[1] |
T.D. Gillespie. Fundamentals of vehicle dynamics, Vol. 400, Society of Automotive Engineers, Warrendale (1992)
|
[2] |
J.C. Dixon. Tires, suspension, and handling. (2nd ed.), Society of Automotive Engineers, Warrendale (1996)
|
[3] |
E.M. El-Beheiry. Bilinear control theory of smart damping systems. Elsevier, Cairo, Egypt. Amsterdam (2000)
|
[4] |
U. Kiencke, L. Nielsen. Automotive control systems: for engine, driveline, and vehicle. Springer, Berlin (2005)
|
[5] |
M. Blundell, D. Harty. Multibody systems approach to vehicle dynamics. Elsevier, Amsterdam (2004)
|
[6] |
H. Pacejka. Tire and vehicle dynamics. Elsevier, Amsterdam (2005)
|
[7] |
H.Y. Zhang (Ed.), Fault Detection, Supervision and Safety of Technical Processes 2006, Elsevier, Burlington (2007)
|
[8] |
S.M. Savaresi, C. Poussot-Vassal, C. Spelta, O. Sename, L. Dugard. Semi-active suspension control design for vehicles. Elsevier, Oxford (2010)
|
[9] |
R. Rajamani. Vehicle dynamics and control. Springer, Berlin (2011)
|
[10] |
A.M.A. Soliman, M.M.S. Kaldas. Semi-active suspension systems from research to mass-market — a review. J Low Freq Noise Vib Act Control, 40 (2) (2019), pp. 1005-1023
|
[11] |
M.A.A. Abdelkareem, L. Xu, M.K.A. Ali, A. Elagouz, J. Mi, S. Guo, et al.. Vibration energy harvesting in automotive suspension system: a detailed review. Appl Energy, 229 (2018), pp. 672-699
|
[12] |
Raiciu T. How multi-link suspension works [Internet]. Bucharest: Autoevolution; 2009 Jun 17 [cited 2022 Aug 1]. Available from:
|
[13] |
P.A. Simionescu, D. Beale. Synthesis and analysis of the five-link rear suspension system used in automobiles. Mechanism Mach Theory, 37 (9) (2002), pp. 815-832
|
[14] |
Suspension spring [Internet]. Schweinfurt: AAMPACT e.V. [cited 2022 Aug 1]. Available from:
|
[15] |
The world’s fastest reacting suspension technology gets even faster with MagneRide 4.0 [Internet]. Detroit: Cadillac; 2020 Oct 15 [cited 2022 Aug 1]. Available from:
|
[16] |
Crosse J. MagneRide suspension: design, development and applications [Internet]. Mumbai: Autocar Professional Online; 2014 Oct 29 [cited 2022 Aug 1]. Available from: in/feature/design-development-applications-magneride-suspension-6686.
|
[17] |
Bedarff DIT, Pelz IP. Development of an active and integrated suspension system . 2012 Jan [cited 2022 Aug 1]. Available from:
|
[18] |
D. Saintillan. Extensional rheology of active suspensions. Phys Rev E, 81 (5) (2010), Article 056307
|
[19] |
L. Xie, J. Li, X. Li, L. Huang, S. Cai. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: design, modeling and experiments. Mech Syst Signal Process, 99 (2018), pp. 859-872
|
[20] |
A. Maravandi, M. Moallem. Regenerative shock absorber using a two-leg motion conversion mechanism. IEEE/ASME Trans Mechatron, 20 (6) (2015), pp. 2853-2861
|
[21] |
Audi developing electromechanical rotary dampers; potential for energy recuperation from suspension ; 48V [Internet]. 2016 Aug [cited 2022 Aug 1]. Available from:
|
[22] |
Michelin to commercialize active wheel [Internet]. Available from:
|
[23] |
Grillneder S. Multifaceted personality: predictive active suspension in the A8 flagship model. Ingolstadt: Audi MediaCenter; 2019 Jul 18 [cited 2022 Aug 1]. Available from: com/en/press-releases/multifaceted-personality-predictive-active-suspension-in-the-a8-flagship-model-11905.
|
[24] |
2007 Citroen C5 [Internet]. 2020 Apr 19 [cited 2022 Aug 1]. Available from:
|
[25] |
Trevitt A. Öhlins semi-active suspension | art & science. Irvine, CA: Cycle World; 2012 Jun 1 [cited 2022 Aug 1]. Available from: https://www.cycleworld.com/sport-rider/ohlins-semi-active-suspension-art-science/.
|
[26] |
Tenneco-Inc. Tenneco equips all-new Volvo XC90 first edition with Monroe intelligent suspension. Lake Forest: Tenneco; 2014 Nov 13 [cited 2022 Aug 1]. Available from:
|
[27] |
Tenneco-Inc. Tenneco supplies Monroe intelligent suspension on new Renault Espace. Lake Forest: Tenneco; 2014 Dec 8 [cited 2022 Aug 1]. Available from:
|
[28] |
Rabatel S. Michelin abandons the development of motorized wheels. 2017
|
[29] |
Schonfeld KH, Geiger H, Hesse KH. Electronically controlled air suspension (ECAS) for commercial vehicles. SAE Tech Pap 1991 Nov: 912671.
|
[30] |
mbontario. com/mercedes-benz-airmatic-suspension-benefits/ [Internet]. Available from:
|
[31] |
Markel A.2007-2011 Ford expedition and navigator air Suspension [Internet]. Akron, OH: Brake and Front End; 2019 Jan 28 [cited 2022 Aug 1]. Available from:
|
[32] |
teslamotors.com [Internet]. Palo Alto: Tesla; c2023 [cited 2022 Aug 1]. Available from: www.teslamotors.com.
|
[33] |
The Magic Body Control suspension system [Internet]. Stuttgart: Mercedes-Benz; 1999 [cited 2022 Aug 1]. Available from:
|
[34] |
The new Mercedes-Benz GLE under the microscope: E-active body control suspension system [Internet]. Stuttgart: Mercedes-Benz; 2013 Jul 2 [cited 2022 Aug 1]. Available from:
|
[35] |
Buchmeier R, Kallweit J. The Predictive Chassis: ZF Vehicle Motion Control and Sensor Systems create a smooth ride into the future [Internet]. Friedrichshafen: ZF Friedrichshafen AG; 2019 Jul 2 [cited 2022 Aug 1]. Available from:
|
[36] |
Gavine A. ZF develops fully active chassis system. Vehicle Dynamics International; 2018 Jun 20 [cited 2022 Aug 1]. Available from:
|
[37] |
Howard B. Bose sells off its revolutionary electromagnetic suspension. ExtremeTech; 2017 Nov 15 [cited 2022 Aug 1]. Available from:
|
[38] |
Cheromcha K. The crazy bose “magic carpet” car suspension system is finally headed for production. The Drive; 2018 May 22 [cited 2022 Aug 1]. Available from:
|
[39] |
Németh B, Gáspár P. Variable-geometry suspension design in driver assistance systems. In: 12nd European Control Conference; 2013 Jul 17-19; Zurich, Switzerland. Piscataway: IEEE Xplore; 2013. p. 1481-6.
|
[40] |
B. Németh, P. Gáspár. Control design of variable-geometry suspension considering the construction system. IEEE Trans Vehicular Technol, 62 (8) (2013), pp. 4104-4109
|
[41] |
B. Németh, P. Gáspár. Set-based analysis of the variable-geometry suspension system. IFAC Proc, 47 (3) (2014), pp. 11201-11206
|
[42] |
B. Németh, P. Gáspár. Nonlinear analysis and control of a variable-geometry suspension system. Control Eng Pract, 61 (2017), pp. 279-291
|
[43] |
C. Arana, S.A. Evangelou, D. Dini. Series active variable geometry suspension for road vehicles. IEEE/ASME Trans Mechatron, 20 (1) (2014), pp. 361-372
|
[44] |
Evangelou S, Kneip C, Dini D, De Meerschman O, Palas C, Tocatlian A. (2015). U.S. Patent No. 9,026,309. Washington, DC: US Patent and Trademark Office.
|
[45] |
C. Arana, S.A. Evangelou, D. Dini. Series active variable geometry suspension application to chassis attitude control. IEEE/ASME Trans Mechatron, 21 (1) (2015), pp. 518-530
|
[46] |
C. Arana, S.A. Evangelou, D. Dini. Series active variable geometry suspension application to comfort enhancement. Control Eng Pract, 59 (2017), pp. 111-126
|
[47] |
A.R. Carlos. Active variable geometry suspension for cars[dissertation]. Imperial College London, London (2018)
|
[48] |
M. Yu, C. Arana, S.A. Evangelou, D. Dini. Quarter-car experimental study for series active variable geometry suspension. IEEE Trans Control Syst Technol, 27 (2) (2017), pp. 743-759
|
[49] |
M. Yu, C. Arana, S.A. Evangelou, D. Dini, G.D. Cleaver. Parallel active link suspension: a quarter-car experimental study. IEEE-ASME Trans Mechatron, 23 (5) (2018), pp. 2066-2077
|
[50] |
M. Yu, S.A. Evangelou, D. Dini. Position control of parallel active link suspension with backlash. IEEE Trans Ind Electron, 67 (6) (2019), pp. 4741-4751
|
[51] |
M. Yu, C. Cheng, S.A. Evangelou, D. Dini. Series active variable geometry suspension: full-car prototyping and road testing. IEEE-ASME Trans Mechatron, 27 (3) (2021), pp. 1332-1344
|
[52] |
M. Yu, S.A. Evangelou, D. Dini. Parallel active link suspension: full car application with frequency-dependent multi-objective control strategies. IEEE Trans Control Syst Technol, 30 (5) (2021), pp. 2046-2061
|
[53] |
M. Yu. Development of experimental techniques and control strategies for two novel road vehicle mechatronic suspensions [dissertation]. Imperial College London, London (2018)
|
[54] |
Z. Feng, M. Yu, C. Cheng, S.A. Evangelou, I.M. Jaimoukha, D. Dini. Uncertainties investigation and µ-synthesis control design for a full car with series active variable geometry suspension. IFAC-PapersOnLine, 53 (2) (2020), pp. 13882-13889
|
[55] |
Braid D. Active wheel alignment system—Doftek Australia develops world first [Internet]. Melbourne: AFMA; 2020 30 Jul [cited 2022 Aug 1]. Available from:
|
[56] |
Syaheer Z. Wheel alignment—what is camber, caster and toe. Lumpur: WapCar; 2020 May 29 [cited 2022 Aug 1]. Available from:
|
[57] |
Wilkinson L. Is Porsche’s active suspension management system worth it? London: Auto Express. 2019 Oct 10 [cited 2022 Aug 1]. Available from:
|
[58] |
J. Wang, W. Wang, K. Atallah. A linear permanent-magnet motor for active vehicle suspension. IEEE Trans Vehicular Technol, 60 (1) (2010), pp. 55-63
|
[59] |
B. Ebrahimi, H. Bolandhemmat, M.B. Khamesee, F. Golnaraghi. A hybrid electromagnetic shock absorber for active vehicle suspension systems. Veh Syst Dyn, 49 (1-2) (2011), pp. 311-332
|
[60] |
O.M. Anubi, C.D. Crane. A new active variable stiffness suspension system using a nonlinear energy sink-based controller. Veh Syst Dyn, 51 (10) (2013), pp. 1588-1602
|
[61] |
M. Reze, M. Osajda. MEMS sensors for automotive vehicle stability control applications. M. Kraft, N.M. White (Eds.), Mems for automotive and aerospace applications, Woodhead Publishing, Cambridge (2013), pp. 29-53
|
[62] |
K. Singal, R. Rajamani. Zero-energy active suspension system for automobiles with adaptive sky-hook damping. J Vib Acoust, 135 (1) (2013), Article 011011
|
[63] |
D. Shi, L. Chen, R. Wang, H. Jiang, Y. Shen. Design and experiment study of a semi-active energy-regenerative suspension system. Smart Mater Struct, 24 (1) (2014), Article 015001
|
[64] |
X. Wei, M. Zhu, L. Jia. A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers. Veh Syst Dyn, 54 (7) (2016), pp. 982-1003
|
[65] |
Abdulhammed Y, Elsherif H. Development of A New Automotive Active Suspension System. In: IOP Conference Series:Materials Science and Engineering, Volume 280, 3rd International Conference on Mechanical Engineering and Automation Science (ICMEAS 2017); 2017 Oct 13-15; Birmingham, UK. Bristol: IOP science; 2017.
|
[66] |
D. Koulocheris, G. Papaioannou, E. Chrysos. A comparison of optimal semi-active suspension systems regarding vehicle ride comfort. IOP Conf Series Mater Sci Eng, 252 (2017), Article 012022
|
[67] |
S.K. Sharma, A. Kumar. Ride performance of a high speed rail vehicle using controlled semi active suspension system. Smart Mater Struct, 26 (5) (2017), Article 055026
|
[68] |
Zhao J, Liu H, Zhang L, Bei S. Design of a new integrated structure of the active suspension system and emergency lane change test. In: IOP Conference Series:Materials Science and Engineering, Volume 239, 2nd International Conference on Design and Manufacturing Engineering (ICDME2017); 2017 Aug 1-3; Guangzhou, China. Bristol: IOP science; 2017.
|
[69] |
S. Yan, W. Sun. Self-powered suspension criterion and energy regeneration implementation scheme of motor-driven active suspension. Mech Syst Signal Process, 94 (2017), pp. 297-311
|
[70] |
Yurlin D. Intelligent systems of the vehicles’ suspension. In: IOP Conference Series:Materials Science and Engineering, Volume 315, International Automobile Scientific Forum (IASF-2017) Intelligent Transport Systems; 2017 Oct 18-19; Moscow, Russian. Bristol: IOP science; 2017.
|
[71] |
H. Deng, G. Han, J. Zhang, M. Wang, M. Ma, X. Zhong, et al.. Development of a non-piston MR suspension rod for variable mass systems. Smart Mater Struct, 27 (6) (2018), Article 065014
|
[72] |
Anderson ZM, Giovanardi M, Tucker C, Ekchian JA. (2019). Active safety suspension system. US Patent No. 10,377,371. Washington: US Patent and Trademark Office.
|
[73] |
H. Khodadadi, H. Ghadiri. Self-tuning PID controller design using fuzzy logic for half car active suspension system. Int J Dynam Control, 6 (1) (2018), pp. 224-232
|
[74] |
M. Yuan, C. Manzie, M. Good, I. Shames, L. Gan, F. Keynejad, et al.. A review of industrial tracking control algorithms. Control Eng Pract, 102 (2020), Article 104536
|
[75] |
H. Kim, H. Lee. Fault-tolerant control algorithm for a four-corner closed-loop air suspension system. IEEE Trans Ind Electron, 58 (10) (2011), pp. 4866-4879
|
[76] |
H. Kim, H. Lee. Height and leveling control of automotive air suspension system using sliding mode approach. IEEE Trans Vehicular Technol, 60 (5) (2011), pp. 2027-2041
|
[77] |
W. Sun, H. Gao, O. Kaynak. Adaptive backstepping control for active suspension systems with hard constraints. IEEE-ASME Trans Mechatron, 18 (3) (2012), pp. 1072-1079
|
[78] |
S.J. Huang, H.Y. Chen. Functional based adaptive and fuzzy sliding controller for non-autonomous active suspension system. JSME Int J Ser C Mech Syst Mach Elem Manuf, 49 (4) (2006), pp. 1027-1032
|
[79] |
R.K. Pekgökgöz, M.A. Gürel, M. Bilgehan, M. Kisa. Active suspension of cars using fuzzy logic controller optimized by genetic algorithm. Int J Adv Eng Sci Appl Math, 2 (4) (2010), pp. 27-37
|
[80] |
H. Li, H. Liu, H. Gao, P. Shi. Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Trans Fuzzy Syst, 20 (2) (2011), pp. 342-357
|
[81] |
H. Li, J. Yu, C. Hilton, H. Liu. Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach. IEEE Trans Ind Electron, 60 (8) (2012), pp. 3328-3338
|
[82] |
R.J. Lian. Enhanced adaptive self-organizing fuzzy sliding-mode controller for active suspension systems. IEEE Trans Ind Electron, 60 (3) (2012), pp. 958-968
|
[83] |
M.A. Soliman, M.M. Kaldas, D.C. Barton, P.C. Brooks. Fuzzy-skyhook control for active suspension systems applied to a full vehicle model. Int J Eng Technol Innov, 2 (2) (2012), p. 85
|
[84] |
H. Li, X. Jing, H.K. Lam, P. Shi. Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE Trans Cybern, 44 (7) (2014), pp. 1111-1126
|
[85] |
C. Huang, L. Chen, H. Jiang, C. Yuan, T. Xia. Fuzzy chaos control for vehicle lateral dynamics based on active suspension system. Chin J Mech Eng, 27 (4) (2014), pp. 793-801
|
[86] |
A.J. Qazi, C.W. de Silva, A. Khan, M.T. Khan.Performance analysis of a semiactive suspension system with particle swarm optimization and fuzzy logic control. Sci World J (2014), Article 174102
|
[87] |
S. Wen, M.Z. Chen, Z. Zeng, X. Yu, T. Huang. Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach. IEEE Trans Syst Man Cybern Syst, 47 (1) (2016), pp. 24-32
|
[88] |
X. Shao, F. Naghdy, H. Du. Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping. Mech Syst Signal Process, 87 (2017), pp. 365-383
|
[89] |
H. Li, Z. Zhang, H. Yan, X. Xie. Adaptive event-triggered fuzzy control for uncertain active suspension systems. IEEE Trans Cybern, 49 (12) (2019), pp. 4388-4397
|
[90] |
W. Li, Z. Xie, J. Zhao, P.K. Wong, P. Li. Fuzzy finite-frequency output feedback control for nonlinear active suspension systems with time delay and output constraints. Mech Syst Signal Process, 132 (2019), pp. 315-334
|
[91] |
Y. Liu, Q. Zeng, S. Tong, C.P.L. Chen, L. Liu. Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints. IEEE Trans Ind Electron, 66 (12) (2019), pp. 9458-9466
|
[92] |
Y. Yuan, X. Tang, W. Zhou, W. Pan, X. Li, H. Zhang, et al.. Data driven discovery of cyber physical systems. Nat Commun, 10 (2019), p. 4894
|
[93] |
C. Poussot-Vassal, O. Sename, L. Dugard, R. Ramirez-Mendoza, L. Flores. Optimal Skyhook Control for Semi-Active Suspensions. IFAC Proc, 39 (16) (2006), pp. 608-613
|
[94] |
Tiwari A, Lathkar M, Shendge PD, Phadke SB. Skyhook control for active suspension system of heavy duty vehicles using inertial delay control. In: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES); 2016 Jul 4-6; Delhi, India. Piscataway: IEEE Xplore; 2016.
|
[95] |
G. Priyandoko, M. Mailah, H. Jamaluddin. Vehicle active suspension system using skyhook adaptive neuro active force control. Mech Syst Signal Process, 23 (3) (2009), pp. 855-868
|
[96] |
K. Yi, B.S. Song. A new adaptive sky-hook control of vehicle semi-active suspensions. Proc Inst Mech Eng, Part D, 213 (3) (2019), pp. 293-303
|
[97] |
K. Hong, H. Sohn, K. Hedrick. Modified skyhook control of semi-active suspensions: a new model, gain scheduling, and hardware-in-the-loop tuning. J Dyn Syst Meas Control, 124 (1) (2000), pp. 158-167
|
[98] |
Sam YM, Ghani MRHA, Ahmad N. LQR controller for active car suspension. In: 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119); 2000 Sep 24-27; Kuala Lumpur, Malaysia. Piscataway: IEEE Xplore; 2002. p. 441-4.
|
[99] |
H.D. Taghirad, E. Esmailzadeh. Automobile passenger comfort assured through LQG/LQR active suspension. J Vib Control, 4 (5) (1998), pp. 603-618
|
[100] |
K. Zhou, J.C. Doyle. Essentials of Robust Control. Prentice hall, Upper Saddle River (1998)
|
[101] |
W. Sun, H. Gao, O. Kaynak. Finite frequency H∞ control for vehicle active suspension systems. IEEE Trans Control Syst Technol, 19 (2) (2010), pp. 416-422
|
[102] |
H. Li, X. Jing, H.R. Karimi. Output-feedback-based H∞ control for vehicle suspension systems with control delay. IEEE Trans Ind Electron, 61 (1) (2013), pp. 436-446
|
[103] |
M. Canale, M. Milanese, C. Novara. Semi-active suspension control using “fast” model-predictive techniques. IEEE Trans Control Syst Technol, 14 (6) (2006), pp. 1034-1046
|
[104] |
Y. Yuan, H.T. Zhang, Y. Wu, T. Zhu, H. Ding. Bayesian learning-based model-predictive vibration control for thin-walled workpiece machining processes. IEEE-ASME Trans Mechatron, 22 (1) (2016), pp. 509-520
|
[105] |
J. Theunissen, A. Sorniotti, P. Gruber, S. Fallah, M. Ricco, M. Kvasnica, et al.. Regionless explicit model predictive control of active suspension systems with preview. IEEE Trans Ind Electron, 67 (6) (2019), pp. 4877-4888
|
[106] |
V. Utkin. Variable structure systems with sliding modes. IEEE Trans Automat Contr, 22 (2) (1977), pp. 212-222
|
[107] |
H. Zhang, E. Wang, N. Zhang, F. Min, R. Subash, C. Su. Semi-active sliding mode control of vehicle suspension with magneto-rheological damper. Chin J Mech Eng, 28 (1) (2015), pp. 63-75
|
[108] |
S. Liu, H. Zhou, X. Luo, J. Xiao. Adaptive sliding fault tolerant control for nonlinear uncertain active suspension systems. J Franklin Inst, 353 (1) (2016), pp. 180-199
|
[109] |
J.J. Rath, M. Defoort, H.R. Karimi, K.C. Veluvolu. Output feedback active suspension control with higher order terminal sliding mode. IEEE Trans Ind Electron, 64 (2) (2016), pp. 1392-1403
|
[110] |
N. Yagiz, Y. Hacioglu. Backstepping control of a vehicle with active suspensions. Control Eng Pract, 16 (12) (2008), pp. 1457-1467
|
[111] |
J.S. Lin, C.J. Huang. Nonlinear backstepping active suspension design applied to a half-car model. Veh Syst Dyn, 42 (6) (2004), pp. 373-393
|
[112] |
M. Zapateiro, N. Luo, H.R. Karimi, J. Vehi. Vibration control of a class of semiactive suspension system using neural network and backstepping techniques. Mech Syst Signal Process, 23 (6) (2009), pp. 1946-1953
|
[113] |
J. Zhao, P.K. Wong, X. Ma, Z. Xie. Chassis integrated control for active suspension, active front steering and direct yaw moment systems using hierarchical strategy. Veh Syst Dyn, 55 (1) (2017), pp. 72-103
|
[114] |
B. Németh, D. Fényes, P. Gáspár, J. Bokor. Coordination of independent steering and torque vectoring in a variable-geometry suspension system. IEEE Trans Control Syst Technol, 27 (5) (2018), pp. 2209-2220
|
[115] |
S.B. Lu, Y.N. Li, S.B. Choi, L. Zheng, M.S. Seong. Integrated control on MR vehicle suspension system associated with braking and steering control. Veh Syst Dyn, 49 (1-2) (2011), pp. 361-380
|
[116] |
H. Termous, H. Shraim, R. Talj, C. Francis, A. Charara. Coordinated control strategies for active steering, differential braking and active suspension for vehicle stability, handling and safety improvement. Veh Syst Dyn, 57 (10) (2019), pp. 1494-1529
|
[117] |
H. Xiao, W. Chen, H. Zhou, J.W. Zu. Integrated control of active suspension system and electronic stability programme using hierarchical control strategy: theory and experiment. Veh Syst Dyn, 49 (1-2) (2011), pp. 381-397
|
[118] |
G. Zhang, J. Cao, F. Yu. Design of active and energy-regenerative controllers for DC-motor-based suspension. Mechatronics, 22 (8) (2012), pp. 1124-1134
|
[119] |
M.C. Smith, F.C. Wang. Controller parameterization for disturbance response decoupling: application to vehicle active suspension control. IEEE Trans Control Syst Technol, 10 (3) (2002), pp. 393-407
|
[120] |
P.C. Chen, A.C. Huang. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings. J Sound Vibrat, 282 (3-5) (2005), pp. 1119-1135
|
[121] |
L.H. Nguyen, K.S. Hong, S. Park. Road-frequency adaptive control for semi-active suspension systems. Int J Control Autom Syst, 8 (5) (2010), pp. 1029-1038
|
[122] |
J. Lin, R.J. Lian. Intelligent control of active suspension systems. IEEE Trans Ind Electron, 58 (2) (2010), pp. 618-628
|
[123] |
B.C. Chen, Y.H. Shiu, F.C. Hsieh. Sliding-mode control for semi-active suspension with actuator dynamics. Veh Syst Dyn, 49 (1-2) (2011), pp. 277-290
|
[124] |
A. Goodarzi, E. Oloomi, E. Esmailzadeh. Design and analysis of an intelligent controller for active geometry suspension systems. Veh Syst Dyn, 49 (1-2) (2011), pp. 333-359
|
[125] |
J. Qiu, M. Ren, Y. Zhao, Y. Guo. Active fault-tolerant control for vehicle active suspension systems in finite-frequency domain. IET Control Theory Appl, 5 (13) (2011), pp. 1544-1550
|
[126] |
Talib MHA, Darns IZM. Self-tuning PID controller for active suspension system with hydraulic actuator. In: 2013 IEEE Symposium on Computers & Informatics (ISCI); 2013 Apr 7-9; Piscataway: IEEE Xplore; 2013. p. 86-91.
|
[127] |
T.P.J. Van der Sande, B.L.J. Gysen, I.J.M. Besselink, J.J.H. Paulides, E.A. Lomonova, H. Nijmeijer. Robust control of an electromagnetic active suspension system: simulations and measurements. Mechatronics, 23 (2) (2013), pp. 204-212
|
[128] |
C. Göhrle, A. Schindler, A. Wagner, O. Sawodny. Road profile estimation and preview control for low-bandwidth active suspension systems. IEEE-ASME Trans Mechatron, 20 (5) (2014), pp. 2299-2310
|
[129] |
A.E.N.S. Ahmed, A.S. Ali, N.M. Ghazaly, G.T. Abd el-Jaber. PID controller of active suspension system for a quarter car model. Int J Adv Eng Technol, 8 (6) (2015), pp. 899-909
|
[130] |
K. El Majdoub, D. Ghani, F. Giri, F.Z. Chaoui. Adaptive semi-active suspension of quarter-vehicle with magnetorheological damper. J Dyn Syst Meas Control, 137 (2) (2015), Article 021010
|
[131] |
Y. Huang, J. Na, X. Wu, X. Liu, Y. Guo. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance. ISA Trans, 54 (2015), pp. 145-155
|
[132] |
W. Sun, H. Pan, H. Gao. Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Trans Vehicular Technol, 65 (6) (2015), pp. 4619-4626
|
[133] |
R. Wang, H. Jing, H.R. Karimi, N. Chen. Robust fault-tolerant H∞ control of active suspension systems with finite-frequency constraint. Mech Syst Signal Process, 62-63 (2015), pp. 341-355
|
[134] |
X. Yin, L. Zhang, Y. Zhu, C. Wang, Z. Li. Robust control of networked systems with variable communication capabilities and application to a semi-active suspension system. IEEE-ASME Trans Mechatron, 21 (4) (2016), pp. 2097-2107
|
[135] |
F. Zhao, S.S. Ge, F. Tu, Y. Qin, M. Dong. Adaptive neural network control for active suspension system with actuator saturation. IET Control Theory Appl, 10 (14) (2016), pp. 1696-1705
|
[136] |
F. Hasbullah, W.F. Faris. Simulation of disturbance rejection control of half-car active suspension system using active disturbance rejection control with decoupling transformation. J Phys Conf Ser, 949 (2017), Article 012025
|
[137] |
H. Pan, W. Sun, X. Jing, H. Gao, J. Yao. Adaptive tracking control for active suspension systems with non-ideal actuators. J Sound Vibrat, 399 (2017), pp. 2-20
|
[138] |
Y. Qin, F. Zhao, Z. Wang, L. Gu, M. Dong. Comprehensive analysis for influence of controllable damper time delay on semi-active suspension control strategies. J Vib Acoust, 139 (3) (2017), Article 031006
|
[139] |
G. Wang, C. Chen, S. Yu. Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems. Mech Syst Signal Process, 91 (2017), pp. 41-56
|
[140] |
M. Čorić, J. Deur, L. Xu, H.E. Tseng, D. Hrovat. Optimisation of active suspension control inputs for improved performance of active safety systems. Veh Syst Dyn, 56 (1) (2018), pp. 1-26
|
[141] |
H. Pan, W. Sun. Nonlinear output feedback finite-time control for vehicle active suspension systems. IEEE Trans Industr Inform, 15 (4) (2018), pp. 2073-2082
|
[142] |
Z. Fei, X. Wang, M. Liu, J. Yu. Reliable control for vehicle active suspension systems under event-triggered scheme with frequency range limitation. IEEE Trans Syst Man Cybern Syst, 51 (3) (2019), pp. 1630-1641
|
[143] |
S. Formentin, A. Karimi. A data-driven approach to mixed-sensitivity control with application to an active suspension system. IEEE Trans Industr Inform, 9 (4) (2012), pp. 2293-2300
|
[144] |
L.X. Guo, L.P. Zhang. Robust H∞ control of active vehicle suspension under non-stationary running. J Sound Vibrat, 331 (26) (2012), pp. 5824-5837
|
[145] |
W. Sun, Z. Zhao, H. Gao. Saturated adaptive robust control for active suspension systems. IEEE Trans Ind Electron, 60 (9) (2012), pp. 3889-3896
|
[146] |
C. Gohrle, A. Schindler, A. Wagner, O. Sawodny. Design and vehicle implementation of preview active suspension controllers. IEEE Trans Control Syst Technol, 22 (3) (2013), pp. 1135-1142
|
[147] |
S. Yim. Design of a robust controller for rollover prevention with active suspension and differential braking. J Mech Sci Technol, 26 (1) (2012), pp. 213-222
|
[148] |
Y. Yuan, G. Ma, C. Cheng, B. Zhou, H. Zhao, H.T. Zhang, et al.. A general end-to-end diagnosis framework for manufacturing systems. Natl Sci Rev, 7 (2) (2020), pp. 418-429
|
[149] |
J. Wang, F. Jin, L. Zhou, P. Li. Implementation of model-free motion control for active suspension systems. Mech Syst Signal Process, 119 (2019), pp. 589-602
|
[150] |
S. Yim, Y. Park, K. Yi. Design of active suspension and electronic stability program for rollover prevention. Int J Automot Technol, 11 (2) (2010), pp. 147-153
|
[151] |
N. Docquier, A. Poncelet, M. Delannoy, P. Fisette. Multiphysics modelling of multibody systems: application to car semi-active suspensions. Veh Syst Dyn, 48 (12) (2010), pp. 1439-1460
|
[152] |
AutoSim 2.5+ reference manual, Mechanical Simulation Corporation, Ann Arbor MI, USA; 1997.
|
[153] |
Carsim. com [Internet]. Ann Arbor: carsim; 2020 Jun [cited 2022 Aug 1]. Available from:
|
[154] |
MathWorks. Vehicle Dynamics Blockset. Natick: MathWorks. Available from:
|
[155] |
A. Agharkakli, G.S. Sabet, A. Barouz. Simulation and analysis of passive and active suspension system using quarter car model for different road profile. Int J Eng Trends Technol, 3 (5) (2012), pp. 636-644
|
[156] |
A. Joshi. Powertrain and chassis hardware-in-the-loop (HIL) simulation of autonomous vehicle platform. A. Joshi (Ed.), Automotive applications of hardware-in-the-Loop (HIL) simulation, SEA Tech Pap, Warrendale (2017), pp. 37-60
|
[157] |
Y. Xia, M. Fu, C. Li, F. Pu, Y. Xu. Active disturbance rejection control for active suspension system of tracked vehicles with gun. IEEE Trans Ind Electron, 65 (5) (2017), pp. 4051-4060
|
[158] |
ISO 4138: 2004: Passenger cars—steady-state circular driving behaviour—Open-loop test methods. ISO standard. Geneva: ISO; 2004.
|
[159] |
ISO 7401: 2011: Road vehicles—Lateral transient response test methods—Open-loop test methods. ISO standard. Geneva: ISO; 2011.
|
[160] |
ISO 7975: 2006: Passenger cars—Braking in a turn-Open-loop test method. ISO standard. Geneva: ISO; 2006.
|
[161] |
US Department of Transportation. Laboratory test procedure for dynamic rollover: the fishhook maneuver test procedure. National Highway Traffic Safety Administration, Washington, DC (2013)
|
[162] |
ISO 8608: 2016: Mechanical vibration—road surface profiles—Reporting of measured data. ISO standard. Geneva: ISO; 2016.
|
[163] |
ISO 2631-1: 1997: Mechanical vibration and shock—evaluation of human exposure to whole-body vibration—part 1, general requirements. ISO standard. London: ISO; 1997.
|
[164] |
M.C. Smith. Synthesis of mechanical networks: the inerter. IEEE Trans Automat Contr, 47 (10) (2002), pp. 1648-1662
|