斜生栅藻培养基微滤脱水——水再利用与有效收集的潜力与挑战

Marco Malaguti, Lorenzo Craveri, Francesco Ricceri, Vincenzo Riggio, Mariachiara Zanetti, Alberto Tiraferri

工程(英文) ›› 2024, Vol. 38 ›› Issue (7) : 155-163.

PDF(1856 KB)
PDF(1856 KB)
工程(英文) ›› 2024, Vol. 38 ›› Issue (7) : 155-163. DOI: 10.1016/j.eng.2023.07.010
Research Environmental Sustainability—Article
Article

斜生栅藻培养基微滤脱水——水再利用与有效收集的潜力与挑战

作者信息 +

Dewatering of Scenedesmus obliquus Cultivation Substrate with Microfiltration: Potential and Challenges for Water Reuse and Effective Harvesting

Author information +
History +

Abstract

In the microalgae harvesting process, which includes a step for dewatering the algal suspension, directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems. Among various algae harvesting techniques, membrane-based filtration has shown numerous advantages. This study evaluated the reuse of permeate streams derived from Scenedesmus obliquus (S. obliquus) biomass filtration under bench-scale and pilot-scale conditions. In particular, this study identified a series of challenges and mechanisms that influence the water reuse potential and the robustness of the membrane harvesting system. In a preliminary phase of this investigation, the health status of the initial biomass was found to have important implications for the harvesting performance and quality of the permeate stream to be reused; healthy biomass ensured better dewatering performance (i.e., higher water fluxes) and higher quality of the permeate water streams. A series of bench-scale filtration experiments with different combinations of cross-flow velocity and pressure values were performed to identify the operative conditions that would maximize water productivity. The selected conditions, 2.4 m·s−1 and 1.4 bar (1 bar = 105 Pa), respectively, were then applied to drive pilot-scale microfiltration tests to reuse the collected permeate as a new cultivation medium for S. obliquus growth in a pilot-scale photobioreactor. The investigation revealed key differences between the behavior of the membrane systems at the two scales (bench and pilot). It indicated the potential for beneficial reuse of the permeate stream as the pilot-scale experiments ensured high harvesting performance and growth rates of biomass in permeate water that were highly similar to those recorded in the ideal cultivation medium. Finally, different nutrient reintegration protocols were investigated, revealing that both macro- and micro-nutrient levels are critical for the success of the reuse approach.

Keywords

:Scenedesmus obliquus / Microfiltration / Permeate reuse / Harvesting / Microalgae / Pilot-scale

引用本文

导出引用
Marco Malaguti, Lorenzo Craveri, Francesco Ricceri. 斜生栅藻培养基微滤脱水——水再利用与有效收集的潜力与挑战. Engineering. 2024, 38(7): 155-163 https://doi.org/10.1016/j.eng.2023.07.010

参考文献

[1]
P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert. Commercial applications of microalgae. J Biosci Bioeng, 101 (2) (2006), pp. 87-96
[2]
Y. Torres-Tiji, F.J. Fields, S.P. Mayfield. Microalgae as a future food source. Biotechnol Adv, 41 (2020), Article 107536
[3]
R.B. Draaisma, R.H. Wijffels, P.M. Ellen Slegers, L.B. Brentner, A. Roy, M.J. Barbosa. Food commodities from microalgae. Curr Opin Biotechnol, 24 (2) (2013), pp. 169-177
[4]
M.L. Mourelle, C.P. Gómez, J.L. Legido. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics, 4 (4) (2017), p. 46
[5]
A.L. Morocho-Jácome, N. Ruscinc, R.M. Martinez, J.C.M. de Carvalho, T. Santos de Almeida, C. Rosado, et al. (Bio)Technological aspects of microalgae pigments for cosmetics. Appl Microbiol Biotechnol, 104 (22) (2020), pp. 9513-9522
[6]
F. Wollmann, S. Dietze, J.U. Ackermann, T. Bley, T. Walther, J. Steingroewer, et al. Microalgae wastewater treatment: biological and technological approaches. Eng Life Sci, 19 (12) (2019), pp. 860-871
[7]
N. Abdel-Raouf, A. Al-Homaidan, I. Ibraheem. Microalgae and wastewater treatment. Saudi J Biol Sci, 19 (3) (2012), pp. 257-275
[8]
S.S. Oncel. Microalgae for a macroenergy world. Renew Sustain Energy Rev, 26 (2013), pp. 241-264
[9]
A. Kumar, S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, et al. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol, 28 (7) (2010), pp. 371-380
[10]
X. Zeng, M.K. Danquah, X.D. Chen, Y. Lu. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew Sustain Energy Rev, 15 (6) (2011), pp. 3252-3260
[11]
K.K. Sharma, S. Garg, Y. Li, A. Malekizadeh, P.M. Schenk. Critical analysis of current microalgae dewatering techniques. Biofuels, 4 (4) (2013), pp. 397-407
[12]
C.Y. Chen, K.L. Yeh, R. Aisyah, D.J. Lee, J.S. Chang. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol, 102 (1) (2011), pp. 71-81
[13]
S. Mandal, N. Mallick. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol, 84 (2) (2009), pp. 281-291
[14]
S.H. Ho, W.M. Chen, J.S. Chang. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol, 101 (22) (2010), pp. 8725-8730
[15]
M.E. Martı́nez, S. Sánchez, J. Jiménez, F. El Yousfi, L. Muñoz. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol, 73 (3) (2000), pp. 263-272
[16]
F. Ricceri, M. Malaguti, C. Derossi, M. Zanetti, V. Riggio, A. Tiraferri. Microalgae biomass concentration and reuse of water as new cultivation medium using ceramic membrane filtration. Chemosphere, 307 (2022), Article 135724
[17]
L. Batan, J.C. Quinn, T.H. Bradley. Analysis of water footprint of a photobioreactor microalgae biofuel production system from blue, green and lifecycle perspectives. Algal Res, 2 (3) (2013), pp. 196-203
[18]
U. Suparmaniam, M.K. Lam, Y. Uemura, J.W. Lim, K.T. Lee, S.H. Shuit. Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew Sustain Energy Rev, 115 (2019), Article 109361
[19]
A.I. Barros, A.L. Gonçalves, M. Simões, J.C. Pires. Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev, 41 (2015), pp. 1489-1500
[20]
G. Singh, S. Patidar. Microalgae harvesting techniques: a review. J Environ Manage, 217 (2018), pp. 499-508
[21]
M. Bilad, H.A. Arafat, I.F. Vankelecom. Membrane technology in microalgae cultivation and harvesting: a review. Biotechnol Adv, 32 (7) (2014), pp. 1283-1300
[22]
A. Nędzarek, A. Drost, F. Harasimiuk, A. Tórz, M. Bonisławska. Application of ceramic membranes for microalgal biomass accumulation and recovery of the permeate to be reused in algae cultivation. J Photochem Photobiol B Biol, 153 (2015), pp. 367-372
[23]
V. Discart, M. Bilad, L. Marbelia, I. Vankelecom. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresour Technol, 152 (2014), pp. 321-328
[24]
M. Larronde-Larretche, X. Jin. Microalgae (Scenedesmus obliquus) dewatering using forward osmosis membrane: influence of draw solution chemistry. Algal Res, 15 (2016), pp. 1-8
[25]
M. Giagnorio, F. Ricceri, M. Tagliabue, L. Zaninetta, A. Tiraferri. Hybrid forward osmosis-nanofiltration for wastewater reuse: system design. Membranes, 9 (5) (2019), p. 61
[26]
J.H. Hwang, B.E. Rittmann. Effect of permeate recycling and light intensity on growth kinetics of Synechocystis sp. PCC 6803.Algal Res, 27 (2017), pp. 170-176
[27]
S.E. Loftus, Z.I. Johnson. Reused cultivation water accumulates dissolved organic carbon and uniquely influences different marine microalgae. Front Bioeng Biotechnol, 7 (2019), p. 101
[28]
Z. Lu, S. Loftus, J. Sha, W. Wang, M.S. Park, X. Zhang, et al. Water reuse for sustainable microalgae cultivation: current knowledge and future directions. Resour Conserv Recycling, 161 (2020), Article 104975
[29]
J. Sha, Z. Lu, J. Ye, G. Wang, Q. Hu, Y. Chen, et al. The inhibition effect of recycled Scenedesmus acuminatus culture media: influence of growth phase, inhibitor identification and removal. Algal Res, 42 (2019), Article 101612
[30]
X. Wang, L. Lin, H. Lu, Z. Liu, N. Duan, T. Dong, et al. Microalgae cultivation and culture medium recycling by a two-stage cultivation system. Front Environ Sci Eng, 12 (6) (2018), p. 14
[31]
J. Fret, L. Roef, L. Diels, S. Tavernier, W. Vyverman, M. Michiels. Combining medium recirculation with alternating the microalga production strain: a laboratory and pilot scale cultivation test. Algal Res, 46 (2020), Article 101763
[32]
L. Aditya, H.P. Vu, L.N. Nguyen, T.M.I. Mahlia, N.B. Hoang, L.D. Nghiem. Microalgae enrichment for biomass harvesting and water reuse by ceramic microfiltration membranes. J Membr Sci, 669 (2023), Article 121287
[33]
W. Farooq, W.I. Suh, M.S. Park, J.W. Yang. Water use and its recycling in microalgae cultivation for biofuel application. Bioresour Technol, 184 (2015), pp. 73-81
[34]
M. Wu, M. Du, G. Wu, F. Lu, J. Li, A. Lei, et al. Water reuse and growth inhibition mechanisms for cultivation of microalga Euglena gracilis. Biotechnol Biofuels, 14 (1) (2021), p. 132
[35]
F. Ricceri, B. Blankert, N. Ghaffour, J.S. Vrouwenvelder, A. Tiraferri, L. Fortunato. Unraveling the role of feed temperature and cross-flow velocity on organic fouling in membrane distillation using response surface methodology. Desalination, 540 (2022), Article 115971
[36]
F. Ricceri, G. Farinelli, M. Giagnorio, A. Zamboi, A. Tiraferri. Optimization of physico-chemical and membrane filtration processes to remove high molecular weight polymers from produced water in enhanced oil recovery operations. J Environ Manage, 302 (2022), Article 114015
[37]
M. Carone, D. Alpe, V. Costantino, C. Derossi, A. Occhipinti, M. Zanetti, et al. Design and characterization of a new pressurized flat panel photobioreactor for microalgae cultivation and CO2 bio-fixation. Chemosphere, 307 (2022), Article 135755
[38]
B.S.B. Bamba, C.C. Tranchant, A. Ouattara, P. Lozano. Harvesting of microalgae biomass using ceramic microfiltration at high cross-flow velocity. Appl Biochem Biotechnol, 193 (4) (2021), pp. 1147-1169
[39]
A.F. Novoa, J.S. Vrouwenvelder, L. Fortunato. Membrane fouling in algal separation processes: a review of influencing factors and mechanisms. Front Chem Eng, 3 (2021), Article 687422
[40]
E. Sanz-Luque, A. Chamizo-Ampudia, A. Llamas, A. Galvan, E. Fernandez. Understanding nitrate assimilation and its regulation in microalgae. Front Plant Sci, 6 (2015), p. 899
[41]
M.S. Rana, S.K. Prajapati. Resolving the dilemma of iron bioavailability to microalgae for commercial sustenance. Algal Res, 59 (2021), Article 102458
[42]
J. Liu, K. Tan, L. He, Y. Qiu, W. Tan, Y. Guo, et al. Effect of limitation of iron and manganese on microalgae growth in fresh water. Microbiology, 164 (12) (2018), pp. 1514-1521
[43]
E. Polat, E. Yüksel, M. Altınbaş. Mutual effect of sodium and magnesium on the cultivation of microalgae Auxenochlorella protothecoides. Biomass Bioenergy, 132 (2020), Article 105441
[44]
B. Elisabeth, F. Rayen, T. Behnam. Microalgae culture quality indicators: a review. Crit Rev Biotechnol, 41 (4) (2021), pp. 457-473
[45]
K.H. Chowdury, N. Nahar, U.K. Deb. The growth factors involved in microalgae cultivation for biofuel production: a review. Comput Water Eng Environ Eng, 9 (04) (2020), pp. 185-215
[46]
M. Malaguti, A.F. Novoa, F. Ricceri, M. Giagnorio, J.S. Vrouwenvelder, A. Tiraferri, et al. Control strategies against algal fouling in membrane processes applied for microalgae biomass harvesting. J Water Process Eng, 47 (2022), Article 102787
[47]
L. Marbelia, M. Mulier, D. Vandamme, K. Muylaert, A. Szymczyk, I.F.J. Vankelecom. Polyacrylonitrile membranes for microalgae filtration: influence of porosity, surface charge and microalgae species on membrane fouling. Algal Res, 19 (2016), pp. 128-137
[48]
X. Zhang, L. Fan, F.A. Roddick. Influence of the characteristics of soluble algal organic matter released from Microcystis aeruginosa on the fouling of a ceramic microfiltration membrane. J Membr Sci, 425-6 (2013), pp. 23-29
[49]
Y.T. Chiou, M.L. Hsieh, H.H. Yeh. Effect of algal extracellular polymer substances on UF membrane fouling. Desalination, 250 (2) (2010), pp. 648-652
[50]
D. Ghernaout, N. Elboughdiri, S. Ghareba, A. Salih. Coagulation process for removing algae and algal organic matter—an overview. Open Access Libr, 7 (04) (2020), pp. 1-21
[51]
L.O. Villacorte, Y. Ekowati, T.R. Neu, J.M. Kleijn, H. Winters, G. Amy, et al. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Res, 73 (2015), pp. 216-230
[52]
X. Zhang, Q. Hu, M. Sommerfeld, E. Puruhito, Y. Chen. Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour Technol, 101 (14) (2010), pp. 5297-5304
[53]
A. Nędzarek, P.T. Mitkowski. The fouling effect on commercial ceramic membranes during filtration of microalgae Chlorella vulgaris and Monoraphidium contortum. Energies, 15 (10) (2022), p. 3745
[54]
C.Y.B. Oliveira, C.D.L. Oliveira, R. Prasad, H.C. Ong, E.S. Araujo, N. Shabnam, et al. A multidisciplinary review of Tetradesmus obliquus: a microalga suitable for large-scale biomass production and emerging environmental applications. Rev Aquacult, 13 (3) (2021), pp. 1594-1618
[55]
H. Pashaei, A. Ghaemi, M. Nasiri, B. Karami. Experimental modeling and optimization of CO2 absorption into piperazine solutions using RSM-CCD methodology. ACS Omega, 5 (15) (2020), pp. 8432-8448
[56]
R.L. Mason, R.F. Gunst, J.L. Hess. Statistical design and analysis of experiments: with applications to engineering and science. John Wiley & Sons, New Jersey (2003)
[57]
M.Y. Noordin, V. Venkatesh, S. Sharif, S. Elting, A. Abdullah. Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J Mater Process Technol, 145 (1) (2004), pp. 46-58
[58]
M. Ahmadi, F. Vahabzadeh, B. Bonakdarpour, E. Mofarrah, M. Mehranian. Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation. J Hazard Mater, 123 (1-3) (2005), pp. 187-195
[59]
X. Sun, C. Wang, Y. Tong, W. Wang, J. Wei. A comparative study of microfiltration and ultrafiltration for algae harvesting. Algal Res, 2 (4) (2013), pp. 437-444
[60]
D.M. Krstić, S.L. Markov, M.N. Tekić. Membrane fouling during cross-flow microfiltration of Polyporus squamosus fermentation broth. Biochem Eng J, 9 (2) (2001), pp. 103-109
[61]
N. Rossi, M. Derouiniot-Chaplain, P. Jaouen, P. Legentilhomme, I. Petit. Arthrospira platensis harvesting with membranes: fouling phenomenon with limiting and critical flux. Bioresour Technol, 99 (14) (2008), pp. 6162-6167
[62]
B.S. Bamba, P. Lozano, A. Ouattara, H. Elcik. Pilot-scale microalgae harvesting with ceramic microfiltration modules: evaluating the effect of operational parameters and membrane configuration on filtration performance and membrane fouling. J Chem Technol Biotechnol, 96 (3) (2021), pp. 603-612
[63]
M.L. Gerardo, D.L. Oatley-Radcliffe, R.W. Lovitt. Minimizing the energy requirement of dewatering Scenedesmus sp. by microfiltration: performance, costs, and feasibility. Environ Sci Tech, 48 (1) (2014), pp. 845-853
[64]
M.L. Gerardo, M.A. Zanain, R.W. Lovitt. Pilot-scale cross-flow microfiltration of Chlorella minutissima: a theoretical assessment of the operational parameters on energy consumption. J Chem Eng, 280 (2015), pp. 505-513
[65]
S.S. Mostafa, E.A. Shalaby, G.I. Mahmoud. Cultivating microalgae in domestic wastewater for biodiesel production. Not Sci Biol, 4 (1) (2012), pp. 56-65
[66]
A. Schäfer, A.G. Fane, T. Waite. Fouling effects on rejection in the membrane filtration of natural waters. Desalination, 131 (1-3) (2000), pp. 215-224
[67]
L. Fortunato, S. Jeong, T. Leiknes. Time-resolved monitoring of biofouling development on a flat sheet membrane using optical coherence tomography. Sci Rep, 7 (1) (2017), p. 15
[68]
C. Wang, C.Q. Lan. Effects of shear stress on microalgae-a review. Biotechnol Adv, 36 (4) (2018), pp. 986-1002
[69]
M.G. de Morais, J.A.V. Costa. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol, 129 (3) (2007), pp. 439-445
[70]
Q. Liao, L. Li, R. Chen, X. Zhu. A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation. Bioresour Technol, 161 (2014), pp. 186-191
PDF(1856 KB)

Accesses

Citation

Detail

段落导航
相关文章

/