[1] |
A.A. Ananno, M.H. Masud, S.A. Chowdhury, P. Dabnichki, N. Ahmed, A.M.E. Arefin. Sustainable food waste management model for Bangladesh. Sustain Prod Consump, 27 (2021), pp. 35-51.
|
[2] |
A.R. Cohen, G. Chen, E.M. Berger, S. Warrier, G.H. Lan, E. Grubert, et al. Dynamically controlled environment agriculture: integrating machine learning and mechanistic and physiological models for sustainable food cultivation. ACS Est Eng, 2 (1) (2022), pp. 3-19.
|
[3] |
N. Engler, M. Krarti. Review of energy efficiency in controlled environment agriculture. Renew Sustain Energy Rev, 141 (2021), 110786.
|
[4] |
M. Ghoulem, K. El Moueddeb, E. Nehdi, R. Boukhanouf, C.J. Kaiser. Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: review of current practice and future status. Biosyst Eng, 183 (2019), pp. 121-150.
|
[5] |
K. Obaideen, B.A.A. Yousef, M.N. AlMallahi, Y.C. Tan, M. Mahmoud, H. Jaber, et al. An overview of smart irrigation systems using IoT. Energy Nexus, 7 (2022), 100124.
|
[6] |
Y. Shao, J. Li, Z. Zhou, Z. Hu, F. Zhang, Y. Cui, et al. The effects of vertical farming on indoor carbon dioxide concentration and fresh air energy consumption in office buildings. Build Environ, 195 (2021), 107766.
|
[7] |
A.S. Anifantis, A. Colantoni, S. Pascuzzi. Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating. Renew Energy, 103 (2017), pp. 115-127.
|
[8] |
R.R. Shamshiri, I. Bojic, E. van Henten, S.K. Balasundram, V. Dworak, M. Sultan, et al. Model-based evaluation of greenhouse microclimate using IoT-sensor data fusion for energy efficient crop production. J Clean Prod, 263 (2020), 121303.
|
[9] |
G.M. Weaver, M.W. van Iersel, J.M. Velni. A photochemistry-based method for optimising greenhouse supplemental light intensity. Biosyst Eng, 182 (2019), pp. 123-137.
|
[10] |
K.J. Walters, B.K. Behe, C.J. Currey, R.G. Lopez. Historical, current, and future perspectives for controlled environment hydroponic food crop production in the United States. HortSci, 55 (6) (2020), pp. 758-767.
|
[11] |
G. Tong, D.M. Christopher, T. Li, T. Wang. Passive solar energy utilization: a review of cross-section building parameter selection for Chinese solar greenhouses. Renew Sustain Energy Rev, 26 (2013), pp. 540-548.
|
[12] |
T. Ha, J. Kim, B.H. Cho, D.J. Kim, J.E. Jung, S.H. Shin, et al. Finite element model updating of multi-span greenhouses based on ambient vibration measurements. Biosyst Eng, 161 (2017), pp. 145-156.
|
[13] |
Z. Zhang, D. Sun, Y. Tang, R. Zhu, X. Li, N. Gruda, et al. Plastic shed soil salinity in China: current status and next steps. J Clean Prod, 296 (2021), 126453.
|
[14] |
Greenhouse data sharing platform [Internet]. Beijing: Institute of Facility Agriculture, Planning and Design Institute, Ministry of Agriculture and Rural Affairs of the People’s Republic of China; c2014 [cited 2023 May 1]. Available from: http://data.sheshiyuanyi.com/
|
[15] |
Y.V. Kissin. Polyethylene:Carl Hanser Verlag. Hanser Publishers, Munich (2021).
|
[16] |
X. Lu, P. Xu, H.L. Wang, T. Yang, J. Hou. Cooling potential and applications prospects of passive radiative cooling in buildings: the current state-of-the-art. Renew Sustain Energy Rev, 65 (2016), pp. 1079-1097.
|
[17] |
I. Di Mola, L. Ottaiano, E. Cozzolino, L. Sabatino, M.I. Sifola, P. Mormile, et al. Optical characteristics of greenhouse plastic films affect yield and some quality traits of Spinach (Spinacia oleracea L.) subjected to different nitrogen doses. Horticulturae, 7 (7) (2021), p. 200.
|
[18] |
J.F. Briat, A. Gojon, C. Plassard, H. Rouached, G. Lemaire. Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. Eur J Agron, 116 (2020), 126069.
|
[19] |
M. Legris, Y.C. Ince, C. Fankhauser. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun, 10 (2019), p. 5219.
|
[20] |
I. Shafiq, S. Hussain, M.A. Raza, N. Iqbal, M.A. Asghar, A. Raza, et al. Crop photosynthetic response to light quality and light intensity. J Integr Agric, 20 (1) (2021), pp. 4-23.
|
[21] |
B.S. Wu, Y. Hitti, S. MacPherson, V. Orsat, M.G. Lefsrud. Comparison and perspective of conventional and LED lighting for photobiology and industry applications. Environ Exp Bot, 171 (2020), 103953.
|
[22] |
T.K. Ghosh, M.A. Prelas. Solar energy. T.K. Ghosh, M.A. Prelas. (Eds.), Energy resources and systems: volume 2: renewable resources, Springer, Netherlands, Dordrecht (2011), pp. 79-156.
|
[23] |
M.H. Saleem, M. Rehman, M. Zahid, M. Imran, W. Xiang, L.J. Liu. Morphological changes and antioxidative capacity of jute (Corchorus capsularis, Malvaceae) under different color light-emitting diodes. Braz J Bot, 42 (4) (2019), pp. 581-590.
|
[24] |
S. Gorjian, F. Calise, K. Kant, M.S. Ahamed, B. Copertaro, G. Najafi, et al. A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. J Clean Prod, 285 (2021), 124807.
|
[25] |
M. Cossu, A. Yano, S. Solinas, P.A. Deligios, M.T. Tiloca, A. Cossu, et al. Agricultural sustainability estimation of the European photovoltaic greenhouses. Eur J Agron, 118 (2020), 126074.
|
[26] |
T. Pan, Y. Wang, L. Wang, J. Ding, Y. Cao, G. Qin, et al. Increased CO2 and light intensity regulate growth and leaf gas exchange in tomato. Physiol Plant, 168 (3) (2020), pp. 694-708.
|
[27] |
B. Yang, J. Tang, Z.H. Yu, T. Khare, A. Srivastav, S. Datir, et al. Light stress responses and prospects for engineering light stress tolerance in crop plants. J Plant Growth Regul, 38 (4) (2019), pp. 1489-1506.
|
[28] |
A. Liu, D. Xu, M. Henke, Y. Zhang, Y. Li, X. Liu, et al. Determination of the optimal orientation of Chinese solar greenhouses using 3D light environment simulations. Remote Sens, 14 (4) (2022), p. 912.
|
[29] |
G.H. Timmermans, S. Hemming, E. Baeza, E.A.J. van Thoor, A.P.H.J. Schenning, M.G. Debije. Advanced optical materials for sunlight control in greenhouses. Adv Opt Mater, 8 (18) (2020), p. 2000738.
|
[30] |
C. Emmel, P. D’Odorico, A. Revill, L. Hörtnagl, C. Ammann, N. Buchmann, et al. Canopy photosynthesis of six major arable crops is enhanced under diffuse light due to canopy architecture. Glob Change Biol, 26 (9) (2020), pp. 5164-5177.
|
[31] |
J.A. Andrade, J. Cadima, F.M. Abreu. Modeling germination rate and cardinal temperatures of seven mediterranean crops. J Crop Improv, 32 (6) (2018), pp. 878-902.
|
[32] |
M.E. Dusenge, A.G. Duarte, D.A. Way. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol, 221 (1) (2019), pp. 32-49.
|
[33] |
Z. Chen, M. Galli, A. Gallavotti. Mechanisms of temperature-regulated growth and thermotolerance in crop species. Curr Opin Plant Biol, 65 (2022), 102134.
|
[34] |
D. Xie, D. Liu, W. Guo. Relationship of the optical properties with soluble solids content and moisture content of strawberry during ripening. Postharvest Biol Technol, 179 (2021), 111569.
|
[35] |
C. Menzel. Higher temperatures decrease fruit size in strawberry growing in the subtropics. Horticulturae, 7 (2) (2021), p. 34.
|
[36] |
S.J. MacKenzie, C.K. Chandler, T. Hasing, V.M. Whitaker. The role of temperature in the late-season decline in soluble solids content of strawberry fruit in a subtropical production system. HortSci, 46 (11) (2011), pp. 1562-2156.
|
[37] |
H.N. Balasooriya, K.B. Dassanayake, S. Seneweera, S. Ajlouni. Impact of elevated carbon dioxide and temperature on strawberry polyphenols. J Sci Food Agric, 99 (10) (2019), pp. 4659-4669.
|
[38] |
T.A. Geissman. The metabolism of phenylpropane derivatives in plants. B.A. Lozano, C.E. Ballou, F. Blank, W. Charles Evans, T.A. Geissman, T.W. Goodwin (Eds.), Der stoffwechsel sekundärer pflanzenstoffe/the metabolism of secondary plant products, Springer Berlin Heidelberg, Berlin, Heidelberg (1958), pp. 543-559.
|
[39] |
D. Lecourieux, C. Kappel, S. Claverol, P. Pieri, R. Feil, J.E. Lunn, et al. Proteomic and metabolomic profiling underlines the stage- and time-dependent effects of high temperature on grape berry metabolism. J Integr Plant Biol, 62 (8) (2020), pp. 1132-1158.
|
[40] |
J.P. Bijarniya, J. Sarkar, P. Maiti. Review on passive daytime radiative cooling: fundamentals, recent researches, challenges and opportunities. Renew Sustain Energy Rev, 133 (2020), 110263.
|
[41] |
X. Yu, J. Chan, C. Chen. Review of radiative cooling materials: performance evaluation and design approaches. Nano Energy, 88 (2021), 106259.
|
[42] |
C.H. Liu, C. Ay, C.Y. Tsai, M.T. Lee. The application of passive radiative cooling in greenhouses. Sustainability, 11 (23) (2019), p. 6703.
|
[43] |
Kernpkes F, Stanghellini C, Hemming S, Dai J. Cover materials excluding near infrared radiation:effect on greenhouse climate and plant processes. In:Proceedings of International Workshop on Greenhouse Environmental Control and Crop Production in Semi-Arid Regions; 2008 Oct 20-24; Tucson, AZ, USA. Korbeek-Lo: ISHS; 2008. p. 477-82.
|
[44] |
G. Dai, X. Xia, G. Hou. Transmission performances of solar windows exposed to concentrated sunlight. Sol Energy, 103 (2014), pp. 125-133.
|
[45] |
X. Ao, M. Hu, B. Zhao, N. Chen, G. Pei, C. Zou. Preliminary experimental study of a specular and a diffuse surface for daytime radiative cooling. Sol Energy Mater Sol Cells, 191 (2019), pp. 290-296.
|
[46] |
B. Zhao, M. Hu, X. Ao, N. Chen, G. Pei. Radiative cooling: a review of fundamentals, materials, applications, and prospects. Appl Energy, 236 (2019), pp. 489-513.
|
[47] |
J.P. Bijarniya, J. Sarkar, P. Maiti. Environmental effect on the performance of passive daytime photonic radiative cooling and building energy-saving potential. J Clean Prod, 274 (2020), 123119.
|
[48] |
L. Yang, C. Feng, L. Bai, R. Bao, Z. Liu, M. Yang, et al. Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management. Chem Eng J, 425 (2021), 131466.
|
[49] |
N.W. Pech-May, M. Retsch. Tunable daytime passive radiative cooling based on a broadband angle selective low-pass filter. Nanoscale Adv, 2 (1) (2019), pp. 249-255.
|
[50] |
Z.F. Huang, X.L. Ruan. Nanoparticle embedded double-layer coating for daytime radiative cooling. Int J Heat Mass Transf, 104 (2017), pp. 890-896.
|
[51] |
X. Li, J. Peoples, P. Yao, X. Ruan. Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl Mater Interfaces, 13 (18) (2021), pp. 21733-21739.
|
[52] |
H.H. Liu, H.J. Kang, X. Jia, X.S. Qiao, W. Qin, X.H. Wu. Commercial-like self-cleaning colored ZrO2-based bilayer coating for remarkable daytime sub-ambient radiative cooling. Adv Mater Technol-Us, 7 (10) (2022), p. 2101583.
|
[53] |
B. Xiang, R. Zhang, Y.L. Luo, S. Zhang, L. Xu, H.H. Min, et al. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy, 81 (2021), 105600.
|
[54] |
X. Ao, J. Liu, M. Hu, B. Zhao, G. Pei. A rigid spectral selective cover for integrated solar heating and radiative sky cooling system. Sol Energy Mater Sol Cells, 230 (2021), 111270.
|
[55] |
S. Wang, Y. Wang, Y. Zou, G. Chen, J. Ouyang, D. Jia, et al. Biologically inspired scalable-manufactured dual-layer coating with a hierarchical micropattern for highly efficient passive radiative cooling and robust superhydrophobicity. ACS Appl Mater Interfaces, 13 (18) (2021), pp. 21888-21897.
|
[56] |
B. Zhao, X. Yue, Q. Tian, F. Qiu, T. Zhang. Controllable fabrication of ZnO nanorods@cellulose membrane with self-cleaning and passive radiative cooling properties for building energy-saving applications. Cellul, 29 (3) (2022), pp. 1981-1992.
|
[57] |
Y. Tu, X. Tan, G. Qi, X. Yang, X. Ouyang, W. Yan, et al. Transparent, anti-corrosion and high broadband emission coating for zero energy consumption cooling technology. Mat Today Phys, 34 (2023), 101070.
|
[58] |
B.B. Naghshine, A. Saboonchi. Optimized thin film coatings for passive radiative cooling applications. Opt Commun, 410 (2018), pp. 416-423.
|
[59] |
X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang, H. Zhou, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv Funct Mater, 30 (5) (2020), p. 1907562.
|
[60] |
W. Wu, S. Lin, M. Wei, J. Huang, H. Xu, Y. Lu, et al. Flexible passive radiative cooling inspired by Saharan silver ants. Sol Energy Mater Sol Cells, 210 (2020), 110512.
|
[61] |
T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen, L. Wu. A structural polymer for highly efficient all-day passive radiative cooling. Nat Commun, 12 (1) (2021), p. 365.
|
[62] |
Y. Zhu, H. Luo, C. Yang, B. Qin, P. Ghosh, S. Kaur, et al. Color-preserving passive radiative cooling for an actively temperature-regulated enclosure. Light Sci Appl, 11 (1) (2022), p. 122.
|
[63] |
G. Qi, X. Tan, Y. Tu, X. Yang, Y. Qiao, Y. Wang, et al. Ordered-porous-array polymethyl methacrylate films for radiative cooling. ACS Appl Mater Interfaces, 14 (27) (2022), pp. 31277-31284.
|
[64] |
Y. Zhang, X. Tan, G. Qi, X. Yang, D. Hu, P. Fyffe, et al. Effective radiative cooling with ZrO2/PDMS reflective coating. Sol Energy Mater Sol Cells, 229 (2021), 111129.
|
[65] |
S. Nie, X. Tan, X. Li, K. Wei, T. Xiao, L. Jiang, et al. Facile and environmentally-friendly fabrication of robust composite film with superhydrophobicity and radiative cooling property. Compos Sci Technol, 230 (2022), 109750.
|
[66] |
Z. Yu, Y. Yao, J. Yao, L. Zhang, Z. Chen, Y. Gao, et al. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. J Mater Chem A Mater Energy Sustain, 5 (13) (2017), pp. 6019-6024.
|
[67] |
Z. Qiu, Z.F. Xiao, L.K. Gao, J. Li, H.G. Wang, Y.G. Wang, et al. Transparent wood bearing a shielding effect to infrared heat and ultraviolet via incorporation of modified antimony-doped tin oxide nanoparticles. Compos Sci Technol, 172 (2019), pp. 43-48.
|
[68] |
X. Hu, Y.B. Zhang, J. Zhang, H.Y. Yang, F.M. Wang, B. Fei, et al. Sonochemically-coated transparent wood with ZnO: passive radiative cooling materials for energy saving applications. Renew Energy, 193 (2022), pp. 398-406.
|
[69] |
S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan, Y. Long. Scalable thermochromic smart windows with passive radiative cooling regulation. Science, 374 (6574) (2021), pp. 1501-1504.
|
[70] |
Q. Yue, L. Zhang, C.Y. He, B.H. Liu, W.M. Wang, Z.W. Lu, et al. Polymer composites with hierarchical architecture and dielectric particles for efficient daytime subambient radiative cooling. J Mater Chem A Mater Energy Sustain, 11 (6) (2023), pp. 3126-3135.
|
[71] |
C.H. Liu, C. Ay, J.C. Kan, M.T. Lee. The effect of radiative cooling on reducing the temperature of greenhouses. Materials, 11 (7) (2018), p. 1166.
|
[72] |
P.C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng, J. Xie, et al. Radiative human body cooling by nanoporous polyethylene textile. Science, 353 (6303) (2016), pp. 1019-1023.
|
[73] |
L. Cui, C. Huang, H. Xia, Y. Qiu, Q. Ni. Transparent passive-cooling composite films for indoor and outdoor spaces. Compos Commun, 24 (2021), 100611.
|
[74] |
U.N. Mutwiwa, H.J. Tantau, B. von Elsner, J.F. Max. Effects of a near infrared-reflecting greenhouse roof cover on the microclimate and production of tomato in the tropics. Agric Eng Int CIGR J, 19 (3) (2017), p. 709.
|
[75] |
W.L. Chen, C.J. Shen. Near-infrared reflective diffusion coating is beneficial for asparagus summer production in a simple plastic greenhouse. HortSci, 57 (2) (2022), pp. 257-264.
|
[76] |
W.L. Chen, C.J. Shen, H.S. Hsu, C.S. Chien. Evaluation on near infrared-reflective diffuse coating for muskmelon production in simple plastic greenhouse during summer season. Acta Hortic, 1353 (2022), pp. 279-292.
|
[77] |
A. Alsadon, I. Al-Helal, A. Ibrahim, A. Abdel-Ghany, S. Al-Zaharani, T. Ashour. The effects of plastic greenhouse covering on cucumber (Cucumis sativus L.) growth. Ecol Eng, 87 (2016), pp. 305-312.
|
[78] |
P.H.B. De Visser, G.H. Buck-Sorlin, G.W.A.M. van der Heijden. Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer. Front Plant Sci, 5 (2014), p. 48.
|
[79] |
J. Shin, I. Hwang, D. Kim, T. Moon, J. Kim, W.H. Kang, et al. Evaluation of the light profile and carbon assimilation of tomato plants in greenhouses with respect to film diffuseness and regional solar radiation using ray-tracing simulation. Agric Meteorol, 296 (2021), 108219.
|
[80] |
C.D. Cappa, K.R. Wilson, B.M. Messer, R.J. Saykally, R.C. Cohen. Optical cavity resonances in water micro-droplets: implications for shortwave cloud forcing. Geophys Res Lett, 31 (10) (2004), p. L10205.
|
[81] |
S. Bhattacharjee. DLS and zeta potential—what they are and what they are not?. J Control Release, 235 (2016), pp. 337-351.
|
[82] |
S.L. Yeh. A study of light scattered by surface-relief holographic diffusers. Opt Commun, 264 (1) (2006), pp. 1-8.
|
[83] |
A. Colombo, F. Tassone, F. Santolini, N. Contiello, A. Gambirasio, R. Simonutti. Nanoparticle-doped large area PMMA plates with controlled optical diffusion. J Mater Chem C Mater Opt Electron Devices, 1 (16) (2013), pp. 2927-2934.
|
[84] |
W. Suthabanditpong, M. Tani, C. Takai, M. Fuji, R. Buntem, T. Shirai. Facile fabrication of light diffuser films based on hollow silica nanoparticles as fillers. Adv Powder Technol, 27 (2) (2016), pp. 454-460.
|
[85] |
H.G. Park, D.Y. Khang. High-performance light diffuser films by hierarchical buckling-based surface texturing combined with internal pores generated from physical gelation induced phase separation of binary polymer solution. Polymer, 99 (2016), pp. 1-6.
|
[86] |
G. Wu, S. Guo, Y. Yin, G. Sun, Y.J. Zhong, B. You. Hollow microspheres of SiO2/PMMA nanocomposites: preparation and their application in light diffusing films. J Inorg Organomet Polym, 28 (6) (2018), pp. 2701-2713.
|
[87] |
T. Magrini, F. Bouville, A. Lauria, H. Le Ferrand, T.P. Niebel, A.R. Studart. Transparent and tough bulk composites inspired by nacre. Nat Commun, 10 (2019), p. 2794.
|
[88] |
E.P. Bavi, S.N. Jouybari, F. Mousavi. A rapid method for producing highly diffuse reflective white paint as the back surface reflector in dye-sensitized solar cell. Opt Mater, 131 (2022), 112647.
|
[89] |
S.S. Luo, J. Xue, Y. Xiong, J.B. Shen, S.Y. Guo. Light-scattering properties of linear low density polyethylene/polystyrene films fabricated through layer-multiplying technology. J Appl Polym Sci, 133 (33) (2016), p. 43826.
|
[90] |
S. Guo, S. Zhou, H. Li, B. You. Light diffusing films fabricated by strawberry-like PMMA/SiO2 composite microspheres for LED application. J Colloid Interface Sci, 448 (2015), pp. 123-129.
|
[91] |
A. Bahramian. Poly(ethylene terephthalate)-based nanocomposite films as greenhouse covering material: environmental sustainability, mechanical durability, and thermal stability. J Appl Polym Sci, 138 (10) (2021), p. 49991.
|
[92] |
B. Raj, U.K. Sankar, Siddaramaiah Low density polyethylene/starch blend films for food packaging applications. Adv Polym Technol, 23 (1) (2004), pp. 32-45.
|
[93] |
L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, et al. A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film. RSC Adv, 8 (39) (2018), pp. 21690-21698.
|
[94] |
C.J. Liang, S.M. Liu, A. Wirasaputra, J.Q. Zhao, Y. Fu. Light diffusing and flame-retardant polycarbonate modified by highly efficient and multifunctional organosilica microspheres. J Therm Anal Calorim, 146 (6) (2021), pp. 2423-2433.
|
[95] |
ASTM D1003-13: standard test method for haze and luminous transmittance of transparent plastics. Conshohocken: ASTM International West Conshohocken; 2013.
|
[96] |
S. Busato, D. Kremer, A. Perevedentsev. Imaging-based metrics drawn from visual perception of haze and clarity of materials. I. Method, analysis, and distance-dependent transparency. Macromol Mater Eng, 306 (5) (2021), 2100045.
|
[97] |
G. Jacucci, L. Schertel, Y. Zhang, H. Yang, S. Vignolini. Light management with natural materials: from whiteness to transparency. Adv Mater, 33 (28) (2021), e2001215.
|
[98] |
J. Chen, F. Xu, D. Tan, Z. Shen, L. Zhang, Q. Ai. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Appl Energy, 141 (2015), pp. 106-118.
|
[99] |
C. Baxevanou, D. Fidaros, T. Bartzanas, C. Kittas. Yearly numerical evaluation of greenhouse cover materials. Comput Electron Agric, 149 (2018), pp. 54-70.
|
[100] |
A. Saberian, S.M. Sajadiye. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renew Energy, 138 (2019), pp. 722-737.
|
[101] |
F.J. Cabrera, A. Baille, J.C. Lopez, M.M. Gonzalez-Real, J. Perez-Parra. Effects of cover diffusive properties on the components of greenhouse solar radiation. Biosyst Eng, 103 (3) (2009), pp. 344-356.
|
[102] |
Hemming S, Mohammadkhani V. Material technology of diffuse greenhouse covering materials—influence on light transmission, light scattering and light spectrum. In:Proceedings of International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant Factory—Greensys; 2013 Oct 6-11; Jeju, Republic of Korea. Korbeek-Lo: ISHS; 2014. p. 883-95.
|
[103] |
P. Riga, L. Benedicto, Á. Gil-Izquierdo, J. Collado-González, F. Ferreres, S. Medina. Diffuse light affects the contents of vitamin C, phenolic compounds and free amino acids in lettuce plants. Food Chem, 272 (2019), pp. 227-234.
|
[104] |
L. Zheng, Q. Zhang, K. Zheng, S. Zhao, P. Wang, J. Cheng, et al. Effects of diffuse light on microclimate of solar greenhouse, and photosynthesis and yield of greenhouse-grown tomatoes. HortSci, 55 (10) (2020), pp. 1605-1613.
|
[105] |
A. Rasheed, C.S. Kwak, H.T. Kim, H.W. Lee. Building energy an simulation model for analyzing energy saving options of multi-span greenhouses. Appl Sci, 10 (19) (2020), p. 6884.
|
[106] |
N. Yu, C. Chen, K. Mahkamov, F. Han, C. Zhao, J. Lin, et al. Selection of a phase change material and its thickness for application in walls of buildings for solar-assisted steam curing of precast concrete. Renew Energy, 150 (2020), pp. 808-820.
|
[107] |
S.H. Zhang, Y. Guo, H.J. Zhao, Y. Wang, D. Chow, Y. Fang. Methodologies of control strategies for improving energy efficiency in agricultural greenhouses. J Clean Prod, 274 (2020), 122695.
|
[108] |
Y. Achour, A. Ouammi, D. Zejli. Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture. Renew Sustain Energy Rev, 147 (2021), 111251.
|
[109] |
H. Esmaeli, R. Roshandel. Optimal design for solar greenhouses based on climate conditions. Renew Energy, 145 (2020), pp. 1255-1265.
|
[110] |
A.S. Yadav, A. Agrawal, A. Sharma, A. Gupta. Revisiting the effect of ribs on performance of solar air heater using CFD approach. Mater Today Proc, 63 (2022), pp. 240-252.
|
[111] |
T. Kumar, U. Jha, Y. Raj, A. Kumar. Simulation modeling of a greenhouse integrated with earth-air heat exchanger system. A. Kumar, M. Kumar, K.A. Subramanian, H. Lim (Eds.), Recent advances in manufacturing and thermal engineering, Springer Nature Singapore, Singapore (2023).
|
[112] |
Yu G, Zhang S, Li S, Zhang M, Benli H, Wang Y. Numerical investigation for effects of natural light and ventilation on 3D tomato body heat distribution in a Venlo greenhouse. Inf Process Agric. In press.
|
[113] |
N. Krishna. History of controlled environment horticulture: greenhouses. HortSci, 57 (2) (2022), pp. 239-246.
|
[114] |
Ministry of Agriculture and Rural Affair of the People’s Republic of China. Opinions of Ministry of Agriculture and Rural Affair of the People’s Republic of China on accelerating the development of facility planting. Report. Beijing: Ministry of Agriculture and Rural Affair of the People’s Republic of China; 2020. Chinese.
|
[115] |
Ani A, Gopalakirishnan P. Automated hydroponic drip irrigation using big data. In:Proceedings of 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA);2020 Jul 15-17; Coimbatore, India. Piscataway: IEEE; 2020.
|
[116] |
B.G. Mamatha Bai, N.S. Rashmi. Data mining techniques in the agricultural sector. N.R. Shetty, L.M. Patnaik, H.C. Nagaraj, P.N. Hamsavath, N. Nalini (Eds.), Emerging research in computing, information, communication and applications, Springer Singapore, Singapore (2021).
|
[117] |
P. Kamath, P. Patil, S. Shrilatha, S.S. Sushma. Crop yield forecasting using data mining. Global Transitions Proceedings, 2 (2) (2021), pp. 402-407.
|