[1] |
Z. Tang, Y. Liu, M. He, W. Bu. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew Chem Int Ed Engl, 58 (4) ( 2019), pp. 946-956
|
[2] |
S. Jin, W. Shao, X. Luo, H. Wang, X. Sun, X. He, et al.. Spatial band separation in a surface doped heterolayered structure for realizing efficient singlet oxygen generation. Adv Mater, 34 (47) ( 2022), Article e2206516
|
[3] |
S. Giannakis, K.Y.A. Lin, F. Ghanbari. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chem Eng J, 406 ( 2021), Article 127083
|
[4] |
J. Wang, B. Li, Y. Li, X. Fan, F. Zhang, G. Zhang, et al.. Facile synthesis of atomic Fe-N-C materials and dual roles investigation of Fe-N4 sites in Fenton-like reactions. Adv Sci, 8 (22) ( 2021), Article e2101824
|
[5] |
N. Song, S. Ren, Y. Zhang, C. Wang, X. Lu. Confinement of prussian blue analogs boxes inside conducting polymer nanotubes enables significantly enhanced catalytic performance for water treatment. Adv Funct Mater, 32 (34) ( 2022), Article 2204751
|
[6] |
D. Ding, Z. Mei, H. Huang, W. Feng, L. Chen, Y. Chen, et al.. Oxygen-independent sulfate radical for stimuli-responsive tumor nanotherapy. Adv Sci, 9 (17) ( 2022), Article e2200974
|
[7] |
J. Li, M. Li, H. Sun, Z. Ao, S. Wang, S. Liu. Understanding of the oxidation behavior of benzyl alcohol by peroxymonosulfate via carbon nanotubes activation. ACS Catal, 10 (6) ( 2020), pp. 3516-3525
|
[8] |
L.S. Zhang, X.H. Jiang, Z.A. Zhong, L. Tian, Q. Sun, Y.T. Cui, et al.. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity. Angew Chem Int Ed Engl, 60 (40) ( 2021), pp. 21751-21755
|
[9] |
Y. Gao, Y. Rao, H. Ning, J. Chen, Q. Zeng, F. Tian, et al.. Comparative investigation of diclofenac degradation by Fe2+/chlorine and Fe2+/PMS processes. Separ Purif Tech, 297 ( 2022), Article 121555
|
[10] |
Y. Bao, C. Lian, K. Huang, H. Yu, W. Liu, J. Zhang, et al.. Generating high-valent iron-oxo equivalent to Fe-IV=O complexes in neutral microenvironments through peroxymonosulfate activation by Zn-Fe layered double hydroxides. Angew Chem Int Ed Engl, 61 ( 2022), Article 202209542
|
[11] |
B. Sheng, X. Zhou, Z. Shi, Z. Wang, Y. Guo, X. Lou, et al.. Is addition of reductive metals (Mo, W) a panacea for accelerating transition metals-mediated peroxymonosulfate activation?. J Hazard Mater, 386 ( 2020), Article 121877
|
[12] |
Y. Tian, Y. Wu, Q. Yi, L. Zhou, J. Lei, L. Wang, et al.. Singlet oxygen mediated Fe2+/peroxymonosulfate photo-Fenton-like reaction driven by inverse opal WO3 with enhanced photogenerated charges. Chem Eng J, 425 ( 2021), Article 128644
|
[13] |
M. Liu, Z. Feng, X. Luan, W. Chu, H. Zhao, G. Zhao. Accelerated Fe2+ regeneration in an effective electro-Fenton process by boosting internal electron transfer to a nitrogen-conjugated Fe(III) complex. Environ Sci Tech, 55 (9) ( 2021), pp. 6042-6051
|
[14] |
G. Song, X. Du, Y. Zheng, P. Su, Y. Tang, M. Zhou. A novel electro-Fenton process coupled with sulfite: enhanced Fe3+ reduction and TOC removal. J Hazard Mater, 422 ( 2022), Article 126888
|
[15] |
H. Zhou, H. Zhang, Y. He, B. Huang, C. Zhou, G. Yao, et al.. Critical review of reductant-enhanced peroxide activation processes: trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions. Appl Catal B, 286 ( 2021), Article 119900
|
[16] |
Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, H. He. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Appl Catal B, 255 ( 2019), Article 117739
|
[17] |
J. Lin, W. Tian, Z. Guan, H. Zhang, X. Duan, H. Wang, et al.. Functional carbon nitride materials in photo-Fenton-like catalysis for environmental remediation. Adv Funct Mater, 32 (24) ( 2022), Article 2201743
|
[18] |
Q. Yan, J. Zhang, M. Xing. Cocatalytic Fenton reaction for pollutant control. Cell Rep Phys Sci, 1 (8) ( 2020), Article 100149
|
[19] |
H. Zhou, J. Peng, X. Duan, H. Yin, B. Huang, C. Zhou, et al.. Redox-active polymers as robust electron-shuttle co-catalysts for fast Fe3+/Fe2+ circulation and green Fenton oxidation. Environ Sci Tech, 57 (8) ( 2023), pp. 3334-3344
|
[20] |
X. Hou, G. Zhan, X. Huang, N. Wang, Z. Ai, L. Zhang. Persulfate activation induced by ascorbic acid for efficient organic pollutants oxidation. Chem Eng J, 382 ( 2020), Article 122355
|
[21] |
X. Shi, Y. Li, Z. Zhang, L. Sun, Y. Peng. Enhancement of ciprofloxacin degradation in the Fe(II)/peroxymonosulfate system by protocatechuic acid over a wide initial pH range. Chem Eng J, 372 ( 2019), pp. 1113-1121
|
[22] |
W. Sang, Z. Li, M. Huang, X. Wu, D. Li, L. Mei, et al.. Enhanced transition metal oxide based peroxymonosulfate activation by hydroxylamine for the degradation of sulfamethoxazole. Chem Eng J, 383 ( 2020), Article 123057
|
[23] |
C. Zhou, P. Zhou, M. Sun, Y. Liu, H. Zhang, Z. Xiong, et al.. Nitrogen-doped carbon nanotubes enhanced Fenton chemistry: role of near-free iron(III) for sustainable iron(III)/iron(II) cycles. Water Res, 210 ( 2022), Article 117984
|
[24] |
H. Zhou, J. Peng, J. Li, J. You, L. Lai, R. Liu, et al.. Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost Fe3+/Fe2+ cycle for peroxymonosulfate activation. Water Res, 188 ( 2021), Article 116529
|
[25] |
P. Zhou, W. Ren, G. Nie, X. Li, X. Duan, Y. Zhang, et al.. Fast and long-lasting iron(III) reduction by boron toward green and accelerated Fenton chemistry. Angew Chem Int Ed Engl, 59 (38) ( 2020), pp. 16517-16526
|
[26] |
J. Ji, R.M. Aleisa, H. Duan, J. Zhang, Y. Yin, M. Xing. Metallic active sites on MoO2(110) surface to catalyze advanced oxidation processes for efficient pollutant removal. iScience, 23 (2) ( 2020), Article 100861
|
[27] |
Q. Yan, C. Lian, K. Huang, L. Liang, H. Yu, P. Yin, et al.. Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control. Angew Chem Int Ed Engl, 60 (31) ( 2021), pp. 17155-17163
|
[28] |
W. Liu, P. Fu, Y. Zhang, H. Xu, H. Wang, M. Xing. Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes. Proc Natl Acad Sci USA, 120 (7) ( 2023), Article e2218813120
|
[29] |
L. Jiang, Z. Wei, Y. Ding, Y. Ma, X. Fu, J. Sun, et al.. In-situ synthesis of self-standing cobalt-doped nickel sulfide nanoarray as a recyclable and integrated catalyst for peroxymonosulfate activation. Appl Catal B, 307 ( 2022), Article 121184
|
[30] |
L. Zhu, J. Ji, J. Liu, S. Mine, M. Matsuoka, J. Zhang, et al.. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control. Angew Chem Int Ed Engl, 59 (33) ( 2020), pp. 13968-13976
|
[31] |
Y. Liu, R. Qu, X. Li, H. Zhai, S. Zhao, Y. Wei, et al.. Integration of catalytic capability and pH-responsive wettability in a VxOy-based dual-mesh system: towards solving the trade-off between the separation flow rate and degradation efficiency. J Mater Chem A Mater Energy Sustain, 9 (9) ( 2021), pp. 5454-5467
|
[32] |
W. Qiao, W. Xu, X. Xu, L. Wu, S. Yan, D. Wang. Construction of active orbital via single-atom cobalt anchoring on the surface of 1T-MoS2 basal plane toward efficient hydrogen evolution. ACS Appl Energy Mater, 3 (3) ( 2020), pp. 2315-2322
|
[33] |
Y. Liu, K. Ai, L. Lu. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev, 114 (9) ( 2014), pp. 5057-5115
|
[34] |
A.S. Goloveshkin, N.D. Lenenko, A.V. Naumkin, A.Y. Pereyaslavtsev, A.V. Grigorieva, A.V. Shapovalov, et al.. Enhancement of 1T-MoS2 superambient temperature stability and hydrogen evolution performance by intercalating a phenanthroline monolayer. ChemNanoMat, 7 (4) ( 2021), pp. 447-456
|
[35] |
Y. Liu, Y. Li, F. Peng, Y. Lin, S. Yang, S. Zhang, et al.. 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Appl Catal B, 241 ( 2019), pp. 236-245
|
[36] |
X.H. Jiang, Q.J. Xing, X.B. Luo, F. Li, J.P. Zou, S.S. Liu, et al.. Simultaneous photoreduction of uranium(VI) and photooxidation of arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl Catal B, 228 ( 2018), pp. 29-38
|
[37] |
E.T. Yun, J.H. Lee, J. Kim, H.D. Park, J. Lee. Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer. Environ Sci Tech, 52 (12) ( 2018), pp. 7032-7042
|
[38] |
H. Kuang, Z. He, M. Li, R. Huang, Y. Zhang, X. Xu, et al.. Enhancing co-catalysis of MoS2 for persulfate activation in Fe3+-based advanced oxidation processes via defect engineering. Chem Eng J, 417 ( 2021), Article 127987
|
[39] |
Y. Huang, L. Lai, W. Huang, H. Zhou, J. Li, C. Liu, et al.. Effective peroxymonosulfate activation by natural molybdenite for enhanced atrazine degradation: role of sulfur vacancy, degradation pathways and mechanism. J Hazard Mater, 435 ( 2022), Article 128899
|
[40] |
C. Chen, H. Feng, Y. Deng. Re-evaluation of sulfate radical based-advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate. Water Res, 153 ( 2019), pp. 100-107
|
[41] |
J. Wang, H. Duan, M. Wang, Q. Shentu, C. Xu, Y. Yang, et al.. Construction of durable superhydrophilic activated carbon fibers based material for highly-efficient oil/water separation and aqueous contaminants degradation. Environ Res, 207 (2022), Article 112212
|
[42] |
Q. Yi, J. Ji, B. Shen, C. Dong, J. Liu, J. Zhang, et al.. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment. Environ Sci Tech, 53 (16) ( 2019), pp. 9725-9733
|
[43] |
C. Zhang, C. Kong, P.G. Tratnyek, C. Qin. Generation of reactive oxygen species and degradation of pollutants in the Fe2+/O2/tripolyphosphate system: regulated by the concentration ratio of Fe2+ and tripolyphosphate. Environ Sci Tech, 56 (7) ( 2022), pp. 4367-4376
|
[44] |
L. Xu, L. Qi, Y. Han, W. Lu, J. Han, W. Qiao, et al.. Improvement of Fe2+/peroxymonosulfate oxidation of organic pollutants by promoting Fe2+ regeneration with visible light driven g-C3N4 photocatalysis. Chem Eng J, 430 ( 2022), Article 132828
|
[45] |
Y. Xiao, J. Ji, L. Zhu, Y. Bao, X. Liu, J. Zhang, et al.. Regeneration of zero-valent iron powder by the cocatalytic effect of WS2 in the environmental applications. Chem Eng J, 383 ( 2020), Article 123158
|
[46] |
J. Shi, Z. Ai, L. Zhang. Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles. Water Res, 59 ( 2014), pp. 145-153
|
[47] |
Z. Yang, A. Yu, C. Shan, G. Gao, B. Pan. Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes. Water Res, 137 ( 2018), pp. 37-46
|
[48] |
C. Dong, J. Ji, B. Shen, M. Xing, J. Zhang. Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol. Environ Sci Tech, 52 (19) ( 2018), pp. 11297-11308
|
[49] |
T. Li, Z. Zhao, Q. Wang, P. Xie, J. Ma. Strongly enhanced Fenton degradation of organic pollutants by cysteine: an aliphatic amino acid accelerator outweighs hydroquinone analogues. Water Res, 105 ( 2016), pp. 479-486
|
[50] |
R. Song, H. Chi, Q. Ma, D. Li, X. Wang, W. Gao, et al.. Highly efficient degradation of persistent pollutants with 3D nanocone TiO2-based photoelectrocatalysis. J Am Chem Soc, 143 (34) ( 2021), pp. 13664-13674
|
[51] |
J.F. Pérez, J. Llanos, C. Sáez, C. López, P. Cañizares, M.A. Rodrigo. Development of an innovative approach for low-impact wastewater treatment: a microfluidic flow-through electrochemical reactor. Chem Eng J, 351 ( 2018), pp. 766-772
|
[52] |
B. Sheng, F. Yang, Y. Wang, Z. Wang, Q. Li, Y. Guo, et al.. Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS. Chem Eng J, 375 ( 2019), Article 121989
|
[53] |
Q. Xia, Z. Yao, D. Zhang, D. Li, Z. Zhang, Z. Jiang. Rational synthesis of micronano dendritic ZVI@Fe3O4 modified with carbon quantum dots and oxygen vacancies for accelerating Fenton-like oxidation. Sci Total Environ, 671 ( 2019), pp. 1056-1065
|
[54] |
Z. Guo, Y. Xie, J. Xiao, Z.J. Zhao, Y. Wang, Z. Xu, et al.. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J Am Chem Soc, 141 (30) ( 2019), pp. 12005-12010
|
[55] |
Y. Yin, L. Shi, W. Li, X. Li, H. Wu, Z. Ao, et al.. Boosting Fenton-like reactions via single atom Fe catalysis. Environ Sci Tech, 53 (19) ( 2019), pp. 11391-11400
|
[56] |
M. Huang, X. Wang, C. Liu, G. Fang, J. Gao, Y. Wang, et al.. Mechanism of metal sulfides accelerating Fe(II)/Fe(III) redox cycling to enhance pollutant degradation by persulfate: metallic active sites vs. reducing sulfur species. J Hazard Mater, 404 (Pt B) ( 2021), Article 124175
|
[57] |
X. You, M. Wang, G. Jiang, X. Zhao, Z. Wang, F. Liu, et al.. Multifunctional porous nanofibrous membranes with superior antifouling properties for oil-water separation and photocatalytic degradation. J Membr Sci, 668 ( 2023), Article 121245
|
[58] |
X. Meng, M. Wang, L. Heng, L. Jiang. Underwater mechanically robust oil-repellent materials: combining conflicting properties using a heterostructure. Adv Mater, 30 ( 2018), Article 1706634
|