[1] |
K. Skalska, J.S. Miller, S. Ledakowicz. Trends in NO x abatement: a review. Sci Total Environ, 408 (19) ( 2010), pp. 3976-3989
|
[2] |
N. Li, C. Wang, K. Zhang, H. Lv, M. Yuan, D.W. Bahnemann. Progress and prospects of photocatalytic conversion of low-concentration NO. Chin J Catal, 43 (9) ( 2022), pp. 2363-2387
|
[3] |
W. Cui, J. Li, F. Dong. Optimizing the gas-solid photocatalytic reactions for air purification. ACS EST Eng, 2 (6) ( 2022), pp. 1103-1115
|
[4] |
K. Zhao, X. Sun, C. Wang, X. Song, F. Wang, K. Li, et al.. Supported catalysts for simultaneous removal of SO2, NO x, and Hg0 from industrial exhaust gases: a review. Chin Chem Lett, 32 (10) ( 2021), pp. 2963-2974
|
[5] |
Y. Zheng, Y. Chen, B. Gao, B. Lin, X. Wang. Phosphorene-based heterostructured photocatalysts. Engineering, 7 (7) ( 2021), pp. 991-1001
|
[6] |
W.Q. Chen, L.Y. Li, L. Li, W.H. Qiu, L. Tang, L. Xu, et al.. MoS2/ZIF-8 hybrid materials for environmental catalysis: solar-driven antibiotic-degradation engineering. Engineering, 5 (4) ( 2019), pp. 755-767
|
[7] |
L. Buzzetti, G.E.M. Crisenza, P. Melchiorre. Mechanistic studies in photocatalysis. Angew Chem Int Ed, 58 (12) ( 2019), pp. 3730-3747
|
[8] |
H. Zhu, X. Yuan, Q. Yao,J. Xie. Shining photocatalysis by gold-based nanomaterials. Nano Energy, 88 ( 2021), p. 106306
|
[9] |
C. Wu, Z. Xing, S. Yang, Z. Li, W. Zhou. Nanoreactors for photocatalysis. Coord Chem Rev, 477 ( 2023), Article 214939
|
[10] |
W. Yang, Q. Ren, F. Zhong, Y. Wang, J. Wang, R. Chen, et al.. Promotion mechanism of -OH group intercalation for NO x purification on BiOI photocatalyst. Nanoscale, 13 (48) ( 2021), pp. 20601-20608
|
[11] |
Q. Yan, X. Hou, G. Liu, Y. Li, T. Zhu, Y. Xin, et al.. Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic reduction of NO x with NH3. J Hazard Mater, 400 ( 2020), Article 123260
|
[12] |
M.P. Jerome, F.A. Alahmad, M.T. Salem, M. Tahir.Layered double hydroxide (LDH) nanomaterials with engineering aspects for photocatalytic CO2 conversion to energy efficient fuels: fundamentals, recent advances, and challenges. J Environ Chem Eng, 10 (5) ( 2022), p. 108151
|
[13] |
S. Zhang, Y. Zhao, R. Shi, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, et al.. Efficient photocatalytic nitrogen fixation over Cu δ+ -modified defective ZnAl-layered double hydroxide nanosheets. Adv Energ Mater, 10 (8) ( 2020), p. 1901973
|
[14] |
X. Lv, J. Zhang, X. Dong, J. Pan, W. Zhang, W. Wang, et al.. Layered double hydroxide nanosheets as efficient photocatalysts for NO removal: band structure engineering and surface hydroxyl ions activation. Appl Catal B, 277 ( 2020), p. 119200
|
[15] |
J. Zou, Z. Wang, W. Guo, B. Guo, Y. Yu, L. Wu. Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: the effect of surface OH groups. Appl Catal B, 260 ( 2020), Article 118185
|
[16] |
X.A. Dong, Z. Cui, Y. Sun, F. Dong. Humidity-independent photocatalytic toluene mineralization benefits from the utilization of edge hydroxyls in layered double hydroxides (LDHs): a combined operando and theoretical investigation. ACS Catal, 11 (13) ( 2021), pp. 8132-8139
|
[17] |
X. Zhang, Y. Zhao, Y. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang.A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv Energy Mater, 9 (24) ( 2019), p. 1900881
|
[18] |
W. Miao, Y. Wang, Y. Liu, H. Qin, C. Chu, S. Mao. Persulfate-induced three coordinate nitrogen (N3C) vacancies in defective carbon nitride for enhanced photocatalytic H2O2 evolution. Engineering, 25 (6) ( 2023), pp. 214-221
|
[19] |
Q. Wu, Y. Jia, Q. Liu, X. Mao, Q. Guo, Y. Yan, et al.. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem, 8 (10) ( 2022), pp. 2715-2733
|
[20] |
G. Liu, Z. Tang, X. Gu, N. Li, H. Lv, Y. Huang, et al.. Boosting photocatalytic nitrogen reduction to ammonia by dual defective -C=N and K-doping sites on graphitic carbon nitride nanorod arrays. Appl Catal B, 317 ( 2022), p. 121752
|
[21] |
Y. He, Q. Lei, C. Li, Y. Han, Z. Shi, S. Feng. Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels. Mater Today, 50 ( 2021), pp. 358-384
|
[22] |
X. Li, H. Li, Y. Huang, J. Cao, T. Huang, R. Li, et al.. Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO2- x -OV surface. J Hazard Mater, 424 ( 2022), p. 127217
|
[23] |
R. Yuan, M. Wang, L. Liao, W. Hu, Z. Liu, Z. Liu, et al.. 100% N2O inhibition in photocatalytic NO x reduction by carbon particles over Bi2WO6/TiO2 Z-scheme heterojunctions. Chem Eng J, 453 ( 2023), p. 139892
|
[24] |
H. Wang, K. Li, J. Li, Y. Sun, F. Dong. Photochemical transformation pathways of nitrates from photocatalytic NO x oxidation: implications for controlling secondary pollutants. Environ Sci Technol Lett, 8 (10) ( 2021), pp. 873-877
|
[25] |
H. Wang, Y. Sun, F. Dong. Insight into the overlooked photochemical decomposition of atmospheric surface nitrates triggered by visible light. Angew Chem Int Ed, 61 (43) ( 2022), p. e202209201
|
[26] |
L. Liu, P. Ouyang, Y. Li, Y. Duan, F. Dong, K. Lv.Insight into the mechanism of deep NO photooxidation by bismuth tantalate with oxygen vacancies. J Hazard Mater, 439 ( 2022), p. 129637
|
[27] |
Y. Yu, X. Dong, P. Chen, Q. Geng, H. Wang, J. Li, et al.. Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction. ACS Nano, 15 (9) ( 2021), pp. 14453-14464
|
[28] |
Q. Wang, L. Chen, S. Guan, X. Zhang, B. Wang, X. Cao, et al.. Ultrathin and vacancy-rich CoAl-layered double hydroxide/graphite oxide catalysts: promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation. ACS Catal, 8 (4) ( 2018), pp. 3104-3115
|
[29] |
L. Bai, S. Lee, X. Hu. Spectroscopic and electrokinetic evidence for a bifunctional mechanism of the oxygen evolution reaction. Angew Chem Int Ed, 60 (6) ( 2021), pp. 3095-3103
|
[30] |
M.W. Louie, A.T. Bell. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc, 135 (33) ( 2013), pp. 12329-12337
|
[31] |
J.L. Bantignies, S. Deabate, A. Righi, S. Rols, P. Hermet, J.L. Sauvajol, et al.. New insight into the vibrational behavior of nickel hydroxide and oxyhydroxide using inelastic neutron scattering, far/mid-infrared and Raman spectroscopies. J Phys Chem C, 112 (6) ( 2008), pp. 2193-2201
|
[32] |
M.C. Bernard, R. Cortes, M. Keddam, H. Takenouti, P. Bernard, S. Senyarich. Structural defects and electrochemical reactivity of β-Ni(OH)2. J Power Sources, 63 (2) ( 1996), pp. 247-254
|
[33] |
L. Peng, N. Yang, Y. Yang, Q. Wang, X. Xie, D. Sun-Waterhouse, et al.. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew Chem Int Ed, 60 (46) ( 2021), pp. 24612-24619
|
[34] |
X. Song, W. Jiang, Z. Cai, X. Yue, X. Chen, W. Dai, et al.. Visible light-driven deep oxidation of NO and its durability over Fe doped BaSnO3: the NO+ intermediates mechanism and the storage capacity of Ba ions. Chem Eng J, 444 ( 2022), p. 136709
|
[35] |
K. Zhao, J. Qi, H. Yin, Z. Wang, S. Zhao, X. Ma, et al.. Efficient water oxidation under visible light by tuning surface defects on ceria nanorods. J Mater Chem A Mater Energy Sustain, 3 (41) ( 2015), pp. 20465-20470
|
[36] |
Z. Hu, X. Li, S. Zhang, Q. Li, J. Fan, X. Qu, et al.. Fe1/TiO2 Hollow microspheres: Fe and Ti dual active sites boosting the photocatalytic oxidation of NO. Small, 16 (47) ( 2020), p. 2004583
|
[37] |
Ministry of Environmental Protection. GB 3095-2012: Ambient air quality standards. Chinese standard. Beijing China: Environmental Science Press; 2012. Chinese.
|
[38] |
M. Ruggieri, A. Plaia. An aggregate AQI: comparing different standardizations and introducing a variability index. Sci Total Environ, 420 ( 2012), pp. 263-272
|
[39] |
M. Xiao, S. Wang, S. Thaweesak, B. Luo, L. Wang. Tantalum (oxy)nitride: narrow bandgap photocatalysts for solar hydrogen generation. Engineering, 3 (3) ( 2017), pp. 365-378
|
[40] |
L. Jiang, J. Yang, X. Yuan, J. Guo, J. Liang, W. Tang, et al.. Defect engineering in polymeric carbon nitride photocatalyst: synthesis, properties and characterizations. Adv Colloid Interface Sci, 296 ( 2021), p. 102523
|
[41] |
M.A. Ahsan, A.R. Puente Santiago, Y. Hong, N. Zhang, M. Cano, E. Rodriguez-Castellon, et al.. Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hydrogen evolution reactions. J Am Chem Soc, 142 (34) ( 2020), pp. 14688-14701
|
[42] |
G. Cheng, X. Tan, X. Song, X. Chen, W. Dai, R. Yuan, et al.. Visible light assisted thermocatalytic reaction of CO + NO over Pd/LaFeO3. Appl Catal B, 251 ( 2019), pp. 130-142
|
[43] |
Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, et al.. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3. Adv Energy Mater, 10 (34) ( 2020), p. 2002199
|
[44] |
J. Cao, J. Zhang, X.A. Dong, H. Fu, X. Zhang, X. Lv, et al.. Defective borate-decorated polymer carbon nitride: enhanced photocatalytic NO removal, synergy effect and reaction pathway. Appl Catal B, 249 ( 2019), pp. 266-274
|
[45] |
X. Lv, K. Jiang, H. Wu, L. Ao, L. Hu, X. Li, et al.. Defective layered double hydroxide nanosheet boosts electrocatalytic hydrodechlorination reaction on supported palladium nanoparticle. ACS EST Water, 2 (8) ( 2022), pp. 1451-1460
|
[46] |
W. Yang, X. Feng, X. Chen, C. Wu, F. Wang, Z. Gao, et al.. Understanding trends in the NO oxidation activity of single-atom catalysts. J Environ Chem Eng, 10 (6) ( 2022), p. 108744
|
[47] |
L. Wu, S. An, Y.F. Song. Heteropolyacids-immobilized graphitic carbon nitride: highly efficient photo-oxidation of benzyl alcohol in the aqueous phase. Engineering, 7 (1) ( 2021), pp. 94-102
|
[48] |
J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, X.A. Dong, et al.. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chem Eng J, 379 ( 2020), p. 122282
|