一种用于大视场成像和偏振光谱探测的微型可重构超构光学系统

Fei Zhang, Minghao Liao, Mingbo Pu, Yinghui Guo, Lianwei Chen, Xiong Li, Qiong He, Tongtong Kang, Xiaoliang Ma, Yuan Ke, Xiangang Luo

工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 67-73.

PDF(1700 KB)
PDF(1700 KB)
工程(英文) ›› 2024, Vol. 35 ›› Issue (4) : 67-73. DOI: 10.1016/j.eng.2023.07.008
研究论文
Article

一种用于大视场成像和偏振光谱探测的微型可重构超构光学系统

作者信息 +

A Miniature Meta-Optical System for Reconfigurable Wide-Angle Imaging and Polarization-Spectral Detection

Author information +
History +

Abstract

Wide-angle imaging and spectral detection play vital roles in tasks such as target tracking, object classification, and anti-camouflage. However, limited by their intrinsically different architectures, as determined by frequency dispersion requirements, their simultaneous implementation in a shared-aperture system is difficult. Here, we propose a novel concept to realize reconfigurable dual-mode detection based on electrical-control tunable metasurfaces. As a proof-of-concept demonstration, the simultaneous implementation of wide-angle imaging and polarization-spectral detection in a miniature shared-aperture meta-optical system is realized for the first time via the electrical control of cascaded catenary-like metasurfaces. The proposed system supports the imaging (spectral) resolution of approximately 27.8 line-pairs per millimeter (lp·mm−1; ∼80 nm) for an imaging (spectral) mode from 8 to 14 μm. This system also bears a large field of view of about 70°, enabling multi-target recognition in both modes. This work may promote the miniaturization of multifunctional optical systems, including spectrometers and polarization imagers, and illustrates the potential industrial applications of meta-optics in biomedicine, security, space exploration, and more.

Keywords

Metasurfaces / Reconfigurable / Imaging / Spectral

引用本文

导出引用
Fei Zhang, Minghao Liao, Mingbo Pu. . Engineering. 2024, 35(4): 67-73 https://doi.org/10.1016/j.eng.2023.07.008

参考文献

[1]
A.F. Goetz, G. Vane, J.E. Solomon, B.N. Rock. Imaging spectrometry for Earth remote sensing. Science, 228 (4704) (1985), pp. 1147-1153.
[2]
L. He, J. Li, C. Liu, S. Li. Recent advances on spectral-spatial hyperspectral image classification: an overview and new guidelines. IEEE Trans Geosci Remote Sens, 56 (3) (2018), pp. 1579-1597.
[3]
M. Shimoni, R. Haelterman, C. Perneel. Hypersectral imaging for military and security applications: combining myriad processing and sensing techniques. IEEE Geosci Remote Sens Mag, 7 (2) (2019), pp. 101-117.
[4]
W.T. Chen, A.Y. Zhu, F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater, 5 (8) (2020), pp. 604-620.
[5]
X. Li, M. Pu, X. Ma, Y. Guo, P. Gao, X. Luo. Dispersion engineering in metamaterials and metasurfaces. J Phys D Appl Phys, 51 (5) (2018), p. 054002.
[6]
X. Zou, G. Zheng, Q. Yuan, W. Zang, R. Chen, T. Li, et al. Imaging based on metalenses. PhotoniX, 1 (2020), p. 2.
[7]
C. He, Y. Shen, A. Forbes. Towards higher-dimensional structured light. Light Sci Appl, 11 (2022), p. 205.
[8]
M. Liu, P. Huo, W. Zhu, C. Zhang, S. Zhang, M. Song, et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat Commun, 12 (2021), p. 2230.
[9]
Z.L. Deng, Q.A. Tu, Y. Wang, Z.Q. Wang, T. Shi, Z. Feng, et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography. Adv Mater, 33 (43) (2021), p. e2103472.
[10]
Y. Bao, L. Wen, Q. Chen, C.W. Qiu, B. Li. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci Adv, 7 (25) (2021), p. eabh0365.
[11]
F. Zhang, M. Pu, Y. Guo, X. Ma, X. Li, P. Gao, et al. Synthetic vector optical fields with spatial and temporal tunability. Sci China Phys Mech Astron, 65 (5) (2022), p. 254211.
[12]
J. Chen, X. Ye, S. Gao, Y. Chen, Y. Zhao, C. Huang, et al. Planar wide-angle-imaging camera enabled by metalens array. Optica, 9 (4) (2022), pp. 431-437.
[13]
A. Martins, K. Li, J. Li, H. Liang, D. Conteduca, B.H.V. Borges, et al. On metalenses with arbitrarily wide field of view. ACS Photonics, 7 (8) (2020), pp. 2073-2079.
[14]
F. Zhang, M. Pu, X. Li, X. Ma, Y. Guo, P. Gao, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater, 33 (11) (2021), p. e2008157.
[15]
M.Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun, 12 (2021), p. 1225.
[16]
X. Wan, C. Xiao, H. Huang, Q. Xiao, W. Xu, Y. Li, et al. Joint modulations of electromagnetic waves and digital signals on a single metasurface platform to reach programmable wireless communications. Engineering, 8 (2022), pp. 886-895.
[17]
W. Meng, Y. Hua, K. Cheng, B. Li, T. Liu, Q. Chen, et al. 100 hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron Sci, 1 (9) (2022), p. 220004.
[18]
J. Li, P. Yu, S. Zhang, N. Liu. A reusable metasurface template. Nano Lett, 20 (9) (2020), pp. 6845-6851.
[19]
Z.X. Wang, H. Yang, R. Shao, J.W. Wu, G. Liu, F. Zhai, et al. A planar 4-bit reconfigurable antenna array based on the design philosophy of information metasurfaces. Engineering, 17 (2022), pp. 64-74.
[20]
P. Zheng, Q. Dai, Z. Li, Z. Ye, J. Xiong, H.C. Liu, et al. Metasurface-based key for computational imaging encryption. Sci Adv, 7 (21) (2021), p. eabg0363.
[21]
P. Georgi, Q. Wei, B. Sain, C. Schlickriede, Y. Wang, L. Huang, et al. Optical secret sharing with cascaded metasurface holography. Sci Adv, 7 (16) (2021), p. eabf9718.
[22]
T. Santiago-Cruz, S.D. Gennaro, O. Mitrofanov, S. Addamane, J. Reno, I. Brener, et al. Resonant metasurfaces for generating complex quantum states. Science, 377 (6609) (2022), pp. 991-995.
[23]
J. Liu, M. Shi, Z. Chen, S. Wang, Z. Wang, S. Zhu. Quantum photonics based on metasurfaces. Opto-Electron Adv, 4 (9) (2021), p. 200092.
[24]
L. Li, Z. Liu, X. Ren, S. Wang, V.C. Su, M.K. Chen, et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 368 (6498) (2020), pp. 1487-1490.
[25]
J. Cai, F. Zhang, M. Pu, Y. Chen, Y. Guo, T. Xie, et al. Dispersion-enabled symmetry switching of photonic angular-momentum coupling. Adv Funct Mater, 33 (19) (2023), p. 2212147.
[26]
R.C. Devlin, A. Ambrosio, N.A. Rubin, J.P.B. Mueller, F. Capasso. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358 (6365) (2017), pp. 896-901.
[27]
F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater, 27 (47) (2017), p. 1704295.
[28]
Q. Song, M. Odeh, J. Zúñiga-Pérez, B. Kanté, P. Genevet. Plasmonic topological metasurface by encircling an exceptional point. Science, 373 (6559) (2021), pp. 1133-1137.
[29]
X. Xie, M. Pu, J. Jin, M. Xu, Y. Guo, X. Li, et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett, 126 (18) (2021), p. 183902.
[30]
N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334 (6054) (2011), pp. 333-337.
[31]
X. Luo. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron, 58 (9) (2015), p. 594201.
[32]
Y. Wang, Q. Chen, W. Yang, Z. Ji, L. Jin, X. Ma, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun, 12 (2021), p. 5560.
[33]
K. Ou, F. Yu, G. Li, W. Wang, A.E. Miroshnichenko, L. Huang, et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Sci Adv, 6 (37) (2020), p. eabc0711.
[34]
H. Zhou, L. Chen, F. Shen, K. Guo, Z. Guo. Broadband achromatic metalens in the midinfrared range. Phys Rev Appl, 11 (2) (2019), p. 024066.
[35]
W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol, 13 (3) (2018), pp. 220-226.
[36]
S. Wang, P.C. Wu, V.C. Su, Y.C. Lai, M.K. Chen, H.Y. Kuo, et al. A broadband achromatic metalens in the visible. Nat Nanotechnol, 13 (3) (2018), pp. 227-232.
[37]
Y. Wang, Q. Fan, T. Xu. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv, 4 (2021), p. 200008.
[38]
Z. Yang, T. Albrow-Owen, W. Cai, T. Hasan. Miniaturization of optical spectrometers. Science, 371 (6528) (2021), p. eabe0722.
[39]
A. McClung, S. Samudrala, M. Torfeh, M. Mansouree, A. Arbabi. Snapshot spectral imaging with parallel metasystems. Sci Adv, 6 (38) (2020), p. eabc7646.
[40]
M. Faraji-Dana, E. Arbabi, A. Arbabi, S.M. Kamali, H. Kwon. A. Faraon. Compact folded metasurface spectrometer. Nat Commun, 9 (2018), p. 4196.
[41]
H.H. Yoon, H.A. Fernandez, F. Nigmatulin, W. Cai, Z. Yang, H. Cui, et al. Miniaturized spectrometers with a tunable van der Waals junction. Science, 378 (6617) (2022), pp. 296-299.
[42]
W. Deng, Z. Zheng, J. Li, R. Zhou, X. Chen, D. Zhang, et al. Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers. Nat Commun, 13 (2022), p. 4627.
[43]
G. Hu, M. Wang, Y. Mazor, C.W. Qiu, A. Alù. Tailoring light with layered and Moiré metasurfaces. Trends Chem, 3 (5) (2021), pp. 342-358.
[44]
G. Hu, A. Krasnok, Y. Mazor, C.W. Qiu, A. Alù. Moiré hyperbolic metasurfaces. Nano Lett, 20 (5) (2020), pp. 3217-3224.
[45]
P. Wang, Y. Zheng, X. Chen, C. Huang, Y.V. Kartashov, L. Torner, et al. Localization and delocalization of light in photonic Moiré lattices. Nature, 577 (7788) (2020), pp. 42-46.
[46]
G. Hu, Q. Ou, G. Si, Y. Wu, J. Wu, Z. Dai, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582 (7811) (2020), pp. 209-213.
[47]
M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv, 1 (9) (2015), p. e1500396.
PDF(1700 KB)

Accesses

Citation

Detail

段落导航
相关文章

/