[1] |
G.M. Taboada, K. Yang, M.J.N. Pereira, S.S. Liu, Y. Hu, J.M. Karp, et al.. Overcoming the translational barriers of tissue adhesives. Nat Rev Mater, 5 (4) ( 2020), pp. 310-329 DOI: 10.1038/s41578-019-0171-7
|
[2] |
J. Zhu, Q. Jin, H. Zhao, W. Zhu, Z. Liu, Q. Chen. Reactive oxygen species scavenging sutures for enhanced wound sealing and repair. Small Struct, 2 (7) ( 2021), Article 2100002
|
[3] |
J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang, N. Kong, et al.. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc Natl Acad Sci USA, 117 (46) ( 2020), pp. 28667-28677 DOI: 10.1073/pnas.2016268117
|
[4] |
X. Chen, J. Zhang, G. Chen, Y. Xue, J. Zhang, X. Liang, et al.. Hydrogel bioadhesives with extreme acid-tolerance for gastric perforation repairing. Adv Funct Mater, 32 (29) ( 2022), Article 2202285
|
[5] |
E. Shirzaei Sani, A. Kheirkhah, D. Rana, Z. Sun, W. Foulsham, A. Sheikhi, et al.. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Sci Adv, 5 (3) ( 2019), Article eaav1281
|
[6] |
|
[7] |
R. Pinnaratip, M.S.A. Bhuiyan, K. Meyers, R.M. Rajachar, B.P. Lee. Multifunctional biomedical adhesives. Adv Healthc Mater, 8 (11) ( 2019), Article 1801568
|
[8] |
S. Balcioglu, C. Gurses, I. Ozcan, A. Yildiz, S. Koytepe, H. Parlakpinar, et al.. Photocrosslinkable gelatin/collagen based bioinspired polyurethane-acrylate bone adhesives with biocompatibility and biodegradability. Int J Biol Macromol, 192 ( 2021), pp. 1344-1356
|
[9] |
J. Gao, X. Yu, X. Wang, Y. He, J. Ding. Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine. Engineering, 13 ( 2022), pp. 31-45
CrossRef
ADS
Google scholar
|
[10] |
C. Feng, J. Ouyang, Z. Tang, N. Kong, Y. Liu, L. Fu, et al.. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter, 3 (1) ( 2020), pp. 127-144
|
[11] |
X. Wang, M. Tang. Bioceramic materials with ion-mediated multifunctionality for wound healing. Smart Med, 1 (1) ( 2022), Article e20220032
|
[12] |
A. Bal-Ozturk, B. Cecen, M. Avci-Adali, S.N. Topkaya, E. Alarcin, G. Yasayan, et al.. Tissue adhesives: from research to clinical translation. Nano Today, 36 ( 2021), Article 101049
|
[13] |
P.J.M. Bouten, M. Zonjee, J. Bender, S.T.K. Yauw, H. Van Goor, J.C.M. Van Hest, et al.. The chemistry of tissue adhesive materials. Prog Polym Sci, 39 (7) ( 2014), pp. 1375-1405
|
[14] |
A.H. Hofman, I.A. Van Hees, J. Yang, M. Kamperman. Bioinspired underwater adhesives by using the supramolecular toolbox. Adv Mater, 30 (19) ( 2018), Article 1704640
|
[15] |
Q. Zhao, D.W. Lee, B.K. Ahn, S. Seo, Y. Kaufman, J.N. Israelachvili, et al.. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat Mater, 15 (4) ( 2016), pp. 407-412 DOI: 10.1038/nmat4539
|
[16] |
J. Sun, J. Chen, K. Liu, H. Zeng. Mechanically strong proteinaceous fibers: engineered fabrication by microfluidics. Engineering, 7 (5) ( 2021), pp. 615-623
|
[17] |
R. Chang, X. Yan. Supramolecular immunotherapy of cancer based on the self-assembling peptide design. Small Struct, 1 (2) ( 2020), Article 2000068
|
[18] |
B. Wang, H. Chen, T. Liu, S. Shi, T.P. Russell. Host-guest molecular recognition at liquid-liquid interfaces. Engineering, 7 (5) ( 2021), pp. 603-614
|
[19] |
J. Sun, J. Zhang, L. Zhao, S. Wan, B. Wu, C. Ma, et al.. Contribution of hydrogen-bond nanoarchitectonics to switchable photothermal-mechanical properties of bioinorganic fibers. CCS Chem, 5 (5) ( 2023), pp. 1242-1250 DOI: 10.31635/ccschem.022.202201946
|
[20] |
J. Li, Y. Sun, Y. Liang, J. Ma, B. Li, C. Ma, et al.. Extracellular elastin molecule modulates Alzheimer’s aβ dynamics in vitro and in vivo by affecting microglial activities. CCS Chem, 3 (7) ( 2021), pp. 1830-1837 DOI: 10.31635/ccschem.020.202000330
|
[21] |
J. Sun, J. Han, F. Wang, K. Liu, H. Zhang. Bioengineered protein-based adhesives for biomedical applications. Chemistry, 28 (1) ( 2022), Article e202102902
|
[22] |
C. Ma, J. Sun, B. Li, Y. Feng, Y. Sun, L. Xiang, et al.. Ultra-strong bio-glue from genetically engineered polypeptides. Nat Commun, 12 (1) ( 2021), p. 3613
|
[23] |
M.J. Brennan, B.F. Kilbride, J.J. Wilker, J.C. Liu. A bioinspired elastin-based protein for a cytocompatible underwater adhesive. Biomaterials, 124 ( 2017), pp. 116-125
|
[24] |
J. Su, B. Liu, H. He, C. Ma, B. Wei, M. Li, et al.. Engineering high strength and super-toughness of unfolded structural proteins and their extraordinary anti-adhesion performance for abdominal hernia repair. Adv Mater, 34 (19) ( 2022), Article 2200842
|
[25] |
Z. Wei, J. Sun, S. Lu, Y. Liu, B. Wang, L. Zhao, et al.. An engineered protein-Au bioplaster for efficient skin tumor therapy. Adv Mater, 34 (16) ( 2022), Article 2110062
|
[26] |
Z. Zhang, J. Zhou, C. Liu, J. Zhang, Y. Shibata, N. Kong, et al.. Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities. Trends Chem, 4 (5) ( 2022), pp. 420-436
|
[27] |
J. Zhou, Z. Zhang, J. Joseph, X. Zhang, B.E. Ferdows, D.N. Patel, et al.. Biomaterials and nanomedicine for bone regeneration: progress and future prospects. Exploration, 1 (2) ( 2021), Article 20210011
|
[28] |
X. Zhang, L. Li, J. Ouyang, L. Zhang, J. Xue, H. Zhang, et al.. Electroactive electrospun nanofibers for tissue engineering. Nano Today, 39 ( 2021), Article 101196
|
[29] |
L. Li, X. Zhang, J. Zhou, L. Zhang, J. Xue, W. Tao, et al.. Non-invasive thermal therapy for tissue engineering and regenerative medicine. Small, 18 (36) ( 2022), Article 2107705
|
[30] |
Shan J, Che J, Song C, Zhao Y. Emerging antibacterial nanozymes for wound healing. Smart Med 2023; 2(3):e20220025.
|
[31] |
Y. Ren, Y. Zhang, Y. Liu, Q. Wu, H.G. Hu, J. Li, et al.. Highly reliable and efficient encoding systems for hexadecimal polypeptide-based data storage. Fundam Res, 3 (2) ( 2023), pp. 298-304 DOI: 10.3390/math11020298
|
[32] |
H. Kim, W.H. Kong, K.Y. Seong, D.K. Sung, H. Jeong, J.K. Kim, et al.. Hyaluronate-epidermal growth factor conjugate for skin wound healing and regeneration. Biomacromolecules, 17 (11) ( 2016), pp. 3694-3705
|
[33] |
M. Shao, Y. Fan, K. Zhang, Y. Hu, F.J. Xu. One nanosystem with potent antibacterial and gene-delivery performances accelerates infected wound healing. Nano Today, 39 ( 2021), Article 101224
|
[34] |
W. Zhao, Y. Li, X. Zhang, R. Zhang, Y. Hu, C. Boyer, et al.. Photo-responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing. J Control Release, 323 ( 2020), pp. 24-35
|
[35] |
J. Sun, L. Xiao, B. Li, K. Zhao, Z. Wang, Y. Zhou, et al.. Genetically engineered polypeptide adhesive coacervates for surgical applications. Angew Chem Int Ed, 60 (44) ( 2021), pp. 23687-23694 DOI: 10.1002/anie.202100064
|
[36] |
S. Wan, W. Cheng, J. Li, F. Wang, X. Xing, J. Sun, et al.. Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Res, 15 (10) ( 2022), pp. 9192-9198 DOI: 10.1007/s12274-022-4595-9
|
[37] |
L. Xiao, Z. Wang, Y. Sun, B. Li, B. Wu, C. Ma, et al.. An artificial phase-transitional underwater bioglue with robust and switchable adhesion performance. Angew Chem Int Ed, 60 (21) ( 2021), pp. 12082-12089
CrossRef
ADS
Google scholar
|
[38] |
J. Li, A.D. Celiz, J. Yang, Q. Yang, I. Wamala, W. Whyte, et al.. Tough adhesives for diverse wet surfaces. Science, 357 ( 2017), pp. 378-381 DOI: 10.1126/science.aah6362
|
[39] |
S. Xi, F. Tian, G. Wei, X. He, Y. Shang, Y. Ju, et al.. Reversible dendritic-crystal-reinforced polymer gel for bioinspired adaptable adhesive. Adv Mater, 33 (40) ( 2021), Article 2103174
|
[40] |
T.I. Harris, D.A. Gaztambide, B.A. Day, C.L. Brock, A.L. Ruben, J.A. Jones, et al.. Sticky situation: an investigation of robust aqueous-based recombinant spider silk protein coatings and adhesives. Biomacromolecules, 17 (11) ( 2016), pp. 3761-3772 DOI: 10.1021/acs.biomac.6b01267
|
[41] |
N. Annabi, Y.N. Zhang, A. Assmann, E.S. Sani, G. Cheng, A.D. Lassaletta, et al.. Engineering a highly elastic human protein-based sealant for surgical applications. Sci Transl Med, 9 (410) ( 2017), Article eaai7466
|
[42] |
D. Zhang, Z. Xu, H. Li, C. Fan, C. Cui, T. Wu, et al.. Fabrication of strong hydrogen-bonding induced coacervate adhesive hydrogels with antibacterial and hemostatic activities. Biomater Sci, 8 (5) ( 2020), pp. 1455-1463 DOI: 10.1039/c9bm02029b
|
[43] |
Q. Zhang, C.Y. Shi, D.H. Qu, Y.T. Long, B.L. Feringa, H. Tian. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Sci Adv, 4 (7) ( 2018), Article eaat8192
|
[44] |
J. Xu, X. Li, J. Li, X. Li, B. Li, Y. Wang, et al.. Wet and functional adhesives from one-step aqueous self-assembly of natural amino acids and polyoxometalates. Angew Chem Int Ed, 56 (30) ( 2017), pp. 8731-8735 DOI: 10.1002/anie.201703774
|
[45] |
W.R. Wonderly, T.R. Cristiani, K.C. Cunha, G.D. Degen, J.E. Shea, J.H. Waite. Dueling backbones: comparing peptoid and peptide analogues of a mussel adhesive protein. Macromolecules, 53 (16) ( 2020), pp. 6767-6779 DOI: 10.1021/acs.macromol.9b02715
|
[46] |
X. Liu, Q. Zhang, Z. Gao, R. Hou, G. Gao. Bioinspired adhesive hydrogel driven by adenine and thymine. ACS Appl Mater Interfaces, 9 (20) ( 2017), pp. 17645-17652 DOI: 10.1021/acsami.7b04832
|
[47] |
Z. Meng, Q. Liu, Y. Zhang, J. Sun, C. Yang, H. Li, et al.. Highly stiff and stretchable DNA liquid crystalline organogels with super plasticity, ultrafast self-healing, and magnetic response behaviors. Adv Mater, 34 (3) ( 2022), Article 2106208
|
[48] |
F. Li, J. Tang, J. Geng, D. Luo, D. Yang. Polymeric DNA hydrogel: design, synthesis and applications. Prog Polym Sci, 98 ( 2019), Article 101163
|
[49] |
X. Zhao, Y. Liang, Y. Huang, J. He, Y. Han, B. Guo. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv Funct Mater, 30 (17) ( 2020), Article 1910748
|
[50] |
W. Chen, R. Wang, T. Xu, X. Ma, Z. Yao, B. Chi, et al.. A mussel-inspired poly(γ-glutamic acid) tissue adhesive with high wet strength for wound closure. J Mater Chem B, 5 (28) ( 2017), pp. 5668-5678
|
[51] |
X. Pei, H. Zhang, Y. Zhou, L. Zhou, J. Fu. Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater Horiz, 7 (7) ( 2020), pp. 1872-1882 DOI: 10.1039/d0mh00361a
|
[52] |
H. Fan, J.P. Gong. Bioinspired underwater adhesives. Adv Mater, 33 (44) ( 2021), Article 2102983
|
[53] |
W. Wei, Y. Tan, N.R. Martinez Rodriguez, J. Yu, J.N. Israelachvili, J.H. Waite. A mussel-derived one component adhesive coacervate. Acta Biomater, 10 (4) ( 2014), pp. 1663-1670
|
[54] |
E. Filippidi, T.R. Cristiani, C.D. Eisenbach, J.H. Waite, J.N. Israelachvili, B.K. Ahn, et al.. Toughening elastomers using mussel-inspired iron-catechol complexes. Science, 358 ( 2017), pp. 502-505 DOI: 10.1126/science.aao0350
|
[55] |
Lang N, Pereira MJ, Lee Y, Friehs I, Vasilyev NV, Feins EN, et al. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci Transl Med 2014; 6(218):218ra6.
|
[56] |
J.K. Choi, J.H. Jang, W.H. Jang, J. Kim, I.H. Bae, J. Bae, et al.. The effect of epidermal growth factor (EGF) conjugated with low-molecular-weight protamine (LMWP) on wound healing of the skin. Biomaterials, 33 (33) ( 2012), pp. 8579-8590
|
[57] |
Y. Xi, J. Ge, Y. Guo, B. Lei, P.X. Ma. Biomimetic elastomeric polypeptide-based nanofibrous matrix for overcoming multidrug-resistant bacteria and enhancing full-thickness wound healing/skin regeneration. ACS Nano, 12 (11) ( 2018), pp. 10772-10784 DOI: 10.1021/acsnano.8b01152
|
[58] |
B. Hu, M. Gao, K.O. Boakye-Yiadom, W. Ho, W. Yu, X. Xu, et al.. An intrinsically bioactive hydrogel with on-demand drug release behaviors for diabetic wound healing. Bioact Mater, 6 (12) ( 2021), pp. 4592-4606
|
[59] |
X. Peng, Y. Li, T. Li, Y. Li, Y. Deng, X. Xie, et al.. Coacervate-derived hydrogel with effective water repulsion and robust underwater bioadhesion promotes wound healing. Adv Sci, 9 (31) ( 2022), Article 2203890
|
[60] |
Q. Peng, J. Chen, Z. Zeng, T. Wang, L. Xiang, X. Peng, et al.. Adhesive coacervates driven by hydrogen-bonding interaction. Small, 16 (43) ( 2020), Article 2004132
|
[61] |
J. Koehler, F.P. Brandl, A.M. Goepferich. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J, 100 ( 2018), pp. 1-11
|
[62] |
R. Ying, W.C. Huang, X. Mao. Synthesis of agarose-based multistimuli-responsive hydrogel dressing for accelerated wound healing. ACS Biomater Sci Eng, 8 (1) ( 2022), pp. 293-302 DOI: 10.1021/acsbiomaterials.1c01215
|
[63] |
F. Jiang, Z. Chi, Y. Ding, M. Quan, Y. Tian, J. Shi, et al.. Wound dressing hydrogel of Enteromorpha prolifera polysaccharide-polyacrylamide composite: a facile transformation of marine blooming into biomedical material. ACS Appl Mater Interfaces, 13 (12) ( 2021), pp. 14530-14542 DOI: 10.1021/acsami.0c21543
|