用于高危环境中的安全监控和可调热管理的分层芯鞘结构耐化学性纱线

Duo Xu, Yingcun Liu, Can Ge, Chong Gao, Ze Chen, Ziyi Su, Haoran Gong, Weilin Xu, Jian Fang

工程(英文) ›› 2024, Vol. 32 ›› Issue (1) : 217-225.

PDF(6968 KB)
PDF(6968 KB)
工程(英文) ›› 2024, Vol. 32 ›› Issue (1) : 217-225. DOI: 10.1016/j.eng.2023.06.018
研究论文
Article

用于高危环境中的安全监控和可调热管理的分层芯鞘结构耐化学性纱线

作者信息 +

Chemical Resistant Yarn with Hierarchical Core–Shell Structure for Safety Monitoring and Tunable Thermal Management in High-Risk Environments

Author information +
History +

Highlight

• The multi-functional textiles with hierarchical core–shell structure are manufactured by large-scale fabrication processes.

• It can prevent the human body from chemical hazards within any stretch range of protective clothing.

• It can work as highly multifunctional stretchable electronics for real-time human motion monitoring.

• It can achieve desirable dynamic thermoregulation function by taking advantage of the fabric structure with stretch modulation.

Abstract

Chemical resistant textiles are vital for safeguarding humans against chemical hazards in various settings, such as industrial production, chemical accidents, laboratory activities, and road transportation. However, the ideal integration of chemical resistance, thermal and moisture management, and wearer condition monitoring in conventional chemically protective textiles remains challenging. Herein, the design, manufacturing, and use of stretchable hierarchical core–shell yarns (HCSYs) for integrated chemical resistance, moisture regulation, and smart sensing textiles are demonstrated. These yarns contain helically elastic spandex, wrapped silver-plated nylon, and surface-structured polytetrafluoroethylene (PTFE) yarns and are designed and manufactured based on a scalable fabrication process. In addition to their ideal chemical resistance performance, HCSYs can function as multifunctional stretchable electronics for real-time human motion monitoring and as the basic element of intelligent textiles. Furthermore, a desirable dynamic thermoregulation function is achieved by exploiting the fabric structure with stretching modulation. Our HCSYs may provide prospective opportunities for the future development of smart protective textiles with high durability, flexibility, and scalability.

Keywords

Hierarchical core-shell structure / Chemical resistant yarn / Wearable strain sensor / Thermoregulation

引用本文

导出引用
Duo Xu, Yingcun Liu, Can Ge. 用于高风险环境安全监测和可调热管理的具有分层核壳结构的耐化学品纱线. Engineering. 2024, 32(1): 217-225 https://doi.org/10.1016/j.eng.2023.06.018

参考文献

[1]
S. Bhattacharjee, R. Joshi, A.A. Chughtai, C.R. Macintyre. Graphene modified multifunctional personal protective clothing. Adv Mater Interfaces, 6 (21) ( 2019), Article 1900622
[2]
J. Shi, H. Li, F. Xu, X. Tao. Materials in advanced design of personal protective equipment: a review. Mater Today Adv, 12 ( 2021), Article 100171
[3]
L. Ma, R. Wu, A. Patil, J. Yi, D. Liu, X. Fan, et al.. Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv Funct Mater, 31 (35) ( 2021), Article 2102963
[4]
N. Karim, S. Afroj, K. Lloyd, L.C. Oaten, D.V. Andreeva, C. Carr, et al.. Sustainable personal protective clothing for healthcare applications: a review. ACS Nano, 14 (10) ( 2020), pp. 12313-12340
[5]
N. Singh, Y. Tang, O.A. Ogunseitan. Environmentally sustainable management of used personal protective equipment. Environ Sci Technol, 54 (14) ( 2020), pp. 8500-8502
[6]
R. Wu, L. Ma, C. Hou, Z. Meng, W. Guo, W. Yu, et al.. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small, 15 (31) ( 2019), Article e1901558
[7]
A. Alagumalai, W. Shou, O. Mahian, M. Aghbashlo, M. Tabatabaei, S. Wongwises, et al.. Self-powered sensing systems with learning capability. Joule, 6 (7) ( 2022), pp. 1475-1500
[8]
H. Niu, H. Li, S. Gao, Y. Li, X. Wei, Y. Chen, et al.. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv Mater, 34 (31) ( 2022), Article e2202622
[9]
W. Lu, P. Yu, M. Jian, H. Wang, H. Wang, X. Liang, et al.. Molybdenum disulfide nanosheets aligned vertically on carbonized silk fabric as smart textile for wearable pressure-sensing and energy devices. ACS Appl Mater Interfaces, 12 (10) ( 2020), pp. 11825-11832
[10]
D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, et al.. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol, 6 (12) ( 2011), pp. 788-792
[11]
J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu, Y. Yang, et al.. Smart textile-integrated microelectronic systems for wearable applications. Adv Mater, 32 (5) ( 2020), Article e190195
[12]
T. Busolo, P.K. Szewczyk, M. Nair, U. Stachewicz, S. Kar-Narayan. Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applications. ACS Appl Mater Interfaces, 13 (14) ( 2021), pp. 16876-16886
[13]
H. Zhao, Y. Zhou, S. Cao, Y. Wang, J. Zhang, S. Feng, et al.. Ultrastretchable and washable conductive microtextiles by coassembly of silver nanowires and elastomeric microfibers for epidermal human-machine interfaces. ACS Materials Lett, 3 (7) ( 2021), pp. 912-920
[14]
R. Wang, Z. Du, Z. Xia, J. Liu, P. Li, Z. Wu, et al.. Magnetoelectrical clothing generator for high-performance transduction from biomechanical energy to electricity. Adv Funct Mater, 32 (6) ( 2022), Article 2107682
[15]
C. Fu, K. Wang, W. Tang, A. Nilghaz, C. Hurren, X. Wang, et al.. Multi-sensorized pneumatic artificial muscle yarns. Chem Eng J, 446 ( 2022), Article 137241
[16]
J. Song, Y. Tan, Z. Chu, M. Xiao, G. Li, Z. Jiang, et al.. Hierarchical reduced graphene oxide ridges for stretchable, wearable, and washable strain sensors. ACS Appl Mater Interfaces, 11 (1) ( 2019), pp. 1283-1293
[17]
Y. Li, Y. Zhang, J. Yi, X. Peng, R. Cheng, C. Ning, et al.. Large-scale fabrication of core-shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat, 4 (4) ( 2022), p. e12191
[18]
M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang, L. Chen, et al.. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater, 29 (41) ( 2017), Article 1703700
[19]
C. Zhu, J. Wu, J. Yan, X. Liu. Advanced fiber materials for wearable electronics. Adv Fiber Mater, 5 (1) ( 2023), pp. 12-35
[20]
L. Gan, Z. Zeng, H. Lu, D. Li, K. Wei, G. Cai, et al.. A large-scalable spraying-spinning process for multifunctional electronic yarns. SmartMat, 4 (2) ( 2023), p. e1151
[21]
X. Du, M. Tian, G. Sun, Z. Li, X. Qi, H. Zhao, et al.. Self-powered and self-sensing energy textile system for flexible wearable applications. ACS Appl Mater Interfaces, 12 (50) ( 2020), pp. 55876-55883
[22]
F. Huang, Q. Wei, Y. Liu, W. Gao, Y. Huang. Surface functionalization of silk fabric by PTFE sputter coating. J Mater Sci, 42 (19) ( 2007), pp. 8025-8028
[23]
J. Luo, S. Gao, H. Luo, L. Wang, X. Huang, Z. Guo, et al.. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem Eng J, 406 ( 2021), Article 126898
[24]
F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu, Z. Zhang, et al.. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv Sci, 7 (14) ( 2020), Article 2000261
[25]
D. Lu, S. Liao, Y. Chu, Y. Cai, Q. Wei, K. Chen, et al.. Smart highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv Fiber Mater, 5 (1) ( 2023), pp. 223-234
[26]
J. Dong, Q. Wei, D. Wang, Y. Peng, C. Zhang, F. Lai, et al.. Surface ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy, 97 ( 2022), Article 107160
[27]
E.L. Bloomfield. Prolonged wear of antichemical protective gear: the hazards and difficulties of wearing chemical warfare gear. Anesthesiology, 101 (6) ( 2004), p. 1478
[28]
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu, X. Liu, et al.. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science, 373 (6555) ( 2021), pp. 692-766
[29]
Y. Peng, W. Li, B. Liu, W. Jin, J. Schaadt, J. Tang, et al.. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat Commun, 12 (1) ( 2021), p. 6122
[30]
T.Q. Trung, H.S. Le, T.M.L. Dang, S. Ju, S.Y. Park, N.E. Lee. Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring. Adv Healthc Mater, 7 (12) ( 2018), Article e1800074
[31]
H. Wang, Y. Zhang, X. Liang, Y. Zhang. Smart fibers and textiles for personal health management. ACS Nano, 15 (8) ( 2021), pp. 12497-12508
[32]
D. Lu, S. Liao, Y. Chu, Y. Cai, Q. Wei, K. Chen, et al.. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv Fiber Mater, 5 (1) ( 2023), pp. 223-234
[33]
The State Bureau of Quality and Technical Supervision. GB/T 5453-1997: Textiles-determination of the permeability of fabrics to air. Chinese standard. Beijing: Standards Press of China; 1997. Chinese.
[34]
ASTM E398; Standard test method for water vapor transmission rate of sheet materials using dynamic relative humidity measurement. ASTM standard. West Conshohocken: American Society of Testing Materials; 2003.
[35]
ISO 22007-2: Plastics—determination of thermal conductivity and thermal diffusivity—part 2: transient plane heat source (hot disc) method. ISO standard. Geneva: International Organization for Standardization; 2008.
[36]
R. Wu, S. Seo, L. Ma, J. Bae, T. Kim.Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network. Nano-Mirco Lett, 14 ( 2022), p. 139
[37]
Q. Zhang, Y. Wang, Y. Xia, P. Zhang, T. Kirk, X. Chen. Textile-only capacitive sensors for facile fabric integration without compromise of wearability. Adv Mater Technol, 4 (10) ( 2019), Article 1900485
[38]
G. Cai, M. Yang, J. Pan, D. Cheng, Z. Xia, X. Wang, et al.. Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces, 10 (38) ( 2018), pp. 32726-32735
[39]
G. Cai, B. Hao, L. Luo, Z. Deng, R. Zhang, J. Ran, et al.. Highly stretchable sheath-core yarns for multifunctional wearable electronics. ACS Appl Mater Interfaces, 12 (26) ( 2020), pp. 29717-29727
[40]
Z. Zeng, B. Hao, D. Li, D. Cheng, G. Cai, X. Wang. Large-scale production of weavable, dyeable and durable spandex/CNT/cotton core-sheath yarn for wearable strain sensors. Compos Part A Appl Sci, 149 ( 2021), Article 106520
[41]
J. Wu, Z. Wang, W. Liu, L. Wang, F. Xu. Bioinspired superelastic electroconductive fiber for wearable electronics. ACS Appl Mater Interfaces, 11 (47) ( 2019), pp. 44735-44741
[42]
M. Yang, C. Fu, Z. Xia, D. Cheng, G. Cai, B. Tang, et al.. Conductive and durable CNT-cotton ring spun yarns. Cellul, 25 (7) ( 2018), pp. 4239-4249
[43]
Y. Zhang, T. Li, B. Shiu, J. Lin, C. Lou. Multifunctional sodium alginate@urushiol fiber with targeted antibacterial, acid corrosion resistance and flame retardant properties for personal protection based on wet spinning. Appl Surf Sci, 584 ( 2022), Article 152573
[44]
X. Qu, Y. Wu, P. Ji, B. Wang, Q. Liang, Z. Han, et al.. Crack-based core-sheath fiber strain sensors with an ultralow detection limit and an ultrawide working range. ACS Appl Mater Interfaces, 14 (25) ( 2022), pp. 29167-29175
[45]
Z. Shen, Z. Zhang, N. Zhang, J. Li, P. Zhou, F. Hu, et al.. High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines. Adv Mater, 34 (32) ( 2022), Article e2203650
[46]
G. Schwartz, B.C. Tee, J. Mei, A.L. Appleton, D.H. Kim, H. Wang, et al.. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 4 (1) ( 2013), p. 1859
[47]
M. Badshah, E. Leung, P. Liu, A. Strzelecka, A. Gorodetsky. Scalable manufacturing of sustainable packaging materials with tunable thermoregulability. Nat Sustain, 5 (5) ( 2022), pp. 434-443
[48]
L. Lao, D. Shou, Y.S. Wu, J.T. Fan. “Skin-like” fabric for personal moisture management. Sci Adv, 6 (14) ( 2020), Article eaaz0013
[49]
L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou, P. Wu, et al.. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule, 3 (6) ( 2019), pp. 1478-1486
[50]
X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su, Q. Zhang, et al.. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano, 16 (2) ( 2022), pp. 2188-2197
[51]
K. Fu, Z. Yang, Y. Pei, Y. Wang, B. Xu, Y. Wang, et al.. Designing textile architectures for high energy-efficiency human body sweat- and cooling-management. Adv Fiber Mater, 1 (1) ( 2019), pp. 61-70
[52]
Y. Peng, H. Lee, D. Wu, Y. Cui. Bifunctional asymmetric fabric with tailored thermal conduction and radiation for personal cooling and warming. Engineering, 10 ( 2022), pp. 167-173
PDF(6968 KB)

Accesses

Citation

Detail

段落导航
相关文章

/