[1] |
S. Bhattacharjee, R. Joshi, A.A. Chughtai, C.R. Macintyre. Graphene modified multifunctional personal protective clothing. Adv Mater Interfaces, 6 (21) ( 2019), Article 1900622
|
[2] |
J. Shi, H. Li, F. Xu, X. Tao. Materials in advanced design of personal protective equipment: a review. Mater Today Adv, 12 ( 2021), Article 100171
|
[3] |
L. Ma, R. Wu, A. Patil, J. Yi, D. Liu, X. Fan, et al.. Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv Funct Mater, 31 (35) ( 2021), Article 2102963
|
[4] |
N. Karim, S. Afroj, K. Lloyd, L.C. Oaten, D.V. Andreeva, C. Carr, et al.. Sustainable personal protective clothing for healthcare applications: a review. ACS Nano, 14 (10) ( 2020), pp. 12313-12340
|
[5] |
N. Singh, Y. Tang, O.A. Ogunseitan. Environmentally sustainable management of used personal protective equipment. Environ Sci Technol, 54 (14) ( 2020), pp. 8500-8502
|
[6] |
R. Wu, L. Ma, C. Hou, Z. Meng, W. Guo, W. Yu, et al.. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small, 15 (31) ( 2019), Article e1901558
|
[7] |
A. Alagumalai, W. Shou, O. Mahian, M. Aghbashlo, M. Tabatabaei, S. Wongwises, et al.. Self-powered sensing systems with learning capability. Joule, 6 (7) ( 2022), pp. 1475-1500
|
[8] |
H. Niu, H. Li, S. Gao, Y. Li, X. Wei, Y. Chen, et al.. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv Mater, 34 (31) ( 2022), Article e2202622
|
[9] |
W. Lu, P. Yu, M. Jian, H. Wang, H. Wang, X. Liang, et al.. Molybdenum disulfide nanosheets aligned vertically on carbonized silk fabric as smart textile for wearable pressure-sensing and energy devices. ACS Appl Mater Interfaces, 12 (10) ( 2020), pp. 11825-11832
|
[10] |
D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, et al.. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol, 6 (12) ( 2011), pp. 788-792
|
[11] |
J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu, Y. Yang, et al.. Smart textile-integrated microelectronic systems for wearable applications. Adv Mater, 32 (5) ( 2020), Article e190195
|
[12] |
T. Busolo, P.K. Szewczyk, M. Nair, U. Stachewicz, S. Kar-Narayan. Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applications. ACS Appl Mater Interfaces, 13 (14) ( 2021), pp. 16876-16886
|
[13] |
H. Zhao, Y. Zhou, S. Cao, Y. Wang, J. Zhang, S. Feng, et al.. Ultrastretchable and washable conductive microtextiles by coassembly of silver nanowires and elastomeric microfibers for epidermal human-machine interfaces. ACS Materials Lett, 3 (7) ( 2021), pp. 912-920
|
[14] |
R. Wang, Z. Du, Z. Xia, J. Liu, P. Li, Z. Wu, et al.. Magnetoelectrical clothing generator for high-performance transduction from biomechanical energy to electricity. Adv Funct Mater, 32 (6) ( 2022), Article 2107682
|
[15] |
C. Fu, K. Wang, W. Tang, A. Nilghaz, C. Hurren, X. Wang, et al.. Multi-sensorized pneumatic artificial muscle yarns. Chem Eng J, 446 ( 2022), Article 137241
|
[16] |
J. Song, Y. Tan, Z. Chu, M. Xiao, G. Li, Z. Jiang, et al.. Hierarchical reduced graphene oxide ridges for stretchable, wearable, and washable strain sensors. ACS Appl Mater Interfaces, 11 (1) ( 2019), pp. 1283-1293
|
[17] |
Y. Li, Y. Zhang, J. Yi, X. Peng, R. Cheng, C. Ning, et al.. Large-scale fabrication of core-shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat, 4 (4) ( 2022), p. e12191
|
[18] |
M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang, L. Chen, et al.. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater, 29 (41) ( 2017), Article 1703700
|
[19] |
C. Zhu, J. Wu, J. Yan, X. Liu. Advanced fiber materials for wearable electronics. Adv Fiber Mater, 5 (1) ( 2023), pp. 12-35
|
[20] |
L. Gan, Z. Zeng, H. Lu, D. Li, K. Wei, G. Cai, et al.. A large-scalable spraying-spinning process for multifunctional electronic yarns. SmartMat, 4 (2) ( 2023), p. e1151
|
[21] |
X. Du, M. Tian, G. Sun, Z. Li, X. Qi, H. Zhao, et al.. Self-powered and self-sensing energy textile system for flexible wearable applications. ACS Appl Mater Interfaces, 12 (50) ( 2020), pp. 55876-55883
|
[22] |
F. Huang, Q. Wei, Y. Liu, W. Gao, Y. Huang. Surface functionalization of silk fabric by PTFE sputter coating. J Mater Sci, 42 (19) ( 2007), pp. 8025-8028
|
[23] |
J. Luo, S. Gao, H. Luo, L. Wang, X. Huang, Z. Guo, et al.. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem Eng J, 406 ( 2021), Article 126898
|
[24] |
F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu, Z. Zhang, et al.. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv Sci, 7 (14) ( 2020), Article 2000261
|
[25] |
D. Lu, S. Liao, Y. Chu, Y. Cai, Q. Wei, K. Chen, et al.. Smart highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv Fiber Mater, 5 (1) ( 2023), pp. 223-234
|
[26] |
J. Dong, Q. Wei, D. Wang, Y. Peng, C. Zhang, F. Lai, et al.. Surface ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy, 97 ( 2022), Article 107160
|
[27] |
E.L. Bloomfield. Prolonged wear of antichemical protective gear: the hazards and difficulties of wearing chemical warfare gear. Anesthesiology, 101 (6) ( 2004), p. 1478
|
[28] |
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu, X. Liu, et al.. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science, 373 (6555) ( 2021), pp. 692-766
|
[29] |
Y. Peng, W. Li, B. Liu, W. Jin, J. Schaadt, J. Tang, et al.. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat Commun, 12 (1) ( 2021), p. 6122
|
[30] |
T.Q. Trung, H.S. Le, T.M.L. Dang, S. Ju, S.Y. Park, N.E. Lee. Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring. Adv Healthc Mater, 7 (12) ( 2018), Article e1800074
|
[31] |
H. Wang, Y. Zhang, X. Liang, Y. Zhang. Smart fibers and textiles for personal health management. ACS Nano, 15 (8) ( 2021), pp. 12497-12508
|
[32] |
D. Lu, S. Liao, Y. Chu, Y. Cai, Q. Wei, K. Chen, et al.. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv Fiber Mater, 5 (1) ( 2023), pp. 223-234
|
[33] |
The State Bureau of Quality and Technical Supervision. GB/T 5453-1997: Textiles-determination of the permeability of fabrics to air. Chinese standard. Beijing: Standards Press of China; 1997. Chinese.
|
[34] |
ASTM E398; Standard test method for water vapor transmission rate of sheet materials using dynamic relative humidity measurement. ASTM standard. West Conshohocken: American Society of Testing Materials; 2003.
|
[35] |
ISO 22007-2: Plastics—determination of thermal conductivity and thermal diffusivity—part 2: transient plane heat source (hot disc) method. ISO standard. Geneva: International Organization for Standardization; 2008.
|
[36] |
R. Wu, S. Seo, L. Ma, J. Bae, T. Kim.Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nano-Mirco Lett, 14 ( 2022), p. 139
|
[37] |
Q. Zhang, Y. Wang, Y. Xia, P. Zhang, T. Kirk, X. Chen. Textile-only capacitive sensors for facile fabric integration without compromise of wearability. Adv Mater Technol, 4 (10) ( 2019), Article 1900485
|
[38] |
G. Cai, M. Yang, J. Pan, D. Cheng, Z. Xia, X. Wang, et al.. Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces, 10 (38) ( 2018), pp. 32726-32735
|
[39] |
G. Cai, B. Hao, L. Luo, Z. Deng, R. Zhang, J. Ran, et al.. Highly stretchable sheath-core yarns for multifunctional wearable electronics. ACS Appl Mater Interfaces, 12 (26) ( 2020), pp. 29717-29727
|
[40] |
Z. Zeng, B. Hao, D. Li, D. Cheng, G. Cai, X. Wang. Large-scale production of weavable, dyeable and durable spandex/CNT/cotton core-sheath yarn for wearable strain sensors. Compos Part A Appl Sci, 149 ( 2021), Article 106520
|
[41] |
J. Wu, Z. Wang, W. Liu, L. Wang, F. Xu. Bioinspired superelastic electroconductive fiber for wearable electronics. ACS Appl Mater Interfaces, 11 (47) ( 2019), pp. 44735-44741
|
[42] |
M. Yang, C. Fu, Z. Xia, D. Cheng, G. Cai, B. Tang, et al.. Conductive and durable CNT-cotton ring spun yarns. Cellul, 25 (7) ( 2018), pp. 4239-4249
|
[43] |
Y. Zhang, T. Li, B. Shiu, J. Lin, C. Lou. Multifunctional sodium alginate@urushiol fiber with targeted antibacterial, acid corrosion resistance and flame retardant properties for personal protection based on wet spinning. Appl Surf Sci, 584 ( 2022), Article 152573
|
[44] |
X. Qu, Y. Wu, P. Ji, B. Wang, Q. Liang, Z. Han, et al.. Crack-based core-sheath fiber strain sensors with an ultralow detection limit and an ultrawide working range. ACS Appl Mater Interfaces, 14 (25) ( 2022), pp. 29167-29175
|
[45] |
Z. Shen, Z. Zhang, N. Zhang, J. Li, P. Zhou, F. Hu, et al.. High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines. Adv Mater, 34 (32) ( 2022), Article e2203650
|
[46] |
G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, D.H. Kim, H. Wang, et al.. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 4 (1) ( 2013), p. 1859
|
[47] |
M. Badshah, E. Leung, P. Liu, A. Strzelecka, A. Gorodetsky. Scalable manufacturing of sustainable packaging materials with tunable thermoregulability. Nat Sustain, 5 (5) ( 2022), pp. 434-443
|
[48] |
L. Lao, D. Shou, Y.S. Wu, J.T. Fan. “Skin-like” fabric for personal moisture management. Sci Adv, 6 (14) ( 2020), Article eaaz0013
|
[49] |
L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou, P. Wu, et al.. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule, 3 (6) ( 2019), pp. 1478-1486
|
[50] |
X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su, Q. Zhang, et al.. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano, 16 (2) ( 2022), pp. 2188-2197
|
[51] |
K. Fu, Z. Yang, Y. Pei, Y. Wang, B. Xu, Y. Wang, et al.. Designing textile architectures for high energy-efficiency human body sweat- and cooling-management. Adv Fiber Mater, 1 (1) ( 2019), pp. 61-70
|
[52] |
Y. Peng, H. Lee, D. Wu, Y. Cui. Bifunctional asymmetric fabric with tailored thermal conduction and radiation for personal cooling and warming. Engineering, 10 ( 2022), pp. 167-173
|