茂金属催化剂催化烯烃聚合反应的研究 ——聚合物的聚集行为和热性能

吴长江, Minqiao Ren, Liping Hou, Shuzhang Qu, Xinwei Li, Cui Zheng, Jian Chen, 王伟

工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 93-99.

PDF(1245 KB)
PDF(1245 KB)
工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 93-99. DOI: 10.1016/j.eng.2023.07.001
研究论文
Letter

茂金属催化剂催化烯烃聚合反应的研究 ——聚合物的聚集行为和热性能

作者信息 +

Ethylene Copolymerization with Linear and End-Cyclized Olefins via a Metallocene Catalyst: Polymerization Behavior and Thermal Properties of Copolymers

Author information +
History +

Abstract

Olefin solution polymerization can be used to obtain high-performance polyolefin materials that cannot be obtained via other polymerization processes. Polyolefin elastomers (POE) are a typical example. Due to cost, only a few linear α-olefins (e.g., 1-butene, 1-hexene, and 1-octene) are used as comonomers in solution polymerization in industry. However, α-olefin comonomers with other structures may have different effects on polymerization in comparison with common linear ones. Moreover, the properties of the corresponding materials may differ significantly. In this work, copolymers of ethylene with linear and end-cyclized α-olefins are synthesized using a metallocene catalyst. The copolymerization of ethylene with linear α-olefins results in a higher turn-over frequency (TOF) and lower incorporation than copolymerization with end-cyclized α-olefins, which may indicate that end-cyclized α-olefins have a higher coordination probability and lower insertion rate. In this reaction, the comonomer is distributed randomly in the polymer chain and efficiently destroys crystallization. End-cyclized α-olefins exhibit a much stronger crystallization destructive capacity (CDC) in the copolymer than linear α-olefins, possibly because linear α-olefins act mainly in the radial direction of the main chain of the polymer, while end-cyclized α-olefins act mainly in the axial direction of the main chain.

Keywords

Metallocene catalyst / Ethylene copolymerization / Comonomer distribution / Crystallization destructive capacity

引用本文

导出引用
吴长江, Minqiao Ren, Liping Hou. 茂金属催化剂催化烯烃聚合反应的研究 ——聚合物的聚集行为和热性能. Engineering. 2023, 30(11): 93-99 https://doi.org/10.1016/j.eng.2023.07.001

参考文献

[1]
V.C. Gibson, S.K. Spitzmesser. Advances in non-metallocene olefin polymerization catalysis. Chem Rev, 103 (1) ( 2003), pp. 283-316
[2]
W. Kaminsky. Olefin polymerization catalyzed by metallocenes. Adv Catal, 46 ( 2001), pp. 89-159
[3]
A.E. Hamielec, J.B.P. Soares. Polymerization reaction engineering—metallocene catalysts. Prog Polym Sci, 21 (4) ( 1996), pp. 651-706
[4]
G.G. Hlatky. Heterogeneous single-site catalysts for olefin polymerization. Chem Rev, 100 (4) ( 2000), pp. 1347-1376
[5]
A.S. Mohite, Y.D. Rajpurkar, A.P. More. Bridging the gap between rubbers and plastics: a review on thermoplastic polyolefin elastomers. Polym Bull, 79 (2) ( 2022), pp. 1309-1343 DOI: 10.1007/s00289-020-03522-8
[6]
P.S. Chum, K.W. Swogger. Olefin polymer technologies—history and recent progress at the Dow Chemical Company. Prog Polym Sci, 33 (8) ( 2008), pp. 797-819
[7]
G. Zanchin, F. Bertini, L. Vendier, G. Ricci, C. Lorber, G. Leone. Copolymerization of ethylene with propylene and higher α-olefins catalyzed by (imido)vanadium(IV) dichloride complexes. Polym Chem, 10 (45) ( 2019), pp. 6200-6216 DOI: 10.1039/c9py01415b
[8]
W. Wang, L. Hou, T. Zhang. Integrated effect of comonomer and catalyst on copolymerization of ethylene with allylcyclopentane or allylcyclohexane by using metallocene catalysts. ChemistrySelect, 5 (25) ( 2020), pp. 7581-7585 DOI: 10.1002/slct.202001213
[9]
M. Canetti, G. Leone, G. Ricci, F. Bertini. Structure and thermal properties of ethylene/4-methyl-1-pentene copolymers: effect of comonomer and monomer sequence distribution. Eur Polym J, 73 ( 2015), pp. 423-432
[10]
S. Losio, G. Leone, F. Bertini, G. Ricci, M.C. Sacchi, A.C. Boccia. Ethylene-4-methyl-1-pentene copolymers of complex chain architecture using α-diimine Ni(II) catalysts: synthesis, 13C NMR assignment and understanding the chain-walking mechanism. Polym Chem, 5 (6) ( 2014), pp. 2065-2075 DOI: 10.1039/c3py01508d
[11]
P. Xiang, Z. Ye. Copolymerization of ethylene with sterically hindered 3,3-dimethyl-1-butene using a chain-walking Pd-diimine catalyst. Macromol Rapid Commun, 31 (12) ( 2010), pp. 1083-1089 DOI: 10.1002/marc.201000014
[12]
S. Losio, A.C. Boccia, L. Boggioni, M.C. Sacchi, D.R. Ferro. Ethene/4-methyl-1-pentene copolymers by metallocene-based catalysts: exhaustive microstructural characterization by 13C NMR spectroscopy. Macromolecules, 42 (18) ( 2009), pp. 6964-6971 DOI: 10.1021/ma901226g
[13]
W.P. Long. Complexes of aluminum chloride and methylaluminum dichloride with bis-(cyclopentadienyl)-titanium dichloride as catalysts for the polymerization of ethylene. J Am Chem Soc, 81 (20) ( 1959), pp. 5312-5316 DOI: 10.1021/ja01529a017
[14]
P. Cossee.Ziegler-Natta catalysis I. Mechanism of polymerization of α-olefins with Ziegler-Natta catalysts. J Catal, 3 (1) ( 1964), pp. 80-88
[15]
S. Kitphaitun, H. Takeshita, K. Nomura. Analysis of ethylene copolymers with long-chain α-olefins (1-dodecene, 1-tetradecene, 1-hexadecene): a transition between main chain crystallization and side chain crystallization. ACS Omega, 7 (8) ( 2022), pp. 6900-6910 DOI: 10.1021/acsomega.1c06560
[16]
M. Hayatifar, L. Bernazzani, G.A. Raspolli. Thermal and structural investigation of random ethylene/1-hexene copolymers with high 1-hexene content. J Therm Anal Calorim, 115 (2) ( 2014), pp. 1711-1718 DOI: 10.1007/s10973-013-3445-0
[17]
Y. Xue, S. Bo, X. Ji. Calibration curve establishment and fractionation temperature selection of polyethylene for preparative temperature rising elution fractionation. Chin J Polym Sci, 33 (7) ( 2015), pp. 1000-1008 DOI: 10.1007/s10118-015-1648-5
[18]
M. Daud, F. Shehzad, M.A. Al-Harthi. Crystallization behaviour and lamellar thickness distribution of metallocene-catalyzed polymer: effect of 1-alkene comonomer and branch length. Can J Chem Eng, 95 (3) ( 2017), pp. 491-499 DOI: 10.1002/cjce.22711
[19]
W. Wang, Z. Fan, L. Feng, C. Li. Substituent effect of bisindenyl zirconene catalyst on ethylene/1-hexene copolymerization and propylene polymerization. Eur Polym J, 41 (1) ( 2005), pp. 83-89
[20]
M. Bochmann. Kinetic and mechanistic aspects of metallocene polymerisation catalysts. J Organomet Chem, 689 (24) ( 2004), pp. 3982-3998
[21]
S.M. Wharry. Randomness in Ziegler-Natta olefin copolymerizations as determined by 13C-NMR spectroscopy—the influence of chain heterogeneity. Polymer, 45 (9) ( 2004), pp. 2985-2989
[22]
E.T. Hsieh, J.C. Randall. Monomer sequence distributions in ethylene-1-hexene copolymers. Macromolecules, 15 (5) ( 1982), pp. 1402-1406 DOI: 10.1021/ma00233a036
PDF(1245 KB)

Accesses

Citation

Detail

段落导航
相关文章

/