[1] |
Open AI. GPT-4 technical report. 2023. arXiv:2303.08774.
|
[2] |
Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al. Segment anything. 2023. arXiv:2304.02643.
|
[3] |
Driess D, Xia F, Sajjadi MSM, Lynch C, Chowdhery A, Ichter B, et al. PaLM-E: an embodied multimodal language model. 2023. arXiv:2303.03378.
|
[4] |
N. Fei, Z. Lu, Y. Gao, G. Yang, Y. Huo, J. Wen, et al. Towards artificial general intelligence via a multimodal foundation model. Nat Commun, 13 (2022), p. 3094.
|
[5] |
R. Dale. GPT-3: what’s it good for?. Nat Lang Eng, 27 (1) (2021), pp. 113-118.
|
[6] |
Kosinski M. Theory of mind may have spontaneously emerged in large language models. 2023. arXiv:2302.02083.
|
[7] |
Bubeck S, Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, et al. Sparks of artificial general intelligence: early experiments with GPT-4. 2023. arXiv:2303.12712.
|
[8] |
M. Binz, E. Schulz. Using cognitive psychology to understand GPT-3. Proc Natl Acad Sci USA, 120 (6) (2023), e2218523120.
|
[9] |
M. Johnson. Embodied understanding. Front Psychol, 6 (2015), p. 875.
|
[10] |
A. Glenberg. Why mental models must be embodied. Adv Psychol, 128 (1999), pp. 77-90.
|
[11] |
E. Tronick, H. Als, L. Adamson, S. Wise, T.B. Brazelton. The infant’s response to entrapment between contradictory messages in face-to-face interaction. J Am Acad Child Psychiatry, 17 (1) (1978), pp. 1-13.
|
[12] |
M.D.S. Ainsworth, M.C. Blehar, E. Waters, S. Wall. Patterns of attachment: a psychological study of the strange situation. Lawrence Erlbaum, Hillsdale (1978).
|
[13] |
B. Amsterdam. Mirror self-image reactions before age two. Dev Psychobiol, 5 (4) (1972), pp. 297-305.
|
[14] |
E.J. Gibson, R.D. Walk. The “visual cliff”. Sci Am, 202 (4) (1960), pp. 64-71.
|
[15] |
J. Duan, S. Yu, H.L. Tan, H. Zhu, C. Tan. A survey of embodied AI: from simulators to research tasks. IEEE Trans Emerg Top Comput Intell, 6 (2) (2022), pp. 230-244.
|
[16] |
T. Shu, Y. Peng, S.C. Zhu, H. Lu. A unified psychological space for human perception of physical and social events. Cognit Psychol, 128 (2021), 101398.
|
[17] |
Pathak D, Agrawal P, Efros AA, Darrell T. Curiosity-driven exploration by self-supervised prediction. In: Proceedings of the 34th International Conference On Machine Learning; 2017 Aug 7-9; Sydney, NSW, Australia. New York City: Association for Computing Machinery; 2778-87.
|
[18] |
Sancaktar C, Blaes S, Martius G. Curious exploration via structured world models yields zero-shot object manipulation. In: Proceedings of the 36th International Conference on Neural Information Processing Systems; 2022 Nov 28-Dec 9; New Orleans, LU, USA. New York City: Curran Associates Inc.; 2022. p. 24170-83.
|
[19] |
Gu S, Yang L, Du Y, Chen G, Walter F, Wang J, et al. A review of safe reinforcement learning: methods, theory and applications. 2022. arXiv:2205.10330.
|
[20] |
L. Yuan, X. Gao, Z. Zheng, M. Edmonds, Y.N. Wu, F. Rossano, et al. In situ bidirectional human-robot value alignment. Sci Robot, 7 (68) (2022), p. eabm4183.
|
[21] |
A.H. Maslow. A theory of human motivation. Psychol Rev, 50 (4) (1943), pp. 370-396.
|
[22] |
C.P. Alderfer. An empirical test of a new theory of human needs. Organ Behav Hum Perform, 4 (2) (1969), pp. 142-175.
|
[23] |
S.H. Schwartz, W. Bilsky. Toward a universal psychological structure of human values. J Pers Soc Psychol, 53 (3) (1987), pp. 550-562.
|
[24] |
A. Michotte. The perception of causality. Routledge, Milton Park (1963).
|
[25] |
A.M. Leslie, S. Keeble. Do six-month-old infants perceive causality?. Cognition, 25 (3) (1987), pp. 265-288.
|
[26] |
L.M. Oakes, L.B. Cohen. Infant perception of a causal event. Cogn Dev, 5 (2) (1990), pp. 193-207.
|
[27] |
R. Baillargeon, M. Stavans, D. Wu, Y. Gertner, P. Setoh, A.K. Kittredge, et al. Object individuation and physical reasoning in infancy: an integrative account. Lang Learn Dev, 8 (1) (2012), pp. 4-46.
|
[28] |
L. Kotovsky, R. Baillargeon. The development of calibration-based reasoning about collision events in young infants. Cognition, 67 (3) (1998), pp. 311-351.
|
[29] |
Y. Luo, R. Baillargeon, L. Brueckner, Y. Munakata. Reasoning about a hidden object after a delay: evidence for robust representations in 5-month-old infants. Cognition, 88 (3) (2003), pp. B23-B32.
|
[30] |
A. Waismeyer, A.N. Meltzoff. Learning to make things happen: infants’ observational learning of social and physical causal events. J Exp Child Psychol, 162 (2017), pp. 58-71.
|
[31] |
Y. Zhu, T. Gao, L. Fan, S. Huang, M. Edmonds, H. Liu, et al. Dark, beyond deep: a paradigm shift to cognitive AI with humanlike common sense. Engineering, 6 (3) (2020), pp. 310-345.
|
[32] |
B.M. Lake, T.D. Ullman, J.B. Tenenbaum, S.J. Gershman. Building machines that learn and think like people. Behav Brain Sci, 40 (2017), p. e253.
|
[33] |
A. Holzinger, A. Saranti, C. Molnar, P. Biecek, W. Samek. Explainable AI methods—a brief overview. Springer International Publishing, Berlin (2022), pp. 13-38.
|
[34] |
Xu L, Huang H, Liu J. SUTD-TrafficQA:a question answering benchmark and an efficient network for video reasoning over traffic events. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021 Jun 19-25; online. New York City: IEEE; 9878-88.
|
[35] |
Bakhtin A, van der Maaten L, Johnson J, Gustafson L, Girshick R. PHYRE:a new benchmark for physical reasoning. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems; 2019 Dec 8-14; Vancouver, BC, Canada, New York City: Curran Associates Inc.; 2019.
|
[36] |
Ahmed O, Träuble F, Goyal A, Neitz A, Wuthrich M, Bengio Y, et al. CausalWorld:a robotic manipulation benchmark for causal structure and transfer learning. In: Proceedings of the International Conference on Learning Representations; 2021 May 3-7; online. Vancouver: International Conference on Learning Representations; 2021.
|
[37] |
Karpathy A, Li FF. Deep visual-semantic alignments for generating image descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015 Jun 7-12; Boston, MA, USA. New York City: IEEE; 2015. p. 3128-37.
|
[38] |
Laskar MTR, Bari MS, Rahman M, Bhuiyan MAH, Joty S, Huang JX. A systematic study and comprehensive evaluation of ChatGPT on benchmark datasets. 2023. arXiv:2305.18486.
|
[39] |
Dziri N, Lu X, Sclar M, Li XL, Jiang L, Lin BY, et al. Faith and fate: limits of transformers on compositionality. 2023. arXiv:2305.18654.
|
[40] |
Kosoy E, Reagan ER, Lai L, Gopnik A, Cobb DK. Comparing machines and children: using developmental psychology experiments to assess the strengths and weaknesses of laMDA responses. 2023. arXiv:2305.11243.
|
[41] |
Yao B, Yang X, Zhu SC. Introduction to a large-scale general purpose ground truth database: methodology, annotation tool and benchmarks. In: Proceedings of the International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition; 2007 Aug 27-29; Ezhou, China. Berlin: Springer; 2007. p. 169-83.
|
[42] |
Deng J, Dong W, Socher R, Li LJ, Li K, Li FF. ImageNet:a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2009 Jun 20-25; Miami, FL, USA. New York City: IEEE; 2009. p. 248-55.
|
[43] |
Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: common objects in context. In: Proceedings of the European Conference on Computer Vision; 2014 Sep 6-12; Zurich, Switzerland. Berlin: Springer; 2014. p. 740-55.
|
[44] |
Antol S, Agrawal A, Lu J, Mitchell M, Batra D, Zitnick CL, et al. VQA:visual question answering. In: Proceedings of the IEEE International Conference on Computer Vision; 2015 Dec 7-13; Santiago, Chile. New York City: IEEE; 2015.
|
[45] |
Wang A, Singh A, Michael J, Hill F, Levy O, Bowman SR. GLUE: a multi-task benchmark and analysis platform for natural language understanding. 2018. arXiv:1804.07461.
|
[46] |
J. Hernández-Orallo. Evaluation in artificial intelligence: from task-oriented to ability-oriented measurement. Artif Intell Rev, 48 (3) (2017), pp. 397-447.
|
[47] |
Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, et al. OpenAI Gym. 2016. arXiv:1606.01540.
|
[48] |
Beattie C, Leibo JZ, Teplyashin D, Ward T, Wainwright M, Küttler H, et al. DeepMind Lab. 2016. arXiv:1612.03801.
|
[49] |
Li C, Xia F, Martín-Martín R, Lingelbach M, Srivastava S, Shen B, et al. IGibson 2.0: object-centric simulation for robot learning of everyday household tasks. 2021. arXiv:2108.03272.
|
[50] |
Gan C, Schwartz J, Alter S, Mrowca D, Schrimpf M, Traer J, et al. ThreeDWorld: a platform for interactive multi-modal physical simulation. 2020. arXiv:2007.04954.
|
[51] |
Kolve E, Mottaghi R, Han W, VanderBilt E, Weihs L, Herrasti A, et al. AI2-THOR: an interactive 3D environment for visual AI. 2017. arXiv:1712.05474.
|
[52] |
Savva M, Kadian A, Maksymets O, Zhao Y, Wijmans E, Jain B, et al. Habitat:a platform for embodied AI research. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2019 Oct 27-Nov 2; Seoul, Republic of Korea. New York City: IEEE; 9339-47.
|
[53] |
Wu Y, Wu Y, Gkioxari G, Tian Y. Building generalizable agents with a realistic and rich 3D environment. 2018. arXiv:1801.02209.
|
[54] |
Puig X, Ra K, Boben M, Li J, Wang T, Fidler S, et al. VirtualHome:simulating household activities via programs. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition; 2018 Jun 18-23; Salt Lake City, UT, USA. New York City: IEEE; 2018. p. 8494-502.
|
[55] |
A. Zador, S. Escola, B. Richards, B. Ölveczky, Y. Bengio, K. Boahen, et al. Catalyzing next-generation artificial intelligence through NeuroAI. Nat Commun, 14 (1) (2023), p. 1597
|
[56] |
G. Avrin. Assessing artificial intelligence capabilities. AI and the future of skills, volume 1: capabilities and assessments, OECD Publishing, Paris (2021).
|
[57] |
Clark P, Cowhey I, Etzioni O, Khot T, Sabharwal A, Schoenick C, et al. Think you have solved question answering? Try arc, the AI2 reasoning challenge. 2018. arXiv:1803.05457.
|
[58] |
Srivastava A, Rastogi A, Rao A, Shoeb AAM, Abid A, Fisch A, et al. Beyond the imitation game: quantifying and extrapolating the capabilities of language models. 2022. arXiv:2206.04615.
|
[59] |
Li C, Zhang R, Wong J, Gokmen C, Srivastava S, Martín-Martín R, et al. Behavior-1k: a benchmark for embodied AI with 1000 everyday activities and realistic simulation. In: Proceedings of the Conference on Robot Learning; 2023 Nov 6-9; Atlanta, GA, USA; online. The Conference on Robot Learning (CoRL); 2023, p. 80-93.
|
[60] |
Xu B, Ren Q. Artificial open world for evaluating AGI: a conceptual design. In: Proceedings of the International Conference on Artificial General Intelligence; 2022 Aug 19-22; Seattle, WA, USA; online. The Artificial General Intelligence Society; 2023, p. 452-63.
|
[61] |
L.M. Terman, M.A. Merrill. Stanford-Binet intelligence scale:manual for the third revision, form L-M. Houghton Mifflin, Boston (1960).
|
[62] |
N. Bayley. Bayley-III: Bayley Scales of infant and toddler development. Giunti OS, Florence (2009).
|
[63] |
D. Wechsler. Wechsler Adult Intelligence Scale. Arch Clin Neuropsychol (1955).
|
[64] |
J.C. Raven, J. Court. Raven’s progressive matrices. Western Psychological Services, Torrance (1938).
|
[65] |
R.J. Sternberg. What should intelligence tests test? Implications of a triarchic theory of intelligence for intelligence testing. Educ Res, 13 (1) (1984), pp. 5-15.
|
[66] |
Z. Tu, X. Chen, A.L. Yuille, S.C. Zhu. Image parsing: unifying segmentation, detection, and recognition. Int J Comput Vis, 63 (2) (2005), pp. 113-140.
|
[67] |
I. Newton, J. Colson. The method of fluxions and infinite series: with its application to the geometry of curve-lines. Henry Woodfall, London (1736).
|
[68] |
E.S. Spelke, K.D. Kinzler. Core knowledge. Dev Sci, 10 (1) (2007), pp. 89-96.
|
[69] |
S. Duval, R.A. Wicklund. A theory of objective self-awareness. Academic Press, Cambridge (1972).
|
[70] |
P. Rochat. Five levels of self-awareness as they unfold early in life. Conscious Cogn, 12 (4) (2003), pp. 717-731.
|
[71] |
H. Wimmer, J. Perner. Beliefs about beliefs: representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13 (1) (1983), pp. 103-128.
|
[72] |
H.M. Wellman, D. Liu. Scaling of theory-of-mind tasks. Child Dev, 75 (2) (2004), pp. 523-541.
|
[73] |
F. Warneken, M. Tomasello. Altruistic helping in human infants and young chimpanzees. Science, 311 (5765) (2006), pp. 1301-1303.
|
[74] |
Y. Kanakogi, Y. Inoue, G. Matsuda, D. Butler, K. Hiraki, M. Myowa-Yamakoshi. Preverbal infants affirm third-party interventions that protect victims from aggressors. Nat Hum Behav, 1 (2) (2017), p. 0037.
|
[75] |
A. Geraci, L. Surian. The developmental roots of fairness: infants’ reactions to equal and unequal distributions of resources. Dev Sci, 14 (5) (2011), pp. 1012-1020.
|
[76] |
Porter HH III. A methodology for the assessment of AI consciousness. In: Proceedings of the International Conference on Artificial General Intelligence; 2016 Jul 16-19; New York City, NY, USA. Berlin: Springe; 2016. p. 305-13.
|
[77] |
I. Kotseruba, J.K. Tsotsos. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artif Intell Rev, 53 (1) (2020), pp. 17-94.
|
[78] |
Xie X, Liu H, Zhang Z, Qiu Y, Gao F, Qi S, et al. VRGYM:a virtual testbed for physical and interactive AI. In: Proceedings of the ACM Turing Celebration Conference-China; 2019 May 17-19; Chengdu, China. New York City: ACM Turing Celebration Conference; 1-6.
|
[79] |
Gao X, Gong R, Shu T, Xie X, Wang S, Zhu SC. VRKitchen: an interactive 3D virtual environment for task-oriented learning. 2019. arXiv:1903.05757.
|
[80] |
Ma X, Yong S, Zheng Z, Li Q, Liang Y, Zhu SC, et al. SQA3D: situated question answering in 3D scenes. In: Proceedings of the 11th International Conference on Learning Representations; 2023 May 1-5; Kigali, Rwanda. New York City: IEEE; 2023.
|