (4) (2014), pp. 978-992.
|
[7] |
S. Amit, A. Hatzubai, Y. Birman, J.S. Andersen, E. Ben-Shushan, M. Mann, et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev, 16 (9) (2002), pp. 1066-1076.
|
[8] |
R. Xie, R. Jiang, D. Chen. Generation of Axin1 conditional mutant mice. Genesis, 49 (2) (2011), pp. 98-102.
|
[9] |
H.K. Arnold, X. Zhang, C.J. Daniel, D. Tibbitts, J. Escamilla-Powers, A. Farrell, et al. The Axin 1 scaffold protein promotes formation of a degradation complex for c-Myc. EMBO J, 28 (5) (2009), pp. 500-512.
|
[10] |
M. Gavagan, E. Fagnan, E.B. Speltz, J.G. Zalatan. The scaffold protein Axin promotes signaling specificity within the Wnt pathway by suppressing competing kinase reactions. Cell Syst, 10 (6) (2020), pp. 515-525 e5.
|
[11] |
A. Kikuchi. Roles of Axin in the Wnt signalling pathway. Cell Signal, 11 (11) (1999), pp. 777-788.
|
[12] |
Y.G. Zhang, S. Wu, Y. Xia, D. Chen, E.O. Petrof, E.C. Claud, et al. Axin 1 prevents Salmonella invasiveness and inflammatory response in intestinal epithelial cells. PLoS One, 7 (4) (2012), e34932.
|
[13] |
U. Erben, C. Loddenkemper, K. Doerfel, S. Spieckermann, D. Haller, M.M. Heimesaat, et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol, 7 (8) (2014), pp. 4557-4576.
|
[14] |
T.E. Adolph, M.F. Tomczak, L. Niederreiter, H.J. Ko, J. Böck, E. Martinez-Naves, et al. Paneth cells as a site of origin for intestinal inflammation. Nature, 503 (7475) (2013), pp. 272-276.
|
[15] |
R. Lu, Y.G. Zhang, Y. Xia, J. Zhang, A. Kaser, R. Blumberg, et al. Paneth cell alertness to pathogens maintained by vitamin D receptors. Gastroenterology, 160 (4) (2021), pp. 1269-1283.
|
[16] |
S. Wu, S. Yoon, Y.G. Zhang, R. Lu, Y. Xia, J. Wan, et al. Vitamin D receptor pathway is required for probiotic protection in colitis. Am J Physiol Gastrointest Liver Physiol, 309 (5) (2015), pp. G341-G349.
|
[17] |
S. Wu, Y.G. Zhang, R. Lu, Y. Xia, D. Zhou, E.O. Petrof, et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut, 64 (7) (2015), pp. 1082-1094.
|
[18] |
Y.G. Zhang, X. Zhu, R. Lu, J.S. Messer, Y. Xia, E.B. Chang, et al. Intestinal epithelial HMGB 1 inhibits bacterial infection via STAT3 regulation of autophagy. Autophagy, 15 (11) (2019), pp. 1935-1953.
|
[19] |
Y.G. Zhang, R. Lu, S. Wu, I. Chatterjee, D. Zhou, Y. Xia, et al. Vitamin D receptor protects against dysbiosis and tumorigenesis via the JAK/STAT pathway in intestine. Cell Mol Gastroenterol Hepatol, 10 (4) (2020), pp. 729-746.
|
[20] |
A.T. Feldman, D. Wolfe. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol, 1180 (2014), pp. 31-43.
|
[21] |
S. Wu, A.P. Liao, Y. Xia, Y.C. Li, J.D. Li, R.B. Sartor, et al. Vitamin D receptor negatively regulates bacterial-stimulated NF-κB activity in intestine. Am J Pathol, 177 (2) (2010), pp. 686-697.
|
[22] |
D. Jin, Y.G. Zhang, S. Wu, R. Lu, Z. Lin, Y. Zheng, et al. Vitamin D receptor is a novel transcriptional regulator for Axin1. J Steroid Biochem Mol Biol, 165 (Pt B) (2017), pp. 430-437.
|
[23] |
H. Chen, R. Lu, Y.G. Zhang, J. Sun. Vitamin D receptor deletion leads to the destruction of tight and adherens junctions in lungs. Tissue Barriers, 6 (4) (2018), pp. 1-13.
|
[24] |
K.W. Cheon, H.S. Lee, I.S. Parhar, I.S. Kang. Expression of the second isoform of gonadotrophin-releasing hormone (GnRH-II) in human endometrium throughout the menstrual cycle. Mol Hum Reprod, 7 (5) (2001), pp. 447-452.
|
[25] |
Y. Zhang, J. Zhang, Y. Xia, J. Sun. Bacterial translocation and barrier dysfunction enhance colonic tumorigenesis. Neoplasia, 35 (2023), 100847.
|
[26] |
T.C. Liu, B. Gurram, M.T. Baldridge, R. Head, V. Lam, C. Luo, et al. Paneth cell defects in Crohn’s disease patients promote dysbiosis. JCI Insight, 1 (8) (2016), e86907.
|
[27] |
J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7 (5) (2010), pp. 335-336.
|
[28] |
D. McDonald, M.N. Price, J. Goodrich, E.P. Nawrocki, T.Z. DeSantis, A. Probst, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J, 6 (3) (2012), pp. 610-618.
|
[29] |
Y. Xia, J. Sun, D.G. Chen. Statistical analysis of microbiome data with R. Springer, Singapore (2018).
|
[30] |
N.S. Armbruster, E.F. Stange, J. Wehkamp. In the Wnt of Paneth cells: immune-epithelial crosstalk in small intestinal Crohn’s disease. Front Immunol, 8 (2017), 1204.
|
[31] |
P. Paone, P.D. Cani. Mucus barrier, mucins and gut microbiota: the expected slimy partners?. Gut, 69 (12) (2020), pp. 2232-2243.
|
[32] |
X. Bian, W. Wu, L. Yang, L. Lv, Q. Wang, Y. Li, et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front Microbiol, 10 (2019), 2259.
|
[33] |
S.R. Lueschow, J. Stumphy, H. Gong, S.L. Kern, T.G. Elgin, M.A. Underwood, et al. Loss of murine Paneth cell function alters the immature intestinal microbiome and mimics changes seen in neonatal necrotizing enterocolitis. PLoS One, 13 (10) (2018), e0204967.
|
[34] |
S. Yu, I. Balasubramanian, D. Laubitz, K. Tong, S. Bandyopadhyay, X. Lin, et al. Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and the inflammatory tone of the intestine. Immunity, 53 (2) (2020), pp. 398-416 e8.
|
[35] |
J. Beisner, Z. Teltschik, M.J. Ostaff, M.M. Tiemessen, F.J.T. Staal, G. Wang, et al. TCF-1-mediated Wnt signaling regulates Paneth cell innate immune defense effectors HD-5 and -6: implications for Crohn’s disease. Am J Physiol Gastrointest Liver Physiol, 307 (5) (2014), pp. G487-G498.
|
[36] |
J. Berlanga-Acosta, R.J. Playford, N. Mandir, R.A. Goodlad. Gastrointestinal cell proliferation and crypt fission are separate but complementary means of increasing tissue mass following infusion of epidermal growth factor in rats. Gut, 48 (6) (2001), pp. 803-807.
|
[37] |
S. Roth, P. Franken, A. Sacchetti, A. Kremer, K. Anderson, O. Sansom, et al. Paneth cells in intestinal homeostasis and tissue injury. PLoS One, 7 (6) (2012), e38965.
|
[38] |
T. Sato, J.H. van Es, H.J. Snippert, D.E. Stange, R.G. Vries, M. van den Born, et al. Paneth cells constitute the niche for Lgr 5 stem cells in intestinal crypts. Nature, 469 (7330) (2011), pp. 415-418.
|
[39] |
X. Mei, M. Gu, M. Li. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res Ther, 11 (1) (2020), 349.
|
[40] |
R. Yazbeck, G.S. Howarth, R.N. Butler, M.S. Geier, C.A. Abbott. Biochemical and histological changes in the small intestine of mice with dextran sulfate sodium colitis. J Cell Physiol, 226 (12) (2011), pp. 3219-3224.
|
[41] |
J.M. Kim. Antimicrobial proteins in intestine and inflammatory bowel diseases. Intest Res, 12 (1) (2014), pp. 20-33.
|
[42] |
L. Moraes, M.K. Magnusson, G. Mavroudis, A. Polster, B. Jonefjäll, H. Törnblom, et al. Systemic inflammatory protein profiles distinguish irritable bowel syndrome (IBS) and ulcerative colitis, irrespective of inflammation or IBS-like symptoms. Inflamm Bowel Dis, 26 (6) (2020), pp. 874-884.
|
[43] |
E.M. Bradford, S.H. Ryu, A.P. Singh, G. Lee, T. Goretsky, P. Sinh, et al. Epithelial TNF receptor signaling promotes mucosal repair in inflammatory bowel disease. J Immunol, 199 (5) (2017), pp. 1886-1897.
|
[44] |
W. Luo, S.C. Lin. Axin: a master scaffold for multiple signaling pathways. Neurosignals, 13 (3) (2004), pp. 99-113.
|
[45] |
M. Furuhashi, K. Yagi, H. Yamamoto, Y. Furukawa, S. Shimada, Y. Nakamura, et al. Axin facilitates Smad 3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol, 21 (15) (2001), pp. 5132-5141.
|
[46] |
S. Salahshor, J.R. Woodgett. The links between Axin and carcinogenesis. J Clin Pathol, 58 (3) (2005), pp. 225-236.
|
[47] |
Y. Zhang, S.Y. Neo, X. Wang, J. Han, S.C. Lin. Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal kinase/stress-activated protein kinase through domains distinct from Wnt signaling. J Biol Chem, 274 (49) (1999), pp. 35247-35254.
|
[48] |
C. Harnack, H. Berger, A. Antanaviciute, R. Vidal, S. Sauer, A. Simmons, et al. R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon. Nat Commun, 10 (1) (2019), 4368.
|
[49] |
C.W. Png, S.K. Lindén, K.S. Gilshenan, E.G. Zoetendal, C.S. McSweeney, L.I. Sly, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol, 105 (11) (2010), pp. 2420-2428.
|
[50] |
M. Rajilić-Stojanović, F. Shanahan, F. Guarner, W.M. de. Vos. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis, 19 (3) (2013), pp. 481-488.
|
[51] |
Y. Xu, N. Wang, H.Y. Tan, S. Li, C. Zhang, Y. Feng. Function of Akkermansia muciniphila in obesity: interactions with lipid metabolism, immune response and gut systems. Front Microbiol, 11 (2020), 219.
|
[52] |
C.T. Shih, Y.T. Yeh, C.C. Lin, L.Y. Yang, C.P. Chiang. Akkermansia muciniphila is negatively correlated with hemoglobin A1c in refractory diabetes. Microorganisms, 8 (9) (2020), 1360.
|
[53] |
T. Zhang, P. Li, X. Wu, G. Lu, C. Marcella, X. Ji, et al. Alterations of Akkermansia muciniphila in the inflammatory bowel disease patients with washed microbiota transplantation. Appl Microbiol Biotechnol, 104 (23) (2020), pp. 10203-10215.
|
[54] |
S. Zhao, W. Liu, J. Wang, J. Shi, Y. Sun, W. Wang, et al. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol, 58 (1) (2017), pp. 1-14.
|
[55] |
A. Everard, C. Belzer, L. Geurts, J.P. Ouwerkerk, C. Druart, L.B. Bindels, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA, 110 (22) (2013), pp. 9066-9071.
|
[56] |
M. Derrien, P. Van Baarlen, G. Hooiveld, E. Norin, M. Müller, W.M. de. Vos. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol, 2 (2011), 166.
|
[57] |
J. Fang, H. Wang, Y. Zhou, H. Zhang, H. Zhou, X. Zhang. Slimy partners: the mucus barrier and gut microbiome in ulcerative colitis. Exp Mol Med, 53 (5) (2021), pp. 772-787.
|
[58] |
M. Van der Sluis, B.A.E. de Koning, A.C.J.M. de Bruijn, A. Velcich, J.P.P. Meijerink, J.B. van Goudoever, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC 2 is critical for colonic protection. Gastroenterology, 131 (1) (2006), pp. 117-129.
|
[59] |
L.Y. Pei, Y.S. Ke, H.H. Zhao, L. Wang, C. Jia, W.Z. Liu, et al. Role of colonic microbiota in the pathogenesis of ulcerative colitis. BMC Gastroenterol, 19 (1) (2019), 10.
|
[60] |
Y. Nishihara, H. Ogino, M. Tanaka, E. Ihara, K. Fukaura, K. Nishioka, et al. Mucosa-associated gut microbiota reflects clinical course of ulcerative colitis. Sci Rep, 11 (1) (2021), 13743.
|
[61] |
P.M. Munyaka, M.F. Rabbi, E. Khafipour, J.E. Ghia. Acute dextran sulfate sodium (DSS)-induced colitis promotes gut microbial dysbiosis in mice. J Basic Microbiol, 56 (9) (2016), pp. 986-998.
|
[62] |
Z. Gao, K.Y. Chen, O. Mueller, H. Zhang, N. Rakhilin, J. Chen, et al. Microbiota of inflammatory bowel disease models. Annu Int Conf IEEE Eng Med Biol Soc, 2018 (2018), pp. 2374-2377.
|
[63] |
A. Lo Presti, F. Zorzi, F. Del Chierico, A. Altomare, S. Cocca, A. Avola, et al. Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease. Front Microbiol, 10 (2019), 1655.
|
[64] |
G.P. Donaldson, S.M. Lee, S.K. Mazmanian. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol, 14 (1) (2016), pp. 20-32.
|