[1] |
S. Wu, D. Qiao, H. Zhang, J. Miao, H. Zhao, J. Wang, et al.. Microstructure and mechanical properties of C xHf 0.25NbTaW 0.5 refractory high-entropy alloys at room and high temperatures. J Mater Sci Technol, 97 ( 2022), pp. 229-238 DOI: 10.1117/12.2662625
|
[2] |
Z. Wang, H. Wu, Y. Wu, H. Huang, X. Zhu, Y. Zhang, et al.. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering. Mater Today, 54 ( 2022), pp. 83-89
|
[3] |
R. Feng, B. Feng, M.C. Gao, C. Zhang, J.C. Neuefeind, J.D. Poplawsky, et al.. Superior high-temperature strength in a supersaturated refractory high-entropy alloy. Adv Mater, 33 (48) ( 2021), p. 2102401
|
[4] |
Q. Wei, X. Xu, Q. Shen, G. Luo, J. Zhang, J. Li, et al.. Metal-carbide eutectics with multiprincipal elements make superrefractory alloys. Sci Adv, 8 (27) ( 2022), p. eabo2068
|
[5] |
O. Uyanna, H. Najafi. Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects. Acta Astronaut, 176 ( 2020), pp. 341-356
|
[6] |
S. Zhang, X. Li, J. Zuo, J. Qin, K. Cheng, Y. Feng, et al.. Research progress on active thermal protection for hypersonic vehicles. Prog Aerosp Sci, 119 ( 2020), p. 100646
|
[7] |
A. Pineau, S.D. Antolovich. High temperature fatigue of nickel-base superalloys—a review with special emphasis on deformation modes and oxidation. Eng Fail Anal, 16 (8) ( 2009), pp. 2668-2697
|
[8] |
D.B. Miracle, O.N. Senkov. A critical review of high entropy alloys and related concepts. Acta Mater, 122 ( 2017), pp. 448-511
|
[9] |
Z.P. Wan, J.Y. Shen, T. Wang, K. Wei, Z. Li, S. Yan, et al.. Effect of hot deformation parameters on the dissolution of γ′ precipitates for as-cast Ni-based superalloys. J Mater Eng Perform, 31 (2) ( 2022), pp. 1594-1606 DOI: 10.1007/s11665-021-06276-0
|
[10] |
X. Zhang, J. Tian, M. Xue, F. Jiang, S. Li, B. Zhang, et al.. Ta-W refractory alloys with high strength at 2000 °C. Acta Metall Sin, 58 (10) ( 2022), pp. 1253-1260 [Chinese].
|
[11] |
J.P. Couzinié, O.N. Senkov, D.B. Miracle, G. Dirras. Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys. Data Brief, 21 ( 2018), pp. 1622-1641
|
[12] |
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw. Refractory high-entropy alloys. Intermetallics, 18 (9) ( 2010), pp. 1758-1765
|
[13] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19 (5) ( 2011), pp. 698-706
|
[14] |
Y. Wan, J. Mo, X. Wang, Z. Zhang, B. Shen, X. Liang. Mechanical properties and phase stability of WTaMoNbTi refractory high-entropy alloy at elevated temperatures. Acta Metall Sin, 34 (11) ( 2021), pp. 1585-1590 DOI: 10.1007/s40195-021-01263-9
|
[15] |
J. Mo, Y. Wan, Z. Zhang, X. Wang, X. Li, B. Shen, et al.. First-principle prediction of structural and mechanical properties in NbMoTaWRe x refractory high-entropy alloys with experimental validation. Rare Met, 41 (10) ( 2022), pp. 3343-3350 DOI: 10.1007/s12598-022-02054-6
|
[16] |
O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci, 47 (9) ( 2012), pp. 4062-4074 DOI: 10.1007/s10853-012-6260-2
|
[17] |
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, et al.. Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater Des, 81 ( 2015), pp. 87-94
|
[18] |
Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, et al.. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater Sci Eng A, 712 ( 2018), pp. 380-385
|
[19] |
Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, et al.. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 84 ( 2017), pp. 153-157
|
[20] |
Y. Wan, Q. Wang, J. Mo, Z. Zhang, X. Wang, X. Liang, et al.. WReTaMo refractory high-entropy alloy with high strength at 1600 °C. Adv Eng Mater, 24 (2) ( 2022), p. 2100765
|
[21] |
Y. Wan. Study on the preparation and mechanical properties of rare metals Nb/Mo/Ta/W based ultra-high-temperature high-entropy alloys [dissertation]. China University of Mining and Technology, Xuzhou ( 2021) [Chinese].
|
[22] |
Z. Guo, A. Zhang, J. Han, J. Meng. Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo high-entropy alloys. J Mater Sci, 54 (7) ( 2019), pp. 5844-5851 DOI: 10.1007/s10853-018-03280-z
|
[23] |
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, et al.. Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite. Intermetallics, 69 ( 2016), pp. 74-77
|
[24] |
Y. Wan, X. Wang, Z. Zhang, J. Mo, B. Shen, X. Liang. Structures and properties of the (NbMoTaW)100-xCx high-entropy composites. J Alloys Compd, 889 ( 2021), p. 161645
|
[25] |
Q. Wei, Q. Shen, J. Zhang, Y. Zhang, G. Luo, L. Zhang. Microstructure evolution, mechanical properties and strengthening mechanism of refractory high-entropy alloy matrix composites with addition of TaC. J Alloys Compd, 777 ( 2019), pp. 1168-1175
|
[26] |
R. Wang, Y. Tang, Z. Lei, Y. Ai, Z. Tong, S. Li, et al.. Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys. Mater Des, 213 ( 2022), p. 110356
|
[27] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, et al.. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 563 (7732) ( 2018), pp. 546-550 DOI: 10.1038/s41586-018-0685-y
|
[28] |
M. Wu, S. Li, D. Xu, H. Zhao. Mechanical properties of alloy Ta-10W at elevated temperature. Rare Met Mater Eng, 35 (z1) ( 2006), pp. 64-67 [Chinese].
|
[29] |
O.N. Senkov, T.I. Daboiku, T.M. Butler, M.S. Titus, N.R. Philips, E.J. Payton. High-temperature mechanical properties and oxidation behavior of Hf-27Ta and Hf-21Ta-21X (X is Nb, Mo or W) alloys. Int J Refract Met Hard Mater, 96 ( 2021),105467
|
[30] |
A. Takeuchi, A. Inoue. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 46 (12) ( 2005), pp. 2817-2829 DOI: 10.2320/matertrans.46.2817
|
[31] |
A. Inoue, B.L. Shen. A new Fe-based bulk glassy alloy with outstanding mechanical properties. Adv Mater, 16 (23-24) ( 2004), pp. 2189-2192 DOI: 10.1002/adma.200400301
|
[32] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang. High-entropy alloy: challenges and prospects. Mater Today, 19 (6) ( 2016), pp. 349-362
|
[33] |
W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr Mater, 68 (7) ( 2013), pp. 526-529
|
[34] |
B. Kang, J. Lee, H.J. Ryu, S.H. Hong. Microstructure, mechanical property and Hall-Petch relationship of a light-weight refractory Al0.1CrNbVMo high entropy alloy fabricated by powder metallurgical process. J Alloys Compd, 767 ( 2018), pp. 1012-1021
|
[35] |
S. Chen, K.K. Tseng, Y. Tong, W. Li, C.W. Tsai, J.W. Yeh, et al.. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. J Alloys Compd, 795 ( 2019), pp. 19-26 DOI: 10.1007/978-3-030-03748-2_3
|
[36] |
C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, et al.. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater, 160 ( 2018), pp. 158-172
|
[37] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, et al.. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater, 102 ( 2016), pp. 187-196
|
[38] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater, 10 (6) ( 2008), pp. 534-538 DOI: 10.1002/adem.200700240
|
[39] |
O.N. Senkov, A.L. Pilchak, S.L. Semiatin. Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy. Metall Mater Trans A, 49 (7) ( 2018), pp. 2876-2892 DOI: 10.1007/s11661-018-4646-8
|
[40] |
|
[41] |
A.B. Melnick, V.K. Soolshenko. Thermodynamic design of high-entropy refractory alloys. J Alloys Compd, 694 ( 2017), pp. 223-227
|
[42] |
|
[43] |
S. Gorsse, M.H. Nguyen, O.N. Senkov, D.B. Miracle. Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data Brief, 21 ( 2018), pp. 2664-2678
|
[44] |
E.P. George, D. Raabe, R.O. Ritchie. High-entropy alloys. Nat Rev Mater, 4 (8) ( 2019), pp. 515-534 DOI: 10.1038/s41578-019-0121-4
|
[45] |
N.D. Stepanov, D.G. Shaysultanov, N.Y. Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, et al.. High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. Mater Sci Eng A, 636 ( 2015), pp. 188-195
|
[46] |
S. Praveen, H.S. Kim. High-entropy alloys: potential candidates for high-temperature applications—an overview. Adv Eng Mater, 20 (1) ( 2018), p. 1700645
|
[47] |
J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, et al.. A review on fundamental of high entropy alloys with promising high-temperature properties. J Alloys Compd, 760 ( 2018), pp. 15-30
|
[48] |
G. Choubey, D. Yuvarajan, W. Huang, A. Shafee, K.M. Pandey. Recent research progress on transverse injection technique for scramjet applications—a brief review. Int J Hydrogen Energy, 45 (51) ( 2020), pp. 27806-27827
|
[49] |
D. Ni, Y. Cheng, J. Zhang, J.X. Liu, J. Zou, B. Chen, et al.. Advances in ultra-high temperature ceramics, composites, and coatings. J Adv Ceram, 11 (1) ( 2022), pp. 1-56 DOI: 10.1007/s40145-021-0550-6
|
[50] |
V.T. Le, N.S. Ha, N.S. Goo. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: a review. Compos Part B Eng, 226 ( 2021), p. 109301
|
[51] |
H. González-Barrio, A. Calleja-Ochoa, A. Lamikiz, L.N. López de Lacalle. Manufacturing processes of integral blade rotors for turbomachinery, processes and new approaches. Appl Sci, 10 (9) ( 2020), p. 3063 DOI: 10.3390/app10093063
|
[52] |
R. LeHolm, B. Norris, A. Gurney. High temperature alloys for aerospace structures. Adv Mater Process, 159 (5) ( 2001), pp. 27-31
|