具有生物降解性的抗细菌黏附-抗菌壳聚糖磺基甜菜碱膜的制备与性能研究

Maoli Yin, Yingfeng Wang, Xuehong Ren, Tung-Shi Huang

工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 95-103.

PDF(2075 KB)
PDF(2075 KB)
工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 95-103. DOI: 10.1016/j.eng.2023.06.020
研究论文
Article

具有生物降解性的抗细菌黏附-抗菌壳聚糖磺基甜菜碱膜的制备与性能研究

作者信息 +

Development of a Biodegradable, Cytocompatible, Antibacterial, and Biofilm-Controlling Chitosan Sulfobetaine Derivative Film as a Biological Material

Author information +
History +

Abstract

The purpose of this research was to develop a chitosan sulfobetaine (CS-SNCC) film via the solution-casting method as a biodegradable antibacterial material for biomedical applications. Chitosan and monochloro-triazine sulfobetaine were used as the raw materials for CS-SNCC preparation, and Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) spectra were used to characterize and analyze the structure of the synthesized CS-SNCC. Furthermore, the swelling property, thermal stability, biodegradability, cytocompatibility, and antibacterial properties of the CS-SNCC film were comprehensively investigated and compared with those of the chitosan film. The results for the film’s enzymatic biodegradation behavior show that the CS-SNCC film undergoes a weight loss of 45.54% after 21 days of incubation. In addition, the CS-SNCC film effectively resists bacterial adhesion, prevents the formation of bacteria biofilms, and exhibits high antibacterial activity, with inactivation rates of 93.43% for Escherichia coli and 91.00% for Staphylococcus aureus. Moreover, the CS-SNCC film shows good cellular activity and cytocompatibility according to the cytotoxicity results. Therefore, the prepared biodegradable, cytocompatible, antibacterial, and biofilm-controlling CS-SNCC film has potential for biomedical applications.

Keywords

Chitosan / Sulfobetaine / Antibacterial / Biofilm-controlling / Film

引用本文

导出引用
Maoli Yin, Yingfeng Wang, Xuehong Ren. . Engineering. 2024, 35(4): 95-103 https://doi.org/10.1016/j.eng.2023.06.020

参考文献

[1]
X. Zhao, Y.P. Liang, Y. Huang, J.H. He, Y. Han, B.L. Guo. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv Funct Mater, 30 (17) (2020), p. 1910748.
[2]
M.L. Yin, S.S. Wan, X.H. Ren, C.C. Chu. Development of inherently antibacterial, biodegradable, and biologically active chitosan/pseudo-protein hybrid hydrogels as biofunctional wound dressings. ACS Appl Mater Interfaces, 13 (12) (2021), pp. 14688-14699.
[3]
M.L. Yin, Y.F. Wang, Y. Zhang, X.H. Ren, Y.Y. Qiu, T.S. Huang. Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties. Carbohydr Polym, 232 (2020), p. 115823.
[4]
M. Li, J. Aveyard, K.G. Doherty, R.C. Deller, R.L. Williams, K.N. Kolegraff, et al. Antimicrobial nitric oxide-releasing electrospun dressings for wound healing applications. ACS Mater Au, 2 (2) (2022), pp. 190-203.
[5]
Y.P. Liang, J.H. He, B.L. Guo. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano, 15 (8) (2021), pp. 12687-12722.
[6]
L. Li, X. Cao, X. Shen, S.T. Yu, F. Su, S.W. Liu, et al. Alkyl chitosan film—high strength, functional biomaterials. J Biomed Mater Res Part A, 105 (11) (2017), pp. 3034-3041.
[7]
S.M. Zhang, L. Li, X.H. Ren, T.S. Huang. N-Halamine modified multiporous bacterial cellulose with enhanced antibacterial and hemostatic properties. Int J Biol Macromol, 161 (2020), pp. 1070-1078.
[8]
B. Demir, R.M. Broughton, M.Y. Qiao, T.H. Huang, S.D. Worley. N-Halamine biocidal materials with superior antimicrobial efficacies for wound dressings. Molecules, 22 (10) (2017), p. 1582.
[9]
M.G.A. Vieira, M.A. da Silva, L.O. dos Santos, M.M. Beppu. Natural-based plasticizers and biopolymer films: a review. Eur Polym J, 47 (3) (2011), pp. 254-263.
[10]
S. Patel, S. Srivastava, M.R. Singh, D. Singh. Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. Int J Biol Macromol, 107 (2018), pp. 1888-1897.
[11]
C. Liu, H.R. Shan, X.X. Chen, Y. Si, X. Yin, J.Y. Yu, et al. Novel inorganic-based N-halamine nanofibrous membranes as highly effective antibacterial agent for water disinfection. ACS Appl Mater Interfaces, 10 (51) (2018), pp. 44209-44215.
[12]
J.H. Li, S.L. Zhuang. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur Polym J, 138 (2020), p. 109984.
[13]
P.S. Bakshi, D. Selvakumar, K. Kadirvelu, N.S. Kumar. Chitosan as an environment friendly biomaterial—a review on recent modifications and applications. Int J Biol Macromol, 150 (2020), pp. 1072-1083.
[14]
P. Sahariah, M. Masson. Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship. Biomacromolecules, 18 (11) (2017), pp. 3846-3868.
[15]
M.L. Yin, X.H. Lin, T. Ren, Z.G. Li, X.H. Ren, T.S. Huang. Cytocompatible quaternized carboxymethyl chitosan/poly(vinyl alcohol) blend film loaded copper for antibacterial application. Int J Biol Macromol, 120 (Pt A) (2018), pp. 992-998.
[16]
P. Sahariah, B.E. Benediktssdottir, M.A. Hjalmarsdottir, O.E. Sigurjonsson, K.K. Sorensen, M.B. Thygesen, et al. Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and N,N-dialkyl chitosan derivatives. Biomacromolecules, 16 (5) (2015), pp. 1449-1460.
[17]
V. Patrulea, B.H. Gan, K. Perron, X. Cai, P. Abdel-Sayed, E. Sublet, et al. Synergistic effects of antimicrobial peptide dendrimer-chitosan polymer conjugates against Pseudomonas aeruginosa. Carbohydr Polym, 280 (2022), p. 119025.
[18]
Y.Z. Ma, K. Gao, H.H. Yu, W.X. Liu, Y.K. Qin, R.G. Xing, et al. C-coordinated O-carboxymethyl chitosan Cu(II) complex exerts antifungal activity by disrupting the cell membrane integrity of Phytophthora capsici Leonian. Carbohydr Polym, 261 (2021), p. 117821.
[19]
D.D. Li, X. Gao, X.C. Huang, P.L. Liu, W. Xiong, S.T. Wu, et al. Preparation of organic-inorganic chitosan@silver/sepiolite composites with high synergistic antibacterial activity and stability. Carbohydr Polym, 249 (2020), p. 116858.
[20]
H.C. He, Z.C. Xiao, Y.J. Zhou, A.Q. Chen, X. Xuan, Y.Y. Li, et al. Zwitterionic poly(sulfobetaine methacrylate) hydrogels with optimal mechanical properties for improving wound healing in vivo. J Mater Chem B, 7 (10) (2019), pp. 1697-1707.
[21]
H.T. Lin, A. Venault, Y. Chang. Zwitterionized chitosan based soft membranes for diabetic wound healing. J Membr Sci, 591 (2019), p. 117319.
[22]
Y.X. Chen, J.N. Li, Q.Q. Li, Y.Y. Shen, Z.C. Ge, W.W. Zhang, et al. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohydr Polym, 143 (2016), pp. 246-253.
[23]
X.H. Chu, M. Zhang, N.L. Zhou, F. Wu, B.H. Sun, J. Shen. Synthesis and characterization of a novel antibacterial material containing poly(sulfobetaine) using reverse atom transfer radical polymerization. RSC Adv, 8 (58) (2018), pp. 33000-33009.
[24]
X. Yang, D. Sha, H. Jiang, K. Shi, J.D. Xu, C. Yu, et al. Preparation of antibacterial poly(sulfobetaine methacrylate) grafted on poly(vinyl alcohol)-formaldehyde sponges and their properties. J Appl Polym Sci, 136 (6) (2019), p. 47047.
[25]
R. Wang, K.G. Neoh, E.T. Kang. Integration of antifouling and bactericidal moieties for optimizing the efficacy of antibacterial coatings. J Colloid Interface Sci, 438 (2015), pp. 138-148.
[26]
X. Zhao, B.L. Guo, H. Wu, Y.P. Liang, P.X. Ma. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Commun, 9 (1) (2018), p. 2784.
[27]
L. He, C. Gao, S. Li, C.T.W. Chung, J.H. Xin. Non-leaching and durable antibacterial textiles finished with reactive zwitterionic sulfobetaine. J Ind Eng Chem, 46 (2017), pp. 373-378.
[28]
C. Chen, S.G. Yang, Y.P. Guo, C. Sun, C.G. Gu, B. Xu. Photolytic destruction of endocrine disruptor atrazine in aqueous solution under UV irradiation: products and pathways. J Hazard Mater, 172 (2-3) (2009), pp. 675-684.
[29]
S. Chen, L. Yuan, Q. Li, J. Li, X. Zhu, Y. Jiang, et al. Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating. Small, 12 (26) (2016), pp. 3516-3521.
[30]
Y.J. Chen, W. Wang, Y. Qiu, L.S. Li, L.J. Qian, F. Xin. Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid composites. Polym Degrad Stabil, 140 (2017), pp. 166-175.
[31]
D.W. Yuan, K. Cadien, Q. Liu, H.B. Zeng. Adsorption characteristics and mechanisms of O-carboxymethyl chitosan on chalcopyrite and molybdenite. J Colloid Interface Sci, 552 (2019), pp. 659-670.
[32]
R.L. Tang, Y. Zhang, Y. Zhang, Z.M. Yu. Synthesis and characterization of chitosan based dye containing quaternary ammonium group. Carbohydr Polym, 139 (2016), pp. 191-196.
[33]
M.L. Yin, X.L. Chen, R. Li, D. Huang, X.Y. Fan, X.H. Ren, et al. Preparation and characterization of antimicrobial PVA hybrid films with N-halamine modified chitosan nanospheres. J Appl Polym Sci, 133 (46) (2016), p. 44204.
[34]
R. Li, P. Hu, X.H. Ren, S.D. Worley, T.S. Huang. Antimicrobial N-halamine modified chitosan films. Carbohydr Polym, 92 (1) (2013), pp. 534-539.
[35]
M. Nieto-Suárez, M.A. López-Quintela, M. Lazzari. Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym, 141 (2016), pp. 175-183.
[36]
S. Ganguly, P.P. Maity, S. Mondal, P. Das, P. Bhawal, S. Dhara, et al. Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery. Mater Sci Eng C, 92 (2018), pp. 34-51.
[37]
M.Y. He, A. Potuck, Y. Zhang, C.C. Chu. Arginine-based polyester amide/polysaccharide hydrogels and their biological response. Acta Biomater, 10 (6) (2014), pp. 2482-2494.
[38]
Y. Ma, J.Y. Li, Y. Si, K. Huang, N. Nitin, G. Sun. Rechargeable antibacterial N-halamine films with antifouling function for food packaging applications. ACS Appl Mater Interfaces, 11 (19) (2019), pp. 17814-17822.
[39]
A.M. Heimbuck, T.R. Priddy-Arrington, M.L. Padgett, C.B. Llamas, H.H. Barnett, B.A. Bunnell, et al. Development of responsive chitosan-genipin hydrogels for the treatment of wounds. ACS Appl Bio Mater, 2 (7) (2019), pp. 2879-2888.
[40]
W.Y. Li, B.X. Wang, M.H. Zhang, Z.T. Wu, J.X. Wei, Y. Jiang, et al. All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing. Cellulose, 27 (5) (2020), pp. 2637-2650.
PDF(2075 KB)

Accesses

Citation

Detail

段落导航
相关文章

/