[1] |
J. Li, R.L. Nation, J.D. Turnidge, R.W. Milne, K. Coulthard, C.R. Rayner, et al.. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis, 6 (9) ( 2006), pp. 589-601
|
[2] |
Y. Wang, C. Xu, R. Zhang, Y. Chen, Y. Shen, F. Hu, et al.. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infect Dis, 20 (10) ( 2020), pp. 1161-1171
|
[3] |
Y. Liu, Y. Wang, T.R. Walsh, L. Yi, R. Zhang, J. Spencer, et al.. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 16 (2) ( 2016), pp. 161-168
|
[4] |
Z. Ling, W. Yin, Z. Shen, Y. Wang, J. Shen, T.R. Walsh. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J Antimicrob Chemother, 75 (11) ( 2020), pp. 3087-3095
|
[5] |
F.F. Andrade, D. Silva, A. Rodrigues, C. Pina-Vaz.Colistin update on its mechanism of action and resistance, present and future challenges. Microorganisms, 8 (11) ( 2020), p. 1716
|
[6] |
J. Sun, H. Zhang, Y. Liu, Y. Feng. Towards understanding MCR-like colistin resistance. Trends Microbiol, 26 (9) ( 2018), pp. 794-808
|
[7] |
X. Xiao, F. Zeng, R. Li, Y. Liu, Z. Wang.Subinhibitory concentration of colistin promotes the conjugation frequencies of mcr-1- and bla NDM-5-positive plasmids. Microbiol Spectr, 10 (2) ( 2022), p. e02160-21
|
[8] |
S.A. McEwen, P.J. Collignon. Antimicrobial resistance: a one health perspective. Microbiol Spectr, 6 (2) (2018), Article ARBA-0009-2017
|
[9] |
S. Hernando-Amado, T.M. Coque, F. Baquero, J.L. Martínez. Defining and combating antibiotic resistance from one health and global health perspectives. Nat Microbiol, 4 (9) ( 2019), pp. 1432-1442
|
[10] |
Y. Wang, G.B. Tian, R. Zhang, Y. Shen, J.M. Tyrrell, X. Huang, et al.. Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study. Lancet Infect Dis, 17 (4) ( 2017), pp. 390-399
|
[11] |
K. Outterson, J.H. Powers, G.W. Daniel, M.B. McClellan. Repairing the broken market for antibiotic innovation. Health Aff, 34 (2) ( 2015), pp. 277-285
|
[12] |
D.J. Payne, L.F. Miller, D. Findlay, J. Anderson, L. Marks.Time for a change: addressing R&D and commercialization challenges for antibacterials. Philos Trans R Soc Lond B Biol Sci, 370 (1670) ( 2015), p. 20140086
|
[13] |
G.D. Wright. Opportunities for natural products in 21st century antibiotic discovery. Nat Prod Rep, 34 (7) ( 2017), pp. 694-701
|
[14] |
M. Tyers, G.D. Wright. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol, 17 (3) ( 2019), pp. 141-155
|
[15] |
C.R. MacNair, J.M. Stokes, L.A. Carfrae, A.A. Fiebig-Comyn, B.K. Coombes, M.R. Mulvey, et al.. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat Commun, 9 ( 2018), p. 458
|
[16] |
Y. Liu, R. Li, X. Xiao, Z. Wang. Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria. Crit Rev Microbiol, 45 (3) ( 2019), pp. 301-314
|
[17] |
G.D. Wright. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol, 24 (11) ( 2016), pp. 862-871
|
[18] |
M.G. Moloney. Natural products as a source for novel antibiotics. Trends Pharmacol Sci, 37 (8) ( 2016), pp. 689-701
|
[19] |
O. Genilloud. Natural products discovery and potential for new antibiotics. Curr Opin Microbiol, 51 ( 2019), pp. 81-87
|
[20] |
M. Song, Y. Liu, T. Li, X. Liu, Z. Hao, S. Ding, et al.. Plant natural flavonoids against multidrug resistant pathogens. Adv Sci, 8 (15) ( 2021), Article e2100749
|
[21] |
Y. Zhou, S. Liu, T. Wang, H. Li, S. Tang, J. Wang, et al.. Pterostilbene, a potential MCR-1 inhibitor that enhances the efficacy of polymyxin B. Antimicrob Agents Chemother, 62 (4) ( 2018), p. e02146-17
|
[22] |
R. Zhang, N. Dong, Y. Huang, H. Zhou, M. Xie, E.W.C. Chan, et al.. Evolution of tigecycline- and colistin-resistant CRKP (carbapenem-resistant Klebsiella pneumoniae) in vivo and its persistence in the GI tract. Emerg Microbes Infect, 7 ( 2018), p. 127
|
[23] |
D. Saeloh, V. Tipmanee, K.K. Jim, M.P. Dekker, W. Bitter, S.P. Voravuthikunchai, et al.. The novel antibiotic rhodomyrtone traps membrane proteins in vesicles with increased fluidity. PLoS Pathog, 14 (2) ( 2018), Article e1006876
|
[24] |
A. Sabnis, K.L. Hagart, A. Klöckner, M. Becce, L.E. Evans, R.C.D. Furniss, et al.. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. eLife, 10 ( 2021), p. e65836
|
[25] |
F.P. Altman. Tetrazolium salts and formazans. Prog Histochem Cytochem, 9 (3) ( 1976), pp. 1-51
|
[26] |
E. Ansó, S.E. Weinberg, L.P. Diebold, B.J. Thompson, S. Malinge, P.T. Schumacker, et al.. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol, 19 (6) ( 2017), pp. 614-625
|
[27] |
S. Meylan, C.B.M. Porter, J.H. Yang, P. Belenky, A. Gutierrez, M.A. Lobritz, et al.. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol, 24 (2) ( 2017), pp. 195-206
|
[28] |
G. Orazi, K.L. Ruoff, G.A. O’Toole. Pseudomonas aeruginosa increases the sensitivity of biofilm-grown Staphylococcus aureus to membrane-targeting antiseptics and antibiotics. MBio, 10 (4) ( 2019), pp. e01501-e1519
|
[29] |
T. Parasassi, E. Gratton. Membrane lipid domains and dynamics as detected by Laurdan fluorescence. J Fluoresc, 5 (1) ( 1995), pp. 59-69
|
[30] |
G. Fang, W. Li, X. Shen, J.M. Perez-Aguilar, Y. Chong, X. Gao, et al.. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat Commun, 9 ( 2018), p. 129
|
[31] |
S.A. Baron, J.M. Rolain. Efflux pump inhibitor CCCP to rescue colistin susceptibility in mcr-1 plasmid-mediated colistin-resistant strains and Gram-negative bacteria. J Antimicrob Chemother, 73 (7) ( 2018), pp. 1862-1871
|
[32] |
Y.H. Cheng, T.L. Lin, Y.T. Lin, J.T. Wang. A putative RND-type efflux pump, H239_3064, contributes to colistin resistance through CrrB in Klebsiella pneumoniae. J Antimicrob Chemother, 73 (6) ( 2018), pp. 1509-1516
|
[33] |
E. Cabezón, J. Ripoll-Rozada, A. Peña, F. de la Cruz, I. Arechaga. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev, 39 (1) ( 2015), pp. 81-95
|
[34] |
H. Huang, J. Liao, X. Zheng, Y. Chen, H. Ren. Low-level free nitrous acid efficiently inhibits the conjugative transfer of antibiotic resistance by altering intracellular ions and disabling transfer apparatus. Water Res, 158 ( 2019), pp. 383-391
|
[35] |
Y. Wang, J. Lu, L. Mao, J. Li, Z. Yuan, P.L. Bond, et al.. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera. ISME J, 13 (2) ( 2019), pp. 509-522
|
[36] |
J.W. Beaber, B. Hochhut, M.K. Waldor. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature, 427 (6969) ( 2004), pp. 72-74
|
[37] |
K. Pěnčíková, P. Kollár, V.M. Závalová, E. Táborská, J. Urbanová, J. Hošek. Investigation of sanguinarine and chelerythrine effects on LPS-induced inflammatory gene expression in THP-1 cell line. Phytomedicine, 19 (10) ( 2012), pp. 890-895
|
[38] |
S.J. Chmura, M.E. Dolan, A. Cha, H.J. Mauceri, D.W. Kufe, R.R. Weichselbaum. In vitro and in vivo activity of protein kinase C inhibitor chelerythrine chloride induces tumor cell toxicity and growth delay in vivo. Clin Cancer Res, 6 (2) ( 2000), pp. 737-742
|
[39] |
U. Platzbecker, J.L. Ward, H.J. Deeg. Chelerythrin activates caspase-8, downregulates FLIP long and short, and overcomes resistance to tumour necrosis factor-related apoptosis-inducing ligand in KG1a cells. Br J Haematol, 122 (3) ( 2003), pp. 489-497
|
[40] |
M. Valipour, A. Zarghi, M.A. Ebrahimzadeh, H. Irannejad.Therapeutic potential of chelerythrine as a multi-purpose adjuvant for the treatment of COVID-19. Cell Cycle, 20 (22) ( 2021), pp. 2321-2336
|
[41] |
X. Huang, M. Yang, J. Lei. Research of celandine in the treatment of cough and asthma. Jilin J Chin Med, 37 (7) ( 2017), pp. 725-776
|
[42] |
B. Li, J.Q. Zhang, X.G. Han, Z.L. Wang, Y.Y. Xu, J.F. Miao. Macleaya cordata helps improve the growth-promoting effect of chlortetracycline on broiler chickens. J Zhejiang Univ Sci B, 19 (10) ( 2018), pp. 776-784
|
[43] |
C.Y. Huang, Y.J. Huang, Z.Y. Zhang, Y.S. Liu, Z.Y. Liu.Metabolism and tissue distribution of chelerythrine and effects of Macleaya cordata extracts on liver NAD(P)H quinone oxidoreductase. Front Vet Sci, 8 ( 2021), p. 659771
|
[44] |
W. Wang, L.C. Dolan, S. von Alvensleben, M. Morlacchini, G. Fusconi. Safety of standardized Macleaya cordata extract in an eighty-four-day dietary study in dairy cows. J Anim Physiol Anim Nutr, 102 (1) ( 2018), pp. e61-e68
|
[45] |
QYResearch.2023-2029 Global and China Macleaya cordata extract industry research and 14th Five Year Plan analysis report. Report. Beijing: QYResearch; 2022.
|
[46] |
L. Gao, H.J. Schmitz, K.H. Merz, D. Schrenk. Characterization of the cytotoxicity of selected Chelidonium alkaloids in rat hepatocytes. Toxicol Lett, 311 ( 2019), pp. 91-97
|
[47] |
J. Wang, Y. Song, N. Zhang, N. Li, C. Liu, B. Wang. Using liposomes to alleviate the toxicity of chelerythrine, a natural pkc inhibitor, in treating non-small cell lung cancer. Front Oncol, 11 ( 2021), Article 658543
|
[48] |
N. Hu, M. Chen, Y. Liu, Q. Shi, B. Yang, H. Zhang, et al.. Pharmacokinetics of sanguinarine, chelerythrine, and their metabolites in broiler chickens following oral and intravenous administration. J Vet Pharmacol Ther, 42 (2) ( 2019), pp. 197-206
|
[49] |
M. Song, Y. Liu, X. Huang, S. Ding, Y. Wang, J. Shen, et al.. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat Microbiol, 5 (8) ( 2020), pp. 1040-1050
|
[50] |
M.R. Yeaman, N.Y. Yount. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 55 (1) ( 2003), pp. 27-55
|
[51] |
A. Müller, M. Wenzel, H. Strahl, F. Grein, T.N.V. Saaki, B. Kohl, et al.. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci USA, 113 (45) ( 2016), pp. E7077-E7086
|
[52] |
W. Kim, G. Zou, T.P.A. Hari, I.K. Wilt, W. Zhu, N. Galle, et al.. A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA, 116 (33) ( 2019), pp. 16529-16534
|
[53] |
J.L. Dombach, J.L.J. Quintana, C.S. Detweiler. Staphylococcal bacterial persister cells, biofilms, and intracellular infection are disrupted by JD1, a membrane-damaging small molecule. MBio, 12 (5) ( 2021), pp. e01801-e01821
|
[54] |
N.C.S. Mykytczuk, J.T. Trevors, L.G. Leduc, G.D. Ferroni. Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol, 95 (1-3) ( 2007), pp. 60-82
|
[55] |
M. Löffler, J.D. Simen, G. Jäger, K. Schäferhoff, A. Freund, R. Takors. Engineering E. coli for large-scale production—strategies considering ATP expenses and transcriptional responses. Metab Eng, 38 ( 2016), pp. 73-85
|
[56] |
T. Yu, Y.J. Zhou, M. Huang, Q. Liu, R. Pereira, F. David, et al.. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell, 174 (6) ( 2018), pp. 1549-1558.e14
|
[57] |
Y. Guo, X. Lv, Y. Wang, Y. Zhou, N. Lu, X. Deng, et al.. Honokiol restores polymyxin susceptibility to MCR-1-positive pathogens both in vitro and in vivo. Appl Environ Microbiol, 86 (5) ( 2020), p. e02346-19
|
[58] |
Y. Wang, J. Lu, S. Zhang, J. Li, L. Mao, Z. Yuan, et al.. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation. ISME J, 15 (9) ( 2021), pp. 2493-2508
|
[59] |
Getino M, Sanabria-Ríos DJ, Fernández-López R, Campos-Gómez J, Sánchez-López JM, Fernández A, et al. Synthetic fatty acids prevent plasmid-mediated horizontal gene transfer. MBio 2015;6( 5):e01032-e15.
|
[60] |
W.D. Qian, J. Huang, J.N. Zhang, X.C. Li, Y. Kong, T. Wang, et al.. Antimicrobial and antibiofilm activities and mechanism of action of chelerythrine against carbapenem-resistant Serratia marcescens in vitro. Microb Drug Resist, 27 (8) ( 2021), pp. 1105-1116
|
[61] |
N. Kajarabille, G.O. Latunde-Dada.Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci, 20 (19) ( 2019), p. 4968
|