传质促进型3D流通式助催化剂系统强化高级氧化过程中的Fe2+/Fe3+循环

Weiyang Lv, Hao Li, Jinhui Wang, Lixin Wang, Zenglong Wu, Yuge Wang, Wenkai Song, Wenkai Cheng, Yuyuan Yao

工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 264-275.

PDF(4479 KB)
PDF(4479 KB)
工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 264-275. DOI: 10.1016/j.eng.2023.06.010
研究论文
Article

传质促进型3D流通式助催化剂系统强化高级氧化过程中的Fe2+/Fe3+循环

作者信息 +

Mass Transfer-Promoted Fe2+/Fe3+ Circulation Steered by 3D Flow-Through Co-Catalyst System Toward Sustainable Advanced Oxidation Processes

Author information +
History +

摘要

通过铁基高级氧化过程(AOPs)实现快速连续产生活性氧(ROS)在环境和生物领域具有重要意义。然而,目前由助催化剂辅助的AOP仍然存在质量/电子转移差和不持久的促进作用,导致Fe2+/Fe3+循环缓慢,ROS产生的Fe2+动态浓度低。在此,我们提出了一种用二硫化钼(MoS2)官能化的三维(3D)宏观助催化剂,通过循环流通过程实现了超高效的Fe2+再生(平衡Fe2+比为82.4%)和显著的稳定性(超过20个循环)。与传统的间歇式反应器不同,实验和计算流体动力学模拟表明,在流通模式下,由对流增强的质量/电荷转移引发的Fe2+还原,然后由MoS2诱导的流动旋转加强,以实现充分的反应物混合,对氧化剂活化和随后的ROS生成至关重要。引人注目的是,具有超润湿能力的流通共催化系统甚至可以处理由不同表面活性剂稳定的复杂含油废水,而不会损失污染物降解效率。我们的研究结果强调了一种创新的助催化剂系统设计,以扩大基于AOP的技术的适用性,特别是在大规模复杂的废水处理中。

Abstract

Realizing fast and continuous generation of reactive oxygen species (ROSs) via iron-based advanced oxidation processes (AOPs) is significant in the environmental and biological fields. However, current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect, giving rise to the sluggish Fe2+/Fe3+ cycle and low dynamic concentration of Fe2+ for ROS production. Herein, we present a three-dimensional (3D) macroscale co-catalyst functionalized with molybdenum disulfide (MoS2) to achieve ultra-efficient Fe2+ regeneration (equilibrium Fe2+ ratio of 82.4%) and remarkable stability (more than 20 cycles) via a circulating flow-through process. Unlike the conventional batch-type reactor, experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode, initiated by the convection-enhanced mass/charge transfer for Fe2+ reduction and then strengthened by MoS2-induced flow rotation for sufficient reactant mixing, is crucial for oxidant activation and subsequent ROS generation. Strikingly, the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency. Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology, especially in large-scale complex wastewater treatment.

关键词

/ /

Keywords

Advanced oxidation processes / 3D co-catalyst / Flow-through mode / Enhanced mass transfer / Complex wastewater treatment

引用本文

导出引用
Weiyang Lv, Hao Li, Jinhui Wang. 三维孔道助催化剂体系下Fe2+/Fe3+循环的可持续高级氧化过程. Engineering. 2024, 36(5): 264-275 https://doi.org/10.1016/j.eng.2023.06.010

参考文献

[1]
Z. Tang, Y. Liu, M. He, W. Bu. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew Chem Int Ed Engl, 58 (4) ( 2019), pp. 946-956
[2]
S. Jin, W. Shao, X. Luo, H. Wang, X. Sun, X. He, et al.. Spatial band separation in a surface doped heterolayered structure for realizing efficient singlet oxygen generation. Adv Mater, 34 (47) ( 2022), Article e2206516
[3]
S. Giannakis, K.Y.A. Lin, F. Ghanbari. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chem Eng J, 406 ( 2021), Article 127083
[4]
J. Wang, B. Li, Y. Li, X. Fan, F. Zhang, G. Zhang, et al.. Facile synthesis of atomic Fe-N-C materials and dual roles investigation of Fe-N4 sites in Fenton-like reactions. Adv Sci, 8 (22) ( 2021), Article e2101824
[5]
N. Song, S. Ren, Y. Zhang, C. Wang, X. Lu. Confinement of prussian blue analogs boxes inside conducting polymer nanotubes enables significantly enhanced catalytic performance for water treatment. Adv Funct Mater, 32 (34) ( 2022), Article 2204751
[6]
D. Ding, Z. Mei, H. Huang, W. Feng, L. Chen, Y. Chen, et al.. Oxygen-independent sulfate radical for stimuli-responsive tumor nanotherapy. Adv Sci, 9 (17) ( 2022), Article e2200974
[7]
J. Li, M. Li, H. Sun, Z. Ao, S. Wang, S. Liu. Understanding of the oxidation behavior of benzyl alcohol by peroxymonosulfate via carbon nanotubes activation. ACS Catal, 10 (6) ( 2020), pp. 3516-3525
[8]
L.S. Zhang, X.H. Jiang, Z.A. Zhong, L. Tian, Q. Sun, Y.T. Cui, et al.. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity. Angew Chem Int Ed Engl, 60 (40) ( 2021), pp. 21751-21755
[9]
Y. Gao, Y. Rao, H. Ning, J. Chen, Q. Zeng, F. Tian, et al.. Comparative investigation of diclofenac degradation by Fe2+/chlorine and Fe2+/PMS processes. Separ Purif Tech, 297 ( 2022), Article 121555
[10]
Y. Bao, C. Lian, K. Huang, H. Yu, W. Liu, J. Zhang, et al.. Generating high-valent iron-oxo equivalent to Fe-IV=O complexes in neutral microenvironments through peroxymonosulfate activation by Zn-Fe layered double hydroxides. Angew Chem Int Ed Engl, 61 ( 2022), Article 202209542
[11]
B. Sheng, X. Zhou, Z. Shi, Z. Wang, Y. Guo, X. Lou, et al.. Is addition of reductive metals (Mo, W) a panacea for accelerating transition metals-mediated peroxymonosulfate activation?. J Hazard Mater, 386 ( 2020), Article 121877
[12]
Y. Tian, Y. Wu, Q. Yi, L. Zhou, J. Lei, L. Wang, et al.. Singlet oxygen mediated Fe2+/peroxymonosulfate photo-Fenton-like reaction driven by inverse opal WO3 with enhanced photogenerated charges. Chem Eng J, 425 ( 2021), Article 128644
[13]
M. Liu, Z. Feng, X. Luan, W. Chu, H. Zhao, G. Zhao. Accelerated Fe2+ regeneration in an effective electro-Fenton process by boosting internal electron transfer to a nitrogen-conjugated Fe(III) complex. Environ Sci Tech, 55 (9) ( 2021), pp. 6042-6051
[14]
G. Song, X. Du, Y. Zheng, P. Su, Y. Tang, M. Zhou. A novel electro-Fenton process coupled with sulfite: enhanced Fe3+ reduction and TOC removal. J Hazard Mater, 422 ( 2022), Article 126888
[15]
H. Zhou, H. Zhang, Y. He, B. Huang, C. Zhou, G. Yao, et al.. Critical review of reductant-enhanced peroxide activation processes: trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions. Appl Catal B, 286 ( 2021), Article 119900
[16]
Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, H. He. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Appl Catal B, 255 ( 2019), Article 117739
[17]
J. Lin, W. Tian, Z. Guan, H. Zhang, X. Duan, H. Wang, et al.. Functional carbon nitride materials in photo-Fenton-like catalysis for environmental remediation. Adv Funct Mater, 32 (24) ( 2022), Article 2201743
[18]
Q. Yan, J. Zhang, M. Xing. Cocatalytic Fenton reaction for pollutant control. Cell Rep Phys Sci, 1 (8) ( 2020), Article 100149
[19]
H. Zhou, J. Peng, X. Duan, H. Yin, B. Huang, C. Zhou, et al.. Redox-active polymers as robust electron-shuttle co-catalysts for fast Fe3+/Fe2+ circulation and green Fenton oxidation. Environ Sci Tech, 57 (8) ( 2023), pp. 3334-3344
[20]
X. Hou, G. Zhan, X. Huang, N. Wang, Z. Ai, L. Zhang. Persulfate activation induced by ascorbic acid for efficient organic pollutants oxidation. Chem Eng J, 382 ( 2020), Article 122355
[21]
X. Shi, Y. Li, Z. Zhang, L. Sun, Y. Peng. Enhancement of ciprofloxacin degradation in the Fe(II)/peroxymonosulfate system by protocatechuic acid over a wide initial pH range. Chem Eng J, 372 ( 2019), pp. 1113-1121
[22]
W. Sang, Z. Li, M. Huang, X. Wu, D. Li, L. Mei, et al.. Enhanced transition metal oxide based peroxymonosulfate activation by hydroxylamine for the degradation of sulfamethoxazole. Chem Eng J, 383 ( 2020), Article 123057
[23]
C. Zhou, P. Zhou, M. Sun, Y. Liu, H. Zhang, Z. Xiong, et al.. Nitrogen-doped carbon nanotubes enhanced Fenton chemistry: role of near-free iron(III) for sustainable iron(III)/iron(II) cycles. Water Res, 210 ( 2022), Article 117984
[24]
H. Zhou, J. Peng, J. Li, J. You, L. Lai, R. Liu, et al.. Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost Fe3+/Fe2+ cycle for peroxymonosulfate activation. Water Res, 188 ( 2021), Article 116529
[25]
P. Zhou, W. Ren, G. Nie, X. Li, X. Duan, Y. Zhang, et al.. Fast and long-lasting iron(III) reduction by boron toward green and accelerated Fenton chemistry. Angew Chem Int Ed Engl, 59 (38) ( 2020), pp. 16517-16526
[26]
J. Ji, R.M. Aleisa, H. Duan, J. Zhang, Y. Yin, M. Xing. Metallic active sites on MoO2(110) surface to catalyze advanced oxidation processes for efficient pollutant removal. iScience, 23 (2) ( 2020), Article 100861
[27]
Q. Yan, C. Lian, K. Huang, L. Liang, H. Yu, P. Yin, et al.. Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control. Angew Chem Int Ed Engl, 60 (31) ( 2021), pp. 17155-17163
[28]
W. Liu, P. Fu, Y. Zhang, H. Xu, H. Wang, M. Xing. Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes. Proc Natl Acad Sci USA, 120 (7) ( 2023), Article e2218813120
[29]
L. Jiang, Z. Wei, Y. Ding, Y. Ma, X. Fu, J. Sun, et al.. In-situ synthesis of self-standing cobalt-doped nickel sulfide nanoarray as a recyclable and integrated catalyst for peroxymonosulfate activation. Appl Catal B, 307 ( 2022), Article 121184
[30]
L. Zhu, J. Ji, J. Liu, S. Mine, M. Matsuoka, J. Zhang, et al.. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control. Angew Chem Int Ed Engl, 59 (33) ( 2020), pp. 13968-13976
[31]
Y. Liu, R. Qu, X. Li, H. Zhai, S. Zhao, Y. Wei, et al.. Integration of catalytic capability and pH-responsive wettability in a VxOy-based dual-mesh system: towards solving the trade-off between the separation flow rate and degradation efficiency. J Mater Chem A Mater Energy Sustain, 9 (9) ( 2021), pp. 5454-5467
[32]
W. Qiao, W. Xu, X. Xu, L. Wu, S. Yan, D. Wang. Construction of active orbital via single-atom cobalt anchoring on the surface of 1T-MoS2 basal plane toward efficient hydrogen evolution. ACS Appl Energy Mater, 3 (3) ( 2020), pp. 2315-2322
[33]
Y. Liu, K. Ai, L. Lu. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev, 114 (9) ( 2014), pp. 5057-5115
[34]
A.S. Goloveshkin, N.D. Lenenko, A.V. Naumkin, A.Y. Pereyaslavtsev, A.V. Grigorieva, A.V. Shapovalov, et al.. Enhancement of 1T-MoS2 superambient temperature stability and hydrogen evolution performance by intercalating a phenanthroline monolayer. ChemNanoMat, 7 (4) ( 2021), pp. 447-456
[35]
Y. Liu, Y. Li, F. Peng, Y. Lin, S. Yang, S. Zhang, et al.. 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Appl Catal B, 241 ( 2019), pp. 236-245
[36]
X.H. Jiang, Q.J. Xing, X.B. Luo, F. Li, J.P. Zou, S.S. Liu, et al.. Simultaneous photoreduction of uranium(VI) and photooxidation of arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl Catal B, 228 ( 2018), pp. 29-38
[37]
E.T. Yun, J.H. Lee, J. Kim, H.D. Park, J. Lee. Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer. Environ Sci Tech, 52 (12) ( 2018), pp. 7032-7042
[38]
H. Kuang, Z. He, M. Li, R. Huang, Y. Zhang, X. Xu, et al.. Enhancing co-catalysis of MoS2 for persulfate activation in Fe3+-based advanced oxidation processes via defect engineering. Chem Eng J, 417 ( 2021), Article 127987
[39]
Y. Huang, L. Lai, W. Huang, H. Zhou, J. Li, C. Liu, et al.. Effective peroxymonosulfate activation by natural molybdenite for enhanced atrazine degradation: role of sulfur vacancy, degradation pathways and mechanism. J Hazard Mater, 435 ( 2022), Article 128899
[40]
C. Chen, H. Feng, Y. Deng. Re-evaluation of sulfate radical based-advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate. Water Res, 153 ( 2019), pp. 100-107
[41]
J. Wang, H. Duan, M. Wang, Q. Shentu, C. Xu, Y. Yang, et al.. Construction of durable superhydrophilic activated carbon fibers based material for highly-efficient oil/water separation and aqueous contaminants degradation. Environ Res, 207 (2022), Article 112212
[42]
Q. Yi, J. Ji, B. Shen, C. Dong, J. Liu, J. Zhang, et al.. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment. Environ Sci Tech, 53 (16) ( 2019), pp. 9725-9733
[43]
C. Zhang, C. Kong, P.G. Tratnyek, C. Qin. Generation of reactive oxygen species and degradation of pollutants in the Fe2+/O2/tripolyphosphate system: regulated by the concentration ratio of Fe2+ and tripolyphosphate. Environ Sci Tech, 56 (7) ( 2022), pp. 4367-4376
[44]
L. Xu, L. Qi, Y. Han, W. Lu, J. Han, W. Qiao, et al.. Improvement of Fe2+/peroxymonosulfate oxidation of organic pollutants by promoting Fe2+ regeneration with visible light driven g-C3N4 photocatalysis. Chem Eng J, 430 ( 2022), Article 132828
[45]
Y. Xiao, J. Ji, L. Zhu, Y. Bao, X. Liu, J. Zhang, et al.. Regeneration of zero-valent iron powder by the cocatalytic effect of WS2 in the environmental applications. Chem Eng J, 383 ( 2020), Article 123158
[46]
J. Shi, Z. Ai, L. Zhang. Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles. Water Res, 59 ( 2014), pp. 145-153
[47]
Z. Yang, A. Yu, C. Shan, G. Gao, B. Pan. Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes. Water Res, 137 ( 2018), pp. 37-46
[48]
C. Dong, J. Ji, B. Shen, M. Xing, J. Zhang. Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol. Environ Sci Tech, 52 (19) ( 2018), pp. 11297-11308
[49]
T. Li, Z. Zhao, Q. Wang, P. Xie, J. Ma. Strongly enhanced Fenton degradation of organic pollutants by cysteine: an aliphatic amino acid accelerator outweighs hydroquinone analogues. Water Res, 105 ( 2016), pp. 479-486
[50]
R. Song, H. Chi, Q. Ma, D. Li, X. Wang, W. Gao, et al.. Highly efficient degradation of persistent pollutants with 3D nanocone TiO2-based photoelectrocatalysis. J Am Chem Soc, 143 (34) ( 2021), pp. 13664-13674
[51]
J.F. Pérez, J. Llanos, C. Sáez, C. López, P. Cañizares, M.A. Rodrigo. Development of an innovative approach for low-impact wastewater treatment: a microfluidic flow-through electrochemical reactor. Chem Eng J, 351 ( 2018), pp. 766-772
[52]
B. Sheng, F. Yang, Y. Wang, Z. Wang, Q. Li, Y. Guo, et al.. Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS. Chem Eng J, 375 ( 2019), Article 121989
[53]
Q. Xia, Z. Yao, D. Zhang, D. Li, Z. Zhang, Z. Jiang. Rational synthesis of micronano dendritic ZVI@Fe3O4 modified with carbon quantum dots and oxygen vacancies for accelerating Fenton-like oxidation. Sci Total Environ, 671 ( 2019), pp. 1056-1065
[54]
Z. Guo, Y. Xie, J. Xiao, Z.J. Zhao, Y. Wang, Z. Xu, et al.. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J Am Chem Soc, 141 (30) ( 2019), pp. 12005-12010
[55]
Y. Yin, L. Shi, W. Li, X. Li, H. Wu, Z. Ao, et al.. Boosting Fenton-like reactions via single atom Fe catalysis. Environ Sci Tech, 53 (19) ( 2019), pp. 11391-11400
[56]
M. Huang, X. Wang, C. Liu, G. Fang, J. Gao, Y. Wang, et al.. Mechanism of metal sulfides accelerating Fe(II)/Fe(III) redox cycling to enhance pollutant degradation by persulfate: metallic active sites vs. reducing sulfur species. J Hazard Mater, 404 (Pt B) ( 2021), Article 124175
[57]
X. You, M. Wang, G. Jiang, X. Zhao, Z. Wang, F. Liu, et al.. Multifunctional porous nanofibrous membranes with superior antifouling properties for oil-water separation and photocatalytic degradation. J Membr Sci, 668 ( 2023), Article 121245
[58]
X. Meng, M. Wang, L. Heng, L. Jiang. Underwater mechanically robust oil-repellent materials: combining conflicting properties using a heterostructure. Adv Mater, 30 ( 2018), Article 1706634
PDF(4479 KB)

Accesses

Citation

Detail

段落导航
相关文章

/