[1] |
M. Zhong, T. Wang, W. Zhao, J. Huang, B. Wang, L. Blaney, et al.. Emerging organic contaminants in Chinese surface water: identification of priority pollutants. Engineering, 11 ( 2022), pp. 111-125
|
[2] |
W. Chu, S.W. Krasner, N. Gao, M.R. Templeton, D. Yin. Contribution of the antibiotic chloramphenicol and its analogues as precursors of dichloroacetamide and other disinfection byproducts in drinking water. Environ Sci Technol, 50 (1) ( 2016), pp. 388-396 DOI: 10.1021/acs.est.5b04856
|
[3] |
X. Li, F. He, Z. Wang, B. Xing. Roadmap of environmental health research on emerging contaminants: inspiration from the studies on engineered nanomaterials. Eco-Environ Health, 1 (3) ( 2022), pp. 181-197
|
[4] |
J. Zhang, J. Xu, H. Lei, H. Liang, X. Li, B. Li. The development of variation-based rifampicin resistance in Staphylococcus aureus deciphered through genomic and transcriptomic study. J Hazard Mater, 442 ( 2023), Article 130112
|
[5] |
Y. Zhou, R. Farzana, S. Sihalath, S. Rattanavong, M. Vongsouvath, M. Mayxay, et al.. A one-health sampling strategy to explore the dissemination and relationship between colistin resistance in human, animal, and environmental sectors in Laos. Engineering, 15 ( 2022), pp. 45-56 DOI: 10.3934/jimo.2020142
|
[6] |
Z. Han, H. Feng, X. Luan, Y. Shen, L. Ren, L. Deng, et al.. Three-year consecutive field application of erythromycin fermentation residue following hydrothermal treatment: cumulative effect on soil antibiotic resistance genes. Engineering, 15 ( 2022), pp. 78-88
|
[7] |
N.H. Tran, H. Chen, M. Reinhard, F. Mao, K.Y. Gin. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res, 104 ( 2016), pp. 461-472
|
[8] |
P.Y. Nguyen, G. Carvalho, M.A.M. Reis, A. Oehmen. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. Water Res, 188 ( 2021), Article 116446
|
[9] |
G. Wang, D. Wang, Y. Xu, Z. Li, L. Huang. Study on optimization and performance of biological enhanced activated sludge process for pharmaceutical wastewater treatment. Sci Total Environ, 739 ( 2020), Article 140166
|
[10] |
D. Mosca Angelucci, E. Clagnan, L. Brusetti, M.C. Tomei. Anaerobic phenol biodegradation: kinetic study and microbial community shifts under high-concentration dynamic loading. Appl Microbiol Biotechnol, 104 (15) ( 2020), pp. 6825-6838 DOI: 10.1007/s00253-020-10696-8
|
[11] |
X. Ma, M. Qi, Z. Li, Y. Zhao, P. Yan, B. Liang, et al.. Characterization of an efficient chloramphenicol-mineralizing bacterial consortium. Chemosphere, 222 ( 2019), pp. 149-155
|
[12] |
X. Ma, B. Liang, M. Qi, H. Yun, K. Shi, Z. Li, et al.. Novel pathway for chloramphenicol catabolism in the activated sludge bacterial isolate Sphingobium sp. CAP-1. Environ Sci Technol, 54 (12) ( 2020), pp. 7591-7600 DOI: 10.1021/acs.est.9b07324
|
[13] |
J. Zhang, W. Gan, R. Zhao, K. Yu, H. Lei, R. Li, et al.. Chloramphenicol biodegradation by enriched bacterial consortia and isolated strain Sphingomonas sp. CL5.1: the reconstruction of a novel biodegradation pathway. Water Res, 187 ( 2020), Article 116397
|
[14] |
M. Sayed, A. Khan, S. Rauf, N.S. Shah, F. Rehman, A. Al-Kahtani, et al.. Bismuth-doped nano zerovalent iron: a novel catalyst for chloramphenicol degradation and hydrogen production. ACS Omega, 5 (47) ( 2020), pp. 30610-30624 DOI: 10.1021/acsomega.0c04574
|
[15] |
H. Guo, N. Jiang, H. Wang, N. Lu, K. Shang, J. Li, et al.. Degradation of antibiotic chloramphenicol in water by pulsed discharge plasma combined with TiO2/WO3 composites: mechanism and degradation pathway. J Hazard Mater, 371 ( 2019), pp. 666-676
|
[16] |
Z. Xin, T. Fengwei, W. Gang, L. Xiaoming, Z. Qiuxiang, Z. Hao, et al.. Isolation, identification and characterization of human intestinal bacteria with the ability to utilize chloramphenicol as the sole source of carbon and energy. FEMS Microbiol Ecol, 82 (3) ( 2012), pp. 703-712
CrossRef
ADS
Google scholar
|
[17] |
T. Grummt, H.G. Wunderlich, A. Chakraborty, M. Kundi, B. Majer, F. Ferk, et al.. Genotoxicity of nitrosulfonic acids, nitrobenzoic acids, and nitrobenzylalcohols, pollutants commonly found in ground water near ammunition facilities. Environ Mol Mutagen, 47 (2) ( 2006), pp. 95-106 DOI: 10.1002/em.20172
|
[18] |
Y. Liu, H. Li, R. Wang, Q. Hu, Y. Zhang, Z. Wang, et al.. Underlying mechanisms of promoted formation of haloacetic acids disinfection byproducts after indometacin degradation by non-thermal discharge plasma. Water Res, 220 ( 2022), Article 118701
|
[19] |
H. Zhao, L. Yang, Y. Li, W. Xue, K. Li, Y. Xie, et al.. Environmental occurrence and risk assessment of haloacetic acids in swimming pool water and drinking water. RSC Adv, 10 (47) ( 2020), pp. 28267-28276 DOI: 10.1039/d0ra02389b
|
[20] |
R. Zhao, K. Yu, J. Zhang, G. Zhang, J. Huang, L. Ma, et al.. Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches. Water Res, 186 ( 2020), Article 116318
|
[21] |
J. Zhang, X. Li, U. Klümper, H. Lei, T.U. Berendonk, F. Guo, et al.. Deciphering chloramphenicol biotransformation mechanisms and microbial interactions via integrated multi-omics and cultivation-dependent approaches. Microbiome, 10 (1) ( 2022), Article 180
|
[22] |
R. Zhao, J. Feng, J. Huang, X. Li, B. Li. Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors. Sci Total Environ, 755 (Pt 2) ( 2021), Article 142632
|
[23] |
S. Chen, Y. Zhou, Y. Chen, J. Gu. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34 (17) ( 2018), pp. i884-i890 DOI: 10.1093/bioinformatics/bty560
|
[24] |
D.E. Wood, J. Lu, B. Langmead. Improved metagenomic analysis with Kraken 2. Genome Biol, 20 (1) ( 2019), Article 257
|
[25] |
J. Lu, F.P. Breitwieser, P. Thielen, S.L. Salzberg. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci, 3( 2017), Article e104 DOI: 10.7717/peerj-cs.104
|
[26] |
S. Nurk, D. Meleshko, A. Korobeynikov, P.A. Pevzner. metaSPAdes: a new versatile metagenomic assembler. Genome Res, 27 (5) ( 2017), pp. 824-834 DOI: 10.1101/gr.213959.116
|
[27] |
M. Kolmogorov, D.M. Bickhart, B. Behsaz, A. Gurevich, M. Rayko, S.B. Shin, et al.. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods, 17 (11) ( 2020), pp. 1103-1110 DOI: 10.1038/s41592-020-00971-x
|
[28] |
B.J. Walker, T. Abeel, T. Shea, M. Priest, A. Abouelliel, S. Sakthikumar, et al.. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 9 (11) ( 2014), Article e112963 DOI: 10.1371/journal.pone.0112963
|
[29] |
Yu K, Qiu Z, Mu R, Qiao X, Zhang L, Lian CA, et al. Recovery of high-qualitied Genomes from a deep-inland Salt Lake Using BASALT. 2021. bioRxiv 2021.03.05.434042.
|
[30] |
M.R. Olm, C.T. Brown, B. Brooks, J.F. Banfield. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J, 11 (12) ( 2017), pp. 2864-2868 DOI: 10.1038/ismej.2017.126
|
[31] |
D.H. Parks, M. Imelfort, C.T. Skennerton, P. Hugenholtz, G.W. Tyson. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res, 25 (7) ( 2015), pp. 1043-1055 DOI: 10.1101/gr.186072.114
|
[32] |
P.A. Chaumeil, A.J. Mussig, P. Hugenholtz, D.H. Parks. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics, 36 (6) ( 2019), pp. 1925-1927
|
[33] |
D. Hyatt, G.L. Chen, P.F. Locascio, M.L. Land, F.W. Larimer, L.J. Hauser. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11 (1) ( 2010), Article 119
|
[34] |
|
[35] |
T. Aramaki, R. Blanc-Mathieu, H. Endo, K. Ohkubo, M. Kanehisa, S. Goto, et al.. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics, 36 (7) ( 2020), pp. 2251-2252 DOI: 10.1093/bioinformatics/btz859
|
[36] |
T.A. Joseph, P. Chlenski, A. Litman, T. Korem, I. Pe’er. Accurate and robust inference of microbial growth dynamics from metagenomic sequencing reveals personalized growth rates. Genome Res, 32 (3) ( 2022), pp. 558-568 DOI: 10.1101/gr.275533.121
|
[37] |
M.E. Ritchie, B. Phipson, D. Wu, Y. Hu, C.W. Law, W. Shi, et al.. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 43 (7) ( 2015), Article e47 DOI: 10.1093/nar/gkv007
|
[38] |
E. Bolyen, J.R. Rideout, M.R. Dillon, N.A. Bokulich, C.C. Abnet, G.A. Al-Ghalith, et al.. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 37 (8) ( 2019), pp. 852-857 DOI: 10.1038/s41587-019-0209-9
|
[39] |
Q. Wang, G.M. Garrity, J.M. Tiedje, J.R. Cole. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 73 (16) ( 2007), pp. 5261-5267
|
[40] |
M. Nie, C. Yan, X. Xiong, X. Wen, X. Yang, Z. Lv, et al.. Degradation of chloramphenicol using a combination system of simulated solar light, Fe2+ and persulfate. Chem Eng J, 348 ( 2018), pp. 455-463
|
[41] |
J. Chen, Y. Xia, Q. Dai. Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: performance, kinetics and degradation mechanism. Electrochim Acta, 165 ( 2015), pp. 277-287
|
[42] |
S. Chong, Y.L. Song, H. Zhao, G.M. Zhang, J. Li. Ultrasound/Zn0 for aqueous 4-nitrobenzoic acid degradation. Desalination Water Treat, 57 (52) (2016), pp. 24990-24998
CrossRef
ADS
Google scholar
|
[43] |
M.A. Mazhar, N.A. Khan, S. Ahmed, A.H. Khan, A. Hussain, Rahisuddin, et al.. Chlorination disinfection by-products in municipal drinking water—a review. J Clean Prod, 273 ( 2020), Article 123159
|
[44] |
J. Zhang, H. Zhang, X. Liu, F. Cui, Z. Zhao. Efficient reductive and oxidative decomposition of haloacetic acids by the vacuum-ultraviolet/sulfite system. Water Res, 210 ( 2022), Article 117974
|
[45] |
K.Y. Park, S.Y. Choi, S.K. Ahn, J.H. Kweon. Disinfection by-product formation potential of algogenic organic matter from Microcystis aeruginosa: effects of growth phases and powdered activated carbon adsorption. J Hazard Mater, 408 ( 2021), Article 124864
|
[46] |
X. Luan, H. Zhang, Z. Tian, M. Yang, X. Wen, Y. Zhang. Microbial community functional structure in an aerobic biofilm reactor: impact of streptomycin and recovery. Chemosphere, 255 ( 2020), Article 127032
|
[47] |
R.A. Sorg, L. Lin, G.S. van Doorn, M. Sorg, J. Olson, V. Nizet, et al.. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLoS Biol, 14 (12)( 2016), Article e2000631 DOI: 10.1371/journal.pbio.2000631
|
[48] |
J. Zhang, X. Li, H. Lei, R. Zhao, W. Gan, K. Zhou, et al.. New insights into thiamphenicol biodegradation mechanism by Sphingomonas sp. CL5.1 deciphered through metabolic and proteomic analysis. J Hazard Mater, 426 ( 2022), Article 128101 DOI: 10.7498/aps.70.20220288
|
[49] |
J. Zhang, C. Yang, J. Hu, Y. Zhang, Y. Lai, H. Gong, et al.. Deciphering a novel chloramphenicols resistance mechanism: oxidative inactivation of the propanediol pharmacophore. Water Res, 225 ( 2022), Article 119127
|
[50] |
Y. Wang, Q. Xiang, Q. Zhou, J. Xu, D. Pei. Mini review: advances in 2-haloacid dehalogenases. Front Microbiol, 12 ( 2021), Article 758886
|
[51] |
M. Meusel, H.J. Rehm. Biodegradation of dichloroacetic acid by freely suspended and adsorptive immobilized Xanthobacter autotrophicus GJ10 in soil. Appl Microbiol Biotechnol, 40 (1) ( 1993), pp. 165-171
|
[52] |
B. Cao, K. Nagarajan, K.C. Loh. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol, 85 (2) ( 2009), pp. 207-228 DOI: 10.1007/s00253-009-2192-4
|
[53] |
D. Kasai, T. Fujinami, T. Abe, K. Mase, Y. Katayama, M. Fukuda, et al.. Uncovering the protocatechuate 2,3-cleavage pathway genes. J Bacteriol, 191 (21) ( 2009), pp. 6758-6768
|
[54] |
K.P. Barry, E.A. Taylor. Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6. Biochemistry, 52 (38) ( 2013), pp. 6724-6736 DOI: 10.1021/bi400665t
|
[55] |
M.P. Valley, C.K. Brown, D.L. Burk, M.W. Vetting, D.H. Ohlendorf, J.D. Lipscomb. Roles of the equatorial tyrosyl iron ligand of protocatechuate 3,4-dioxygenase in catalysis. Biochemistry, 44 (33) ( 2005), pp. 11024-11039 DOI: 10.1021/bi050902i
|
[56] |
H. Xu, L. Xiao, S. Zheng, Y. Zhang, J. Li, F. Liu. Reductive degradation of chloramphenicol by Geobacter metallireducens. Sci China Technol Sci, 62 (10) ( 2019), pp. 1688-1694 DOI: 10.1007/s11431-018-9415-2
|
[57] |
T.S. Crofts, P. Sontha, A.O. King, B. Wang, B.A. Biddy, N. Zanolli, et al.. Discovery and characterization of a nitroreductase capable of conferring bacterial resistance to chloramphenicol. Cell Chem Biol, 26 (4) ( 2019), pp. 559-570
|
[58] |
H. Chen, Q. Zhong. Antibacterial activity of acidified sodium benzoate against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in tryptic soy broth and on cherry tomatoes. Int J Food Microbiol, 274 ( 2018), pp. 38-44 DOI: 10.1117/12.2301006
|
[59] |
M.J. Khoshnoud, A. Siavashpour, M. Bakhshizadeh, M. Rashedinia. Effects of sodium benzoate, a commonly used food preservative, on learning, memory, and oxidative stress in brain of mice. J Biochem Mol Toxicol, 32 (2) (2018), Article e22022
|
[60] |
B. Liu, M. Terashima, N.T. Quan, N.T. Ha, L. Van Chieu, R. Goel, et al.. High nitrite concentration accelerates nitrite oxidising organism’s death. Water Sci Technol, 77 (11-12) ( 2018), pp. 2812-2822 DOI: 10.2166/wst.2018.272
|
[61] |
J. Hrenović, Y. Orhan, H. Büyükgüngör, M. Horvatiček. Influence of ammonium, nitrate and nitrite on the performance of the pure culture of Acinetobacter junii. Biologia, 62 (5) ( 2007), pp. 517-522 DOI: 10.2478/s11756-007-0102-8
|
[62] |
J.J. Rowe, J.M. Yarbrough, J.B. Rake, R.G. Eagon. Nitrite inhibition of aerobic bacteria. Curr Microbiol, 2 (1) ( 1979), pp. 51-54
|