具有缺陷的NiFe-LDH用于增强光催化NO氧化并显著减少NO2生成

Xiaoyu Li, Xiaoshu Lv, Jian Pan, Peng Chen, Huihui Peng, Yan Jiang, Haifeng Gong, Guangming Jiang, Li'an Hou

工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 276-284.

PDF(3334 KB)
PDF(3334 KB)
工程(英文) ›› 2024, Vol. 36 ›› Issue (5) : 276-284. DOI: 10.1016/j.eng.2023.06.017
研究论文
Article

具有缺陷的NiFe-LDH用于增强光催化NO氧化并显著减少NO2生成

作者信息 +

Defective Nickel-Iron Layered Double Hydroxide for Enhanced Photocatalytic NO Oxidation with Significant Alleviation of NO2 Production

Author information +
History +

Abstract

Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NO x (NO, NO2, N2O, N2O5, etc.) from the atmosphere. Layered double hydroxides (LDHs) are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide (OH) moieties, which are hydroxyl radical (.OH) precursors. However, the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites. Herein, we developed a facile N2H4-driven etching approach to introduce dual Ni2+ and OH vacancies (Niv and OHv, respectively) into NiFe-LDH nanosheets (hereafter referred to as NiFe-LDH-et) to facilitate improved charge-carrier separation and active Lewis acidic site (Fe3+ and Ni2+ exposed at OHv) formation. In contrast to inert pristine LDH, NiFe-LDH-et actively removed NO under visible-light illumination. Specifically, Ni76Fe24-LDH-et etched with 1.50 mmol·L−1 N2H4 solution removed 32.8% of the NO in continuously flowing air (NO feed concentration: ∼500 parts per billion (ppb)) under visible-light illumination, thereby outperforming most reported catalysts. Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species (O2.− and .OH) and the adsorption of NO on the LDH. In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites, particularly exposed Fe3+ sites, converted into NO+, and subsequently oxidized to NO3 without the notable formation of the more toxic intermediate NO2, thereby alleviating risks associated with its production and emission.

Keywords

Vacancie / Layered double hydroxide / NO+ / Photocatalysis / NO removal

引用本文

导出引用
Xiaoyu Li, Xiaoshu Lv, Jian Pan. 缺陷镍铁层状双氢氧化物用于增强光催化氧化NO并显著减少NO2的产生. Engineering. 2024, 36(5): 276-284 https://doi.org/10.1016/j.eng.2023.06.017

参考文献

[1]
K. Skalska, J.S. Miller, S. Ledakowicz. Trends in NO x abatement: a review. Sci Total Environ, 408 (19) ( 2010), pp. 3976-3989
[2]
N. Li, C. Wang, K. Zhang, H. Lv, M. Yuan, D.W. Bahnemann. Progress and prospects of photocatalytic conversion of low-concentration NO. Chin J Catal, 43 (9) ( 2022), pp. 2363-2387
[3]
W. Cui, J. Li, F. Dong. Optimizing the gas-solid photocatalytic reactions for air purification. ACS EST Eng, 2 (6) ( 2022), pp. 1103-1115
[4]
K. Zhao, X. Sun, C. Wang, X. Song, F. Wang, K. Li, et al.. Supported catalysts for simultaneous removal of SO2, NO x, and Hg0 from industrial exhaust gases: a review. Chin Chem Lett, 32 (10) ( 2021), pp. 2963-2974
[5]
Y. Zheng, Y. Chen, B. Gao, B. Lin, X. Wang. Phosphorene-based heterostructured photocatalysts. Engineering, 7 (7) ( 2021), pp. 991-1001
[6]
W.Q. Chen, L.Y. Li, L. Li, W.H. Qiu, L. Tang, L. Xu, et al.. MoS2/ZIF-8 hybrid materials for environmental catalysis: solar-driven antibiotic-degradation engineering. Engineering, 5 (4) ( 2019), pp. 755-767
[7]
L. Buzzetti, G.E.M. Crisenza, P. Melchiorre. Mechanistic studies in photocatalysis. Angew Chem Int Ed, 58 (12) ( 2019), pp. 3730-3747
[8]
H. Zhu, X. Yuan, Q. Yao,J. Xie. Shining photocatalysis by gold-based nanomaterials. Nano Energy, 88 ( 2021), p. 106306
[9]
C. Wu, Z. Xing, S. Yang, Z. Li, W. Zhou. Nanoreactors for photocatalysis. Coord Chem Rev, 477 ( 2023), Article 214939
[10]
W. Yang, Q. Ren, F. Zhong, Y. Wang, J. Wang, R. Chen, et al.. Promotion mechanism of -OH group intercalation for NO x purification on BiOI photocatalyst. Nanoscale, 13 (48) ( 2021), pp. 20601-20608
[11]
Q. Yan, X. Hou, G. Liu, Y. Li, T. Zhu, Y. Xin, et al.. Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic reduction of NO x with NH3. J Hazard Mater, 400 ( 2020), Article 123260
[12]
M.P. Jerome, F.A. Alahmad, M.T. Salem, M. Tahir.Layered double hydroxide (LDH) nanomaterials with engineering aspects for photocatalytic CO2 conversion to energy efficient fuels: fundamentals, recent advances, and challenges. J Environ Chem Eng, 10 (5) ( 2022), p. 108151
[13]
S. Zhang, Y. Zhao, R. Shi, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, et al.. Efficient photocatalytic nitrogen fixation over Cu δ+ -modified defective ZnAl-layered double hydroxide nanosheets. Adv Energ Mater, 10 (8) ( 2020), p. 1901973
[14]
X. Lv, J. Zhang, X. Dong, J. Pan, W. Zhang, W. Wang, et al.. Layered double hydroxide nanosheets as efficient photocatalysts for NO removal: band structure engineering and surface hydroxyl ions activation. Appl Catal B, 277 ( 2020), p. 119200
[15]
J. Zou, Z. Wang, W. Guo, B. Guo, Y. Yu, L. Wu. Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: the effect of surface OH groups. Appl Catal B, 260 ( 2020), Article 118185
[16]
X.A. Dong, Z. Cui, Y. Sun, F. Dong. Humidity-independent photocatalytic toluene mineralization benefits from the utilization of edge hydroxyls in layered double hydroxides (LDHs): a combined operando and theoretical investigation. ACS Catal, 11 (13) ( 2021), pp. 8132-8139
[17]
X. Zhang, Y. Zhao, Y. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang.A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv Energy Mater, 9 (24) ( 2019), p. 1900881
[18]
W. Miao, Y. Wang, Y. Liu, H. Qin, C. Chu, S. Mao. Persulfate-induced three coordinate nitrogen (N3C) vacancies in defective carbon nitride for enhanced photocatalytic H2O2 evolution. Engineering, 25 (6) ( 2023), pp. 214-221
[19]
Q. Wu, Y. Jia, Q. Liu, X. Mao, Q. Guo, Y. Yan, et al.. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem, 8 (10) ( 2022), pp. 2715-2733
[20]
G. Liu, Z. Tang, X. Gu, N. Li, H. Lv, Y. Huang, et al.. Boosting photocatalytic nitrogen reduction to ammonia by dual defective -C=N and K-doping sites on graphitic carbon nitride nanorod arrays. Appl Catal B, 317 ( 2022), p. 121752
[21]
Y. He, Q. Lei, C. Li, Y. Han, Z. Shi, S. Feng. Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels. Mater Today, 50 ( 2021), pp. 358-384
[22]
X. Li, H. Li, Y. Huang, J. Cao, T. Huang, R. Li, et al.. Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO2- x -OV surface. J Hazard Mater, 424 ( 2022), p. 127217
[23]
R. Yuan, M. Wang, L. Liao, W. Hu, Z. Liu, Z. Liu, et al.. 100% N2O inhibition in photocatalytic NO x reduction by carbon particles over Bi2WO6/TiO2 Z-scheme heterojunctions. Chem Eng J, 453 ( 2023), p. 139892
[24]
H. Wang, K. Li, J. Li, Y. Sun, F. Dong. Photochemical transformation pathways of nitrates from photocatalytic NO x oxidation: implications for controlling secondary pollutants. Environ Sci Technol Lett, 8 (10) ( 2021), pp. 873-877
[25]
H. Wang, Y. Sun, F. Dong. Insight into the overlooked photochemical decomposition of atmospheric surface nitrates triggered by visible light. Angew Chem Int Ed, 61 (43) ( 2022), p. e202209201
[26]
L. Liu, P. Ouyang, Y. Li, Y. Duan, F. Dong, K. Lv.Insight into the mechanism of deep NO photooxidation by bismuth tantalate with oxygen vacancies. J Hazard Mater, 439 ( 2022), p. 129637
[27]
Y. Yu, X. Dong, P. Chen, Q. Geng, H. Wang, J. Li, et al.. Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction. ACS Nano, 15 (9) ( 2021), pp. 14453-14464
[28]
Q. Wang, L. Chen, S. Guan, X. Zhang, B. Wang, X. Cao, et al.. Ultrathin and vacancy-rich CoAl-layered double hydroxide/graphite oxide catalysts: promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation. ACS Catal, 8 (4) ( 2018), pp. 3104-3115
[29]
L. Bai, S. Lee, X. Hu. Spectroscopic and electrokinetic evidence for a bifunctional mechanism of the oxygen evolution reaction. Angew Chem Int Ed, 60 (6) ( 2021), pp. 3095-3103
[30]
M.W. Louie, A.T. Bell. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc, 135 (33) ( 2013), pp. 12329-12337
[31]
J.L. Bantignies, S. Deabate, A. Righi, S. Rols, P. Hermet, J.L. Sauvajol, et al.. New insight into the vibrational behavior of nickel hydroxide and oxyhydroxide using inelastic neutron scattering, far/mid-infrared and Raman spectroscopies. J Phys Chem C, 112 (6) ( 2008), pp. 2193-2201
[32]
M.C. Bernard, R. Cortes, M. Keddam, H. Takenouti, P. Bernard, S. Senyarich. Structural defects and electrochemical reactivity of β-Ni(OH)2. J Power Sources, 63 (2) ( 1996), pp. 247-254
[33]
L. Peng, N. Yang, Y. Yang, Q. Wang, X. Xie, D. Sun-Waterhouse, et al.. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew Chem Int Ed, 60 (46) ( 2021), pp. 24612-24619
[34]
X. Song, W. Jiang, Z. Cai, X. Yue, X. Chen, W. Dai, et al.. Visible light-driven deep oxidation of NO and its durability over Fe doped BaSnO3: the NO+ intermediates mechanism and the storage capacity of Ba ions. Chem Eng J, 444 ( 2022), p. 136709
[35]
K. Zhao, J. Qi, H. Yin, Z. Wang, S. Zhao, X. Ma, et al.. Efficient water oxidation under visible light by tuning surface defects on ceria nanorods. J Mater Chem A Mater Energy Sustain, 3 (41) ( 2015), pp. 20465-20470
[36]
Z. Hu, X. Li, S. Zhang, Q. Li, J. Fan, X. Qu, et al.. Fe1/TiO2 Hollow microspheres: Fe and Ti dual active sites boosting the photocatalytic oxidation of NO. Small, 16 (47) ( 2020), p. 2004583
[37]
Ministry of Environmental Protection. GB 3095-2012: Ambient air quality standards. Chinese standard. Beijing China: Environmental Science Press; 2012. Chinese.
[38]
M. Ruggieri, A. Plaia. An aggregate AQI: comparing different standardizations and introducing a variability index. Sci Total Environ, 420 ( 2012), pp. 263-272
[39]
M. Xiao, S. Wang, S. Thaweesak, B. Luo, L. Wang. Tantalum (oxy)nitride: narrow bandgap photocatalysts for solar hydrogen generation. Engineering, 3 (3) ( 2017), pp. 365-378
[40]
L. Jiang, J. Yang, X. Yuan, J. Guo, J. Liang, W. Tang, et al.. Defect engineering in polymeric carbon nitride photocatalyst: synthesis, properties and characterizations. Adv Colloid Interface Sci, 296 ( 2021), p. 102523
[41]
M.A. Ahsan, A.R. Puente Santiago, Y. Hong, N. Zhang, M. Cano, E. Rodriguez-Castellon, et al.. Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hydrogen evolution reactions. J Am Chem Soc, 142 (34) ( 2020), pp. 14688-14701
[42]
G. Cheng, X. Tan, X. Song, X. Chen, W. Dai, R. Yuan, et al.. Visible light assisted thermocatalytic reaction of CO + NO over Pd/LaFeO3. Appl Catal B, 251 ( 2019), pp. 130-142
[43]
Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, et al.. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3. Adv Energy Mater, 10 (34) ( 2020), p. 2002199
[44]
J. Cao, J. Zhang, X.A. Dong, H. Fu, X. Zhang, X. Lv, et al.. Defective borate-decorated polymer carbon nitride: enhanced photocatalytic NO removal, synergy effect and reaction pathway. Appl Catal B, 249 ( 2019), pp. 266-274
[45]
X. Lv, K. Jiang, H. Wu, L. Ao, L. Hu, X. Li, et al.. Defective layered double hydroxide nanosheet boosts electrocatalytic hydrodechlorination reaction on supported palladium nanoparticle. ACS EST Water, 2 (8) ( 2022), pp. 1451-1460
[46]
W. Yang, X. Feng, X. Chen, C. Wu, F. Wang, Z. Gao, et al.. Understanding trends in the NO oxidation activity of single-atom catalysts. J Environ Chem Eng, 10 (6) ( 2022), p. 108744
[47]
L. Wu, S. An, Y.F. Song. Heteropolyacids-immobilized graphitic carbon nitride: highly efficient photo-oxidation of benzyl alcohol in the aqueous phase. Engineering, 7 (1) ( 2021), pp. 94-102
[48]
J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, X.A. Dong, et al.. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chem Eng J, 379 ( 2020), p. 122282
PDF(3334 KB)

Accesses

Citation

Detail

段落导航
相关文章

/